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Sample Examination Paper I

CHE1215: Methods of Chemical Calculations nth June 20XX
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Instructions
Read the following instructions carefully.

• Attempt only TEN questions.

• Each question carries 10 marks. The maximum mark is 100.

• A list of mathematical formulae is provided on page 2.

• Only the use of non-programmable calculators is allowed. Calculator
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MATHEMATICAL FORMULÆ

ALGEBRA

Factors

a3 +b3 = (a+b)(a2 −ab+b2)
a3 −b3 = (a−b)(a2 +ab+b2)

Quadratics

If ax2 +bx +c has roots α and β,

∆= b2 −4ac
α+β=−b

a αβ= c
a

Finite Series

n∑
k=1

1= n
n∑

k=1
k = n(n+1)

2
n∑

k=1
k2 = k(k +1)(2k +1)

6

(1+x)n =
n∑

k=0

(n
k

)
xn

= 1+nx + n(n−1)
2·1 x2 +·· ·+xn

GEOMETRY& TRIGONOMETRY

Distance Formula

If A= (x1,y1) and B = (x2,y2),

d(A,B)=
√

(x1 −x2)2 + (y1 −y2)2

=
√
∆x2 +∆y2

Pythagorean Identity

cos2θ+ sin2θ = 1

General Solutions

cosθ = cosα ⇐⇒ θ =±α+2πZ
sinθ = sinα ⇐⇒ θ = (−1)nα+πn, n ∈Z

tanθ = tanα ⇐⇒ θ =α+πZ

CALCULUS

Derivatives Integrals

f (x) f ′(x) f (x)
∫

f (x)dx

xn nxn−1 xn (n 6= −1) xn+1
n+1

sinx cosx sinx −cosx
cosx −sinx cosx sinx
tanx sec2 x tanx log(secx)
cotx −cosec2 x cotx log(sinx)
secx secx tanx secx log(secx + tanx)

cosecx −cosecx cotx cosecx log(tan x
2 )

ex ex ex ex

logx 1/x 1/x logx
uv u′v +uv ′ 1

a2+x2
1
a tan−1 ( x

a
)

u/v (u′v −uv ′)/v2 xp
a2+x2 sin−1 ( x

a
)

Homogeneous Linear Second Order ODEs

If the roots of ak2+bk+c are k1 and k2, then the differential equa-
tion ay ′′+by ′+cy = 0 has general solution

y(x)=


c1ek1x +c2ek2x if k1 6= k2
c1ekx +c2xekx if k = k1 = k2
eαx (c1 cosβx +c2 sinβx) if k =α±βi ∈C

Infinite Series

ex =
∞∑

n=0

xn

n! = 1+x + x2

2 + x3

3! + x4

4! · · ·

cosx =
∞∑

n=0
n even

(−1) n
2

n! xn = 1− x2

2 + x4

4! −·· ·

sinx =
∞∑

n=1
n odd

(−1) n−1
2

n! xn = x − x3

3! + x5

5! −·· ·

log(1+x)=
∞∑

n=1

(−1)n+1

n xn = x − x2

2 + x2

3 −·· · , x ∈ (−1,1]
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Attempt only TEN questions."

1. (a) Given that logx = 4, logy = 2 and logz = 5, evaluate the following.

logxyz(i) log x
zy(ii) 4logy

p
x(iii)

log4x − log3y(iv) (logxy)x(v) logx z(vi)

(b) Solve for x :
4x ×37−x = 62x−2×2x−1.

[6, 4 marks]

2. Consider the curve given by the equation

y = 7e−x

4x2+3
.

(a) Determine the coordinates of stationary points on the curve.

(b) Determine the nature of the stationary points, given that at their

coordinates, we have 2x d2y
dx2 +y sin(πx)= 0.

(c) Sketch the curve, labelling any turning points and intercepts with

the x- and y-axes.

[4, 3, 3 marks]

3. (a) Consider the complex numbers

z1 = 1+ i and z2 = 3+z∗
1 .

Determine:

z1z2(i) z1/z2(ii) |z1+z2|(iii)

(b) Let ω be the complex number given by

4ω= 1+
p

5+
√

10−2
p

5 i .

Given that |ω| = 1 and argω= π
5 , what is the value of ω

5?

[6, 4 marks]
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4. (a) Solve the equation cosec(2x)= 2 for all x in the range −πÉ x Éπ.
(b) Show that the solutions to the equation 2cos2(2x)− 3sin(2x) = 0

are the same as the solutions to the equation in part (a).

(c) Sketch the curve y = sin2x in the range −πÉ x Éπ, and indicate on
it the solutions to the equations in (a) and (b).

[4, 3, 3 marks]

5. Aman rows 3 km out to sea from a starting point A. He wishes to get to

a point B as fast as possible, 10 km away from A down the coast.

A B?

10 km

SHIP

3 km

He can row 4 km an hour and run 5 km an hour. Assuming the coast is

straight, how far from A should he land?

[10 marks]

6. The function f is defined by

f (x ,y ,z)= x2y3+2xy2z2+5x4z .

(a) Find the partial derivatives ∂f
∂x ,

∂f
∂y

∂f
∂z ,

∂2f
∂x∂y and ∂2f

∂z2 .

(b) Find the total differential df .

(c) Use the total differential to show that, for inputs close to the point

(1,2,−1), we have the approximation

f (x ,y ,z)≈ 4x +20y −11z −44.

[5, 2, 3 marks]
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7. (a) Find the derivatives of the following functions.

p
x(log2x)2(i) log

( 3p2x −1
x2/5px −1

)
(ii)

xp
1+cos2 x

(iii)

(b) Verify that the function y =p
xex2

is a solution to the differential

equation

4x2 d2y
dx2 −8x dy

dx + (5−16x4)y = 0.

[6, 4 marks]

8. Determine the following integrals.∫ 2

1

p
x(x +1)

3px
dx(a)

∫
sec2(2x −1)dx(b)∫ x

(x2+1)(x +1)
dx(c)

∫ 2

0

3x +1
(x2+3x +4)(x +3)

dx(d)

[2, 1, 3, 4 marks]

9. (a) Solve the equations:

x2+4= 15x(i) x3+4= 15x(ii)

(b) Sketch the graph y = x3−15x+4, and find the area bounded by the
the curve, the x-axis and its two leftmost x-intercepts.

[5, 5 marks]

10. Solve the differential equation

(x2+x −2) dy
dx = 3ey ,

given that y = 0 when x = 0. Give your solution in the form

y(x)=− log
(
a+ log

( 2+x
b(1−x)

))
,

where a and b are constants. [10 marks]
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11. Solve the differential equation

9d2y
dx2 −12dy

dx +4y = 8x −5e−x ,

given that when x = 0, y = 14
5 and

dy
dx = 11

5 .

[Hint: When finding the particular integral, use µx +λ+ηe−x as a trial

solution.]

[10 marks]

12. Consider the quadratic expression g(x)= 4x2+4x −15.

(a) Express g(x) in the form a(x −p)2+q for appropriate values of a,p
and q.

(b) Hence, sketch the graph of y = g(x), clearly labelling any turning

points and intercepts with the coordinate axes.

(c) Sketch on the same set of axes, the line y = 8x −7, and label their

points of intersection.

[3, 4, 3 marks]

13. Consider the matrix A=
(−1 3
−2 7

)
.

(a) Find the matrix B such that AB= I. What is B called?

(b) Use part (a) to solve the simultaneous equations{
−x +3y = 1

−2x +7y = 3.

(c) The matrix C represents a reflection in y = −x . Write down the

matrix C, and say what C8 will be by reasoning geometrically.

[4, 3, 3 marks]
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14. (a) Sketch the following graphs, labelling any x- and y-intercepts.

y = 3log(x −2)(i) y = 2e−x +1(ii) y = x +1
x +2(iii)

(b) A certain strain of E-coli bacteria doubles in number 30 minutes. If

there are 100 E-coli bacteria that are allowed to grow under ideal

conditions, how long will it take to reach 1 million bacteria?

[6, 4 marks]

15. (a) The rate law of the reaction A−−−→ P following first order kinetics

with respect to [A] is given by

−d [A]
dt = k[A],

where [A] is the concentration of A at time t after the commence-

ment of the reaction, and k is the rate constant. If at t = 0, [A] =
[A]0, show that

[A]= [A]0 exp(−kt).

(b) The Schrödinger equation for a particle inside a one-dimensional

box is given by

− ħ2

2m
d2ψ

dx2 =Eψ,

where ħ, m and E have their usual meaning and can be treated as

constants for this question. Show that this has general solution

ψ(x)= c1 cos
(√2mE

ħ2 x
)
+c2 sin

(√2mE
ħ2 x

)
.

[5, 5 marks]
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Solutions

1. (a) (i) 11 (ii) −3 (iii) 16 (iv) 2+ log 4
3 (v) 6e4

(vi) 5
4

(b) x = 3

2. (a) A= (− 1
2 , 7

4
p

e
)
and B = (− 3

2 , 7
12e3/2)

(b) Instead of working out y ′′ (which involves a lot of working), the

given fact allows us to deduce that when x =−1
2 ,

d2y
dx2 =−7

4
p

e < 0,
and when x =−3

2 ,
d2y
dx2 = 7

36e3/2 > 0. Thus by the second derivative

test, A is a max, and B is a min.

(c) Remember to find x- and y-intercepts, and to see what happens as
x →±∞, they will help you with the sketch.

x

y

y = 7e−x

4x2+3

7
3

A

B

3. (a) (i) 5+3i (ii) 3
17 + 5

17 i (iii) 5

(b) Since we know |ω| and argω, then ω= e iπ/5, and we don’t need to

use the given complicated form for ω. Then (e iπ/5)5 = e i π5 ·5 = e iπ =
cos(π)+ i sin(π)=−1.

4. (a) x =−11π
12 ,−7π

12 , π12 , 5π
12

(b) By using the Pythagorean identity cos2(2x)+ sin2(2x) = 1, we can

replace the term cos2 2x in the given equation to get the quadratic

(sin2x+2)(2sin2x−1)= 0. The first factor corresponds to the equa-
tion sin2x =−2, which is impossible; thus any solutions must come

from the second factor, which corresponds to sin2x = 1
2 . This is the

same as the equation from (a).
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(c) Sketch:

x

y

y = sin2x

y = 1
2

−π − 11π
12 − 7π

12
π
12

5π
12

π

5. Assuming he lands x km away from A, the time he takes to arrive at B is

T (x) = 1
4
p

9+x2 + 1
5(10− x). By differentiation, this is minimised when

T ′(x)= 0, which has solution x = 4, i.e., he should land 4 km from A.

6. (a) ∂f
∂x = 20x3z +2xy3+2y2z2 ∂f

∂y = 3x2y2+4xyz2

∂f
∂z = 5x4+4xy2z ∂2f

∂x∂y = 6xy2+4yz2

∂2f
∂z2 = 4xy2

(b) df = ∂f
∂x dx + ∂f

∂y dy + ∂f
∂z dz

= (20x3z+2xy3+2y2z2)dx+(3x2y2+4xyz2)dy+(5x4+4xy2z)dz

(c) Near (1,2,−1),

f (x ,y ,z)≈ f (1,2,−1)+df (1,2,−1)
= 11+4dx +20dy −11dz
= 11+4(x −1)+20(y −2)−11(z +1)
= 4x +20y −11z −44

7. (a) (i)
log(2x)

2
p

x
(4+ log(2x)) (ii)

2
3(2x −1) −

2
5x − 1

2(x −1)

(iii)
cos2 x +x cosx sinx +1

(1+cos2 x)3/2

(b) y =p
xex2

dy
dx = ex2

2
p

x (4x2+1) d2y
dx2 = ex2

4x3/2 (16x4+16x2−1),
plug them into the LHS and it should simplify to zero.
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8. (a) 12
91(27 6p2−10) (b) 1

2 tan(2x −1)+c

(c) 1
2 tan−1 x + log

( 4p1+x2p
1+x

)
+c (d) log

(63
50

)
9. (a) (i) x = 1

2(15±p
209) (ii) x =−4,2±p

3

(b)

x

y
y = x3−15x +4

−4 2−p
3 2+p

3

Area=
∫ 2−p3

−4
(x3−15x +4)dx = 207

4 +12
p

3.

10. a = 1, b = 2.

11. y(x)= 2(x +3)+2e2x/3(2x −3)− 1
5e−x .

12. (a) g(x)= 4
(
x + 1

2
)2−16

(b)

x

y
y = 4x2+4x −15

−5
2

3
2

−15(− 1
2 ,−16

)
(c)

x

y y = 4x2+4x −15
y = 8x −7

−5
2

3
2

−15(− 1
2 ,−16

)(−1,−15)

(2,9)

CHE1215 May/June 20XX — LC Page iii



13. (a) B=
(−7 3
−2 1

)
. B is the inverse of A.

(b) The system is Ax = b, where x = (x ,y) and b = (1,3).

Thus x =A−1b =Bb =
(−7 3
−2 1

)(
1
3

)
=

(
2
1

)
,

i.e., x = 2 and y = 1.

(c) C=
(

0 −1
−1 0

)
.

C8 represents the matrix which carries out the transformation C 8

times. But doing C 8 times (i.e., reflecting in y = −x 8 times) will

leave vectors unchanged, thus C8 = I.

14. (a) (i) x = 2

x

y

y = 3log(x −2)

3

(ii)

y = 1
x

y

y = 2e−x +13

(iii)

y = 1

x =−2

x

y

y = x+1
x+2

1
2−1
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(b) Since the number of bacteria doubles every 30 minutes, the total

number of them after t minutes is 100× 2t/30. So we solve the

equation 100×2t/30 = 106 for t , which gives the solution t ≈ 398.63,
i.e., 6 hours and 39 minutes (to the nearest minute).

15. (a) This is a separable first order ordinarydifferential equation. Indeed,

we can separate the variables:

−d [A]
dt = k[A]

=⇒ d [A]
[A] =−k dt

=⇒
∫ d [A]

[A] =−k
∫

dt

=⇒ log[A]=−kt + logc

=⇒ [A]= exp(−kt + logc)

∴ Gen. sol.: [A]= c exp(−kt).

Since we are given that when t = 0, [A]= [A]0, we have that

[A]0 = c exp(−k ·0) =⇒ [A]0 = c ,

and thus we have the particular solution

[A]= [A]0 exp(−kt),

as required.

(b) This is a homogeneous second order linear ordinary differential

equation with constant coefficients. The first step is to rearrange

it into the form
ħ2

2m
d2ψ

dx2 +Eψ= 0,
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so we have the auxiliary equation

ħ2

2mk2+E = 0

=⇒ k2 =−2mE
ħ2

=⇒ k =±
√

2mE
ħ2 i ,

and so the general solution is that of the case of complex roots, i.e.,

ψ(x)= c1 cos
(√2mE

ħ2 x
)
+c2 sin

(√2mE
ħ2 x

)
,

as required.
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