
Department of Computer Science
Faculty of ICT

Final year project in computer science for the partial fulfilment for the
award of

B.Sc. (Hons.) Mathematics and Computer Science

Synthesising Safety Runtime Enforcement
Monitors for µHML

Luke Collins

supervised by

Prof. Adrian Francalanza

4th June, 2019
Academic Year 2018/2019

ICT3004: APT in Computer Science
Version 1.1



Abstract

In this project, we consider a subset sHML of formulæ in the Hennessy-
Milner Logic with recursion (µHML) which are enforcable through suppres-
sions. A synthesis function is introduced, which converts safety properties
in sHML to suppression enforcers through a formula normalisation process.
This synthesis function assumes that different branches in the input formula
are disjoint, and that every variable is guarded by modal necessity—such
formulæ are said to be in normal form. It turns out that this restriction
of input formulæ is only superficial: an algorithm which converts any given
formula in sHML to an equivalent formula in normal form is implemented
in the form of a Haskell program.
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1
Introduction

Runtime monitoring is the process of analysing the behaviour of a soft-
ware system at runtime via monitors, software entities which compare the
behaviour of a system against some correctness specification. Runtime en-
forcement (RE) is a specialised form of runtime monitoring which ensures
that the behaviour of the system is always in agreement with the correct-
ness specification. The role of the monitor in RE is to anticipate incorrect
behaviour and take necessary measures to prevent it.

Monitor Systemevents

modified events

Figure 1.1: Runtime Enforcement

Typically the monitor is designed to act as an ostiary, wrapping itself around
the system and analysing any external interactions (figure 1.1). This allows
it to transform any incorrect actions by replacing them, suppressing them,
or inserting other actions.

Software systems are becoming larger and more complex, so building an
ad hoc monitor for a software system from scratch is seldom feasible, and
might result in more room for error in development. Instead, the correctness
specification of a system is expressed as a formula in some logic with precise
formal semantics, and a program designed to interpret this logic synthesises
the monitor automatically.

The expressiveness of the logic used for defining the correctness specification
is an important consideration. Unfortunately the expressiveness of a logic
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§1.1. Preliminaries Luke Collins

is adverse to its enforceability, meaning that the more expressive a logic is,
the more likely it is that certain formulæ in that logic cannot be synthesised
into monitors.

This document is structured as follows. In the remainder of chapter 1,
some preliminary notions are introduced, and the logics µHML, sHML and
sHMLnf are discussed in view of their expressiveness and enforceability.
The goal of the project is to realise a theoretical construction detailed in [1]
which transforms formulæ from sHML into sHMLnf in the form of a Haskell
program. How this is achieved is the subject of chapters 2 and 3. Possible
future work is outlined in chapter 4. Finally, the code for the construction
is presented in appendix A.

1.1 Preliminaries

1.1.1 Concrete Events and Patterns

The behaviour of a system is represented as a stream of observable operations
called (concrete) events. Let Val, Prc and Var be pairwise disjoint sets
whose members are to be called values, process names, and free variables;
respectively. Moreover, let Pid = Prc ∪Var, and similarly Vid = Val ∪
Var. If i ∈ Prc and δ ∈ Val, then i ? δ denotes the event that a process
with identifier i inputs δ, whereas i ! δ denotes the event that a process with
identifier i outputs δ. The set of such concrete events is denoted by Evt,
i.e., we have Evt = Prc{?, !}Val.

A pattern is a syntactic object which represents possible concrete events.
For example, if x ∈ Var and δ ∈ Val, then x ? δ represents patterns which
input the value δ to some unspecified process identifier. Variables in a
pattern may either occur free, such as x in x ? δ, or as binders, which we
denote by prepending a dollar sign: $x ? δ. The set Patt of patterns is
defined in definition 1.1.

p, q ∈ Patt ....= Pid ? Vid (input) | Pid ! Vid (output)
| Pid ? $Var | Pid ! $Var
| $Var ? Vid | $Var ! Vid
| $Var ? $Var | $Var ! $Var

Definition 1.1: Patterns

The set of free variables in a pattern p, denoted fv(p), contains the variables
which appear unbounded in p; e.g. fv($x ? y) = {y}. Similarly the bound
variables in a pattern p, denoted bv(p), contains the variables which appear
bounded in p; e.g. bv($x ? y) = {x}.
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Pattern matching is the process of checking whether a concrete event con-
forms to a given pattern. For example, the concrete event i ? δ where
i ∈ Prc matches the pattern x ? δ from earlier, but i ! δ or i ? ϑ where
δ 6= ϑ ∈ Val do not. The pattern matching function mt: Patt × Evt ⇀
(Var ⇀ (Prc∪Val)) is a partial function which checks whether a given pat-
tern and concrete event are compatible. If they are compatible, mt returns a
substitution σ, that is, a partial map from the free variables which appear in
the pattern to the respective values. For example, mt(x ? δ, i ? δ) = {x 7→ i}
and mt(i ? δ, i ? δ) = ∅, whereas mt(x ? δ, i ! δ) and mt(x ? δ, i ? ϑ) are not
defined.

If p ∈ Patt is a pattern and σ : fv(p) → Pid ∪Val is a substitution, then
the application of σ to p is denoted by pσ. Put differently, if mt(p, α) = σ,
then pσ = α.

Two patterns p, q ∈ Patt are said to be equivalent or isomorphic, written
p ' q, if they describe the same concrete events. In other words,

p ' q ⇔ ∀α ∈ Evt ·mt(p, α) = mt(q, α).

The quotient set Patt/' is then the set of patterns which are unique up to
isomorphism.

1.1.2 Symbolic Events

Let Cond(V ) be the set of decidable logical predicates involving the vari-
ables in the set V ⊆ Var. If c ∈ Cond(V ), let fv(c) ⊆ V denote the
variables appearing in c. In other words, if fv(c) = {v1, v2, . . . , vn} ⊆ V ,
then c = c(v1, v2, . . . , vn).

A closed predicate is a predicate c ∈ Cond(V ) such that fv(c) = ∅. Using
the usual inference rules of predicate logic, we can evaluate closed predicates
down to true or false. Symbolically, fv(c) = ∅ =⇒ (c ⇓ true) ∨ (c ⇓ false).

We also have substitutions for predicates. If c is a predicate, then a sub-
stitution is a partial map σ : fv(c) ⇀ Pid ∪ Val. For example, if c is the
predicate x > y and σ = {x 7→ 3, y 7→ 4}, then cσ = 3 > 4 ⇓ false.

Now we can generalise the idea of concrete events to that of symbolic events
(a.k.a. symbolic actions). The set SEvt of symbolic events is defined by

SEvt = {(p, c) ∈ Patt×Cond(Var) | fv(c) ⊆ bv(p)}.

In other words, SEvt is the set of pairs of patterns and predicates, where
the predicate says something about the variables in the pattern. We will
denote symbolic events using the notation  p, c¡ instead of (p, c).

What the symbolic event  p, c¡ describes is the set of concrete events which
conform to the pattern p, and, moreover, satisfy the condition c. This is
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similar to the idea of set comprehension, where {x ∈ A | φ(x)} denotes the
set of objects x which satisfy the condition φ(x).

Definition 1.2 (Filter Set). Given a symbolic event η =  p, c¡, the filter set
of η, denoted Φ(η), is the set

Φ( p, c¡) = {α ∈ Evt | mt(p, α) = σ ∧ cσ ⇓ true},

i.e., the set of concrete events which conform to p and satisfy c.

Example 1.3. Suppose we have Val = {1, 2, 3, 4, 5}, Pid = {i, j, k} and
Var = {x, y, z}. Then

Φ( x ? y, x 6= k ∧ y > 3¡) = {i ? 3, i ? 4, i ? 5, j ? 3, j ? 4, j ? 5}
Φ( x ! y, y = 1¡) = {i ! 1, j ! 1, k ! 1}

Two symbolic events η1 and η2 are said to be disjoint if their filter sets are
disjoint, i.e. if Φ(η1) ∩ Φ(η2) = ∅. For example, the events in example 1.3
are disjoint.

1.1.3 Labelled Transition Systems and µHML

A labelled transition system (LTS) is a triple (S, A ∪ {τ},→) where S is a
set whose members are called states, A is a set of symbolic actions, τ /∈ A
denotes a distinguished silent action, and → is a subset of S× (A ∪ {τ})×
S, called the transition relation of the LTS. We call the elements of →
transitions of the LTS, and write s ν−→ r instead of (s, ν, r) ∈ →.

If there are finite sequences (s1, . . . , sn) and (r1, . . . , rm) in S such that
si

τ−→ si+1 for all i ∈ {1, . . . , n − 1}, sn α−→ r1, and ri
τ−→ ri+1 for all i ∈

{1, . . . ,m− 1}, then we write s1
α=⇒ rm, which we call a weak transition of

the LTS. Moreover, if (si) is a sequence of states and α = (αi) is a sequence
of actions such that si

αi==⇒ si+1 for i ∈ {1, . . . , n− 1}, we write s1
α=⇒ sn.

We consider a slightly generalised variant of the Hennessy-Milner logic with
recursion (µHML) which is defined in definition 1.4. The definition assumes
a countable set LVar of logical variables (X ∈ LVar), and provides standard
logical constructs such as truth, falsehood, conjunctions and disjunctions
over finite indexing sets Γ, recursion using greatest/least fixed points, as
well as necessity and possibility modal operators with symbolic events, where
bv(p) binds free variables in c and in ϕ as well.

We interpret formulæ over the power set domain ℘S of the states in an LTS.
The semantic definition of Jϕ, ρK in definition 1.4 is given for both open and
closed formulæ, employing a valuation ρ : LVar → ℘S which permits an
inductive definition of the structure of the formulæ.

5



§1.1. Preliminaries Luke Collins

Syntax

ϕ,ψ ∈ µHML ....= tt (truth) | ff (falsehood)
|
∨
γ∈Γ ϕγ (disjunction) |

∧
γ∈Γ ϕγ (conjunction)

| 〈 p, c¡〉ϕ (possibility) | [ p, c¡]ϕ (necessity)
| minX . ϕ (least f.p.) | maxX . ϕ (greatest f.p.)
| X (f.p. variable)

Semantics

Jtt, ρK def= S Jff, ρK def= ∅ JX, ρK def= ρ(X)
J
∨
γ∈Γ ϕγ , ρK

def= ⋃
γ∈ΓJϕγ , ρK J

∧
γ∈Γ ϕγ , ρK

def= ⋂
γ∈ΓJϕγ , ρK

JmaxX . ϕ, ρK def= ⋃
{S ⊆ S | S ⊆ Jϕ, ρ ∪ {X 7→ S}K}

JminX . ϕ, ρK def= ⋂
{S ⊆ S | Jϕ, ρ ∪ {X 7→ S}K ⊆ S}

J〈 p, c¡〉ϕ, ρK def= {s ∈ S | ∃ r ∈ S · ∃α ∈ Φ( p, c¡) · (s α=⇒ r ∧ r ∈ Jϕσ, ρK)}

J[ p, c¡]ϕ, ρK def= {s ∈ S | (∀r ∈ S · ∀α ∈ Φ( p, c¡) · s α=⇒ r)⇒ r ∈ Jϕσ, ρK}

Definition 1.4: The syntax and semantics for µHML
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Symbolic actions of the form  p, true¡ are relaxed notationally to p. In this
case, we write 〈p〉ϕ and [p]ϕ for modal possibility and necessity respectively.

Generally we consider closed formulæ, and write JϕK instead of Jϕ, ρK, since
the semantics of closed formulæ is independent of any valuation ρ. A system
s ∈ S is said to satisfy a formula ϕ ∈ µHML if s ∈ JϕK. Conversely, a
formula ϕ ∈ µHML is satisfiable if there exists a system r ∈ S such that
rJϕK.

1.2 Enforceability, sHML and Normal Form

1.2.1 The Enforceability of µHML

In [1], the authors describe the notion of a transducer , a device capable of
enforcing formulæ in µHML. By “enforcing” we basically mean that the
transducer m modifies the transitions of the system under scrutiny s ∈ S in
the corresponding LTS to be in accordance with ϕ. This is done in such a way
that m[s] (the resulting monitored system) satisfies m[s] ∈ JϕK (soundness),
but also without needlessly changing other systems which already satisfy ϕ
(i.e. if s ∈ JϕK, then m[s] ∼ s.1)

A transducer is also called an enforcement monitor .

Now we go to the notion of enforceability. A logic L is said to be enforceable
if for every formula ϕ ∈ L, there exists a transducer m such that m enforces
ϕ.

For any reasonably expressive logic (such as µHML), one expects that not
every formula is enforceable. Indeed, consider the formula

ϕns
def= [i ! v]ff ∨ [j ! w]ff.

A system satisfies ϕns, either if it never produces the action i ! v, or it never
produces j ! w. Now consider the systems

sra
def= i ! v . nil + j ! w . nil and sr

def= i ! v . nil.

Clearly sra violates this property as it can produce both. This formula can
only be enforced by suppressing or replacing either one of these actions. But
doing so will needlessly suppress sr’s actions, i.e., we would have m[sr] � sr.
Intuitively, the reason for this problem is that a monitor cannot “look into”
the computation graph of a system, but is limited to the behaviour exhibited
by a system at runtime.

1Here ∼ denotes some appropriate notion of equivalence, usually bisimilarity.[2]
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ϕ,ψ ∈ sHML ....= tt (truth) | ff (falsehood)
|
∧
γ∈Γ ϕγ (conjunction) | [ p, c¡]ϕ† (necessity)

| maxX . ϕ (greatest f.p.) | X (f.p. variable)

† If ϕ = ff, then p must be an output pattern; i.e., mt(x ! y, p) is defined.

Definition 1.5: The syntax for the safety fragment sHML

LXM def= x LttM def= LffM def= id LmaxX . ϕM def= recx . LϕM

L
∧
γ∈Γ[ pγ , cγ¡]ϕγM

def= rec y .
∑
γ∈Γ

{
 pγ , cγ , •¡ if ϕγ = ff
 pγ , cγ , pγ¡LϕγM otherwise

Definition 1.6: Synthesis function for sHMLnf formulæ.

1.2.2 The Safety Fragment and Normal Form

The safety fragment of µHML is a subset sHML ⊆ µHML which is en-
forceable. The definition of this restricted logic is given in definition 1.5.

Even though sHML is enforceable, complications still arise when attempting
to define a synthesis function L · M : sHML → Trn which produces a trans-
ducer for any given sHML formula. This is discussed and exemplified in [1,
sec. 5]. Although it is theoretically possible to define such a function directly,
it is more straightforward to consider yet another subset, sHMLnf ⊆ sHML
of formulæ in so-called normal form. This subset is only a superficial restric-
tion of the logic. Indeed, any closed sHML formula ϕ can be transformed
into an sHMLnf formula ϕ′ such that JϕK = Jϕ′K. It is this process which
we refer to as normalisation.

A formula ϕ ∈ sHML is in normal form if:

(i) Branches in a conjunction are pairwise disjoint, i.e. in ∧γ∈Γ[ pγ , cγ¡]ϕγ
we have Φ( pγ1 , cγ1¡) ∩ Φ( pγ2 , cγ2¡) = ∅ for γ1 6= γ2;

(ii) For every maxX . ϕ, we have X ∈ fv(ϕ);

(iii) Every logical variable is guarded by modal necessity.

If an sHML formula satisfies properties (i)–(iii), then it is in sHMLnf . An
enforcement monitor for ϕ ∈ sHMLnf can then be synthesised by the syn-
thesis function defined in definition 1.6. More details about this function
can be found in [1].
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2
Parsing sHML in Haskell

A Haskell module SHMLParser was written to parse inputted sHML formulæ.
This module made use of Haskell’s Parsec combinators.

2.1 Parser Design
First, appropriate data structures were defined for sHML formulæ, which
mirror definition 1.5, with the difference that conjunction is a purely binary
operation. Next, a language structure for sHML was defined using the
LanguageDef constructor. This assigns symbols to different tokens, e.g. max,
<= and == are given special status when lexing.

Indeed, from the language constructor, the parsec package allows for the cre-
ation of “trivial” parsers, i.e. parsers which parse identifiers,1 round brackets,
square brackets, integers, special keywords from the language constructor,
etc. These parsers can then be combined to form more sophisticated ones,
e.g. to parse maxX . ϕ, the parser code is:

1 maxFormula :: Parser Formula
2 maxFormula =
3 do keyword "max"
4 x <− identifier
5 op "."
6 phi <− formulaTerm
7 return $ Max x phi

This parser first reads the keyword “max”, then an identifier stored in x,
followed by the operator ., followed by something returned by the parser
formulaTerm, defined in a similar way in terms of other parsers. Finally, the
corresponding data structure is returned.

The parser is capable of parsing arithmetic and logic for symbolic actions
such as  i ? y, i > 4 ∧ y 6= 2 + 3¡, but they have no defined semantics. In

1As usual, an identifier is a string matching [a-Z]+([0-9] | [a-Z] | _)∗
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general, binary operations associate to the left, so that X&Y&Z is parsed as
(X ∧ Y ) ∧ Z. Maximal fixed points take precedence over conjunction, so
maxX . ϕ∧ ψ is interpreted as (maxX . ϕ)∧ ψ. Whitespaces are ignored in
formulæ.

2.2 Using the Parser
Here are some examples of formulæ and their syntactic equivalents in the
parser language.

Formula Syntax
X ∧ Y ∧ Z X&Y&Z or X & Y & Z

maxX . ([i?3]X ∧ [i ! 4]ff) max X . ([i?3] X & [i!4]ff)

[$i?req][ i ! ans, i < 3 ∧ i 6= 10¡]ff [$i?req][i!ans,i<3 & i!=10]ff

To parse a formula, the function parseF :: String → Formula is used. For
example, running parseF “[i?3][i!4][i?5]max X . [i!6]ff” will return
the formula, displaying it using the defined instance of Show.

Another nice command is the parseTree :: Formula → IO() command
(or for string input, stringParseTree :: String → IO()), which displays
a visual parse tree of the formula data structure. For example, running
stringParseTree on the string

“[$i?3][$j?5, j>7 & j+1!=i]max X0 . ([i!6]ff & [j!2]X0)”

produces the tree illustrated in figure 2.1.

10
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  Necessity
  └─ Input
     └─ i (binding variable)
     └─ 3 (int const)
  └─ True (bool const)
  └─ Necessity
     └─ Input
        └─ j (binding variable)
        └─ 5 (int const)
     └─ ∧
        └─ >
           └─ j (free variable)
           └─ 7 (int const)
        └─ ≠
           └─ +
              └─ j (free variable)
              └─ 1 (int const)
           └─ i (free variable)
     └─ max X0 .
        └─ ∧
           └─ Necessity
              └─ Output
                 └─ i (free variable)
                 └─ 6 (int const)
              └─ True (bool const)
              └─ FF
           └─ Necessity
              └─ Output
                 └─ j (free variable)
                 └─ 2 (int const)
              └─ True (bool const)
              └─ X0 (logical variable)

Figure 2.1: Example of a parseTree output
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3
The Normalisation Algorithm

The reduction of sHML formulæ to normal form is carried out in a series
of six steps presented in [1], corresponding to each of the following sections.

§3.1. Preliminary Minimisation.
Well known logical equivalence rules are applied to simplify and re-
duce the size of the formula as much as possible. This includes rules
such as Jtt ∧ ϕK = JϕK and JmaxX . XK = JttK.

§3.2. Unguarded fixed point variable removal.
At this stage, the formula is modified to ensure that fixed point vari-
ables are all guarded.

§3.3. System of Equations.
The formula is reformulated into a system of equations to ease ma-
nipulation in further stages.

§3.4. Power set Construction.
The resultant system is restructured into an equivalent system that
ensures that patterns in conjunctions are disjoint.

§3.5. Formula reconstruction.
The system of equations is converted back into an sHML formula
with disjoint conjunctions, which may introduce redundant fixed points.

§3.6. Redundant fixed point removal.
Any redundant fixed points from the previous stage are removed,
leaving us with the required sHMLnf formula.

12
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3.1 Preliminary Minimisation
The function simplify :: Formula→ Formula was written to carry out the
preliminary minimisation of sHML formulæ.

The simplification of conjunctions required particular care. Indeed, when
defining simplify case by case, one might naïvely do the following for the
conjunction case:

simplify(a ∧ b) def= simplify(a) ∧ simplify(b)

But this definition would simplify (tt∧ tt)∧ (tt∧ tt) to tt∧ tt, not to tt. The
correct approach is to simplify the two children of the ∧ node (picturing the
formula as a parse tree), and then to use another function, simplifyCon ::
Formula→ Formula→ Formula, which simplifies conjunctions, i.e. we define

simplify(a ∧ b) def= simplifyCon(simplify(a))(simplify(b)),

and then

simplifyCon(ff)(ϕ) def= ff

simplifyCon(ϕ)(ff) def= ff

simplifyCon(tt)(ϕ) def= ϕ

simplifyCon(ϕ)(tt) def= ϕ

simplifyCon(ϕ)(ψ) def=
{

ϕ if ϕ = ψ

ϕ ∧ ψ otherwise.

Similarly for maximum fixed points, we considered that JmaxX .XK = JttK,
so we first simplify the subtree and then do simplifyMax:

simplify(maxX . ϕ) def= simplifyMax(X)(simplify(ϕ)),

where

simplifyMax(X)(tt) def= tt

simplifyMax(X)(ff) def= ff

simplifyMax(X)(X) def= tt

simplifyMax(X)(X ∧ ϕ) def= simplify(maxX . ϕ)
simplifyMax(X)(ϕ ∧X) def= simplify(maxX . ϕ)

simplifyMax(X)(ϕ) def= maxX . ϕ.

If the simplifying of the subtree is not carried out first, things like maxX .
((X ∧X) ∧ (X ∧X)) do not simplify correctly.

Simplification of the remaining cases was straightforward.
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3.2 Standard Form
An sHML formula is said to be in standard form if all free and unguarded
recursion variables are at the top-most level, at every level. For example,
the formula

max Y . ([i ? 3]Y ∧X) ∧ [i ? 3]ff

is not in standard form, since X is unguarded but is not at the top most
level. We can easily mitigate this by elevating X:

max Y . [i ? 3]Y ∧ [i ? 3]ff ∧X.

In definition 3.1, we present the construction ⟪ ·⟫1 : sHML→ sHML which
carries out this standardisation reasoning. This is a slightly modified version
of the construction presented in [3, ch. 4] which is easier to implement in
Haskell.

⟪maxX . ϕ⟫1
def= Bg(ϕ)[ maxX .Bg(ϕ)/X] ∧

∧
(Fu(ϕ)r {X})

⟪ϕ ∧ ψ⟫1
def= Bg(ϕ) ∧Bg(ψ) ∧

∧
Fu(ϕ) ∪ Fu(ψ)

⟪[ p, c¡]ϕ⟫1
def= [ p, c¡]⟪ϕ⟫1

⟪ϕ⟫1
def= ϕ

where Fu(ϕ) denotes the set of free and unguarded logical variables in ϕ, i.e. Fu(ϕ) def=
{X ∈ fv(ϕ) | X is unguarded}, and Bg(ϕ) denotes the remaining bound and guarded
part of a formula after ⟪ · ⟫1 is applied; i.e. if ⟪ϕ⟫1 = ψ ∧

∧
Fu(ϕ), then Bg(ϕ) = ψ.

Definition 3.1: Standardisation of sHML formulæ.

Notice that in the case of maximum fixed points, definition 3.1 unfolds
the bound logical variable X. This ensures that the resulting conjuncted
branches are always guarded by a necessity operation. For example, applying
definition 3.1 to the formula

max Y . ([i ? 3]Y ∧X) ∧ [i ? 3]ff,

noting that Bg([i ? 3]Y ∧X) = [i ? 3]Y , yields

([i ? 3]Y )[ max Y . [i ? 3]Y/Y ] ∧ [i ? 3]ff ∧X
= [i ? 3] max Y . [i ? 3]Y ∧ [i ? 3]ff ∧X.

To implement this, first, a function sub :: Formula→ String→ Formula→
Formula was implemented to carry out substitution of free logical variables.
The substitution ϕ[ψ/X] is equivalent to sub(ϕ)(X)(ψ). Next, a function
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sf' :: Formula→ [String]→ (Formula, [String]) was defined. This function
“takes out” free variables out of a given formula by replacing them with tt
in the manner illustrated below. The second argument is to keep track of
bound variables when traversing subtrees, allowing for recursive definition
of sf'.

Examples 3.2. The following few examples illustrate the behaviour of the
function sf' :: Formula→ [String]→ (Formula, [String]).

sf1'(X)([ ]) = (tt, [X])
sf1'(X ∧ Y )([ ]) = (tt ∧ tt, [X,Y ])

sf1'(maxX . (X ∧ Y ))([ ]) = (maxX . (X ∧ tt) ∧ tt, [Y ])
sf1'(maxX . (X ∧ [i ? 3]Y ))([ ]) = (maxX . (X ∧ [i ? 3]Y ) ∧ [i ? 3]Y, [ ])

sf1'(X ∧ (Y ∧ Z))([Y ]) = (tt ∧ (Y ∧ tt), [X,Z])

The last example illustrates the purpose of the second argument: if the
expression X ∧ (Y ∧ Z) appears in a subtree of a larger expression, it is
possible that it is preceded by a binder (say max Y . ). In that case, Y
should not be “taken out”.

The actual implementation of the function is straightforward and faithfully
mirrors definition 3.1—the reader is invited to glance at the code in ap-
pendix A. Now sf' itself does not give us a Formula, but a pair of type
(Formula, [String]). So we define a function sf :: Formula→ Formula which
simply runs sf'(ϕ)([ ]), appends the variables in the list to the end of the
resulting formula with conjunctions, and invokes simplify to remove all the
redundant tt’s.

A proof that the ⟪ · ⟫1 preserves semantics, i.e. that for all ϕ ∈ sHML,
J⟪ϕ⟫1K = JϕK, is given as lemma 8 in [4].

3.3 System of Equations
A system of equations is a triple (E, X,F) where X is the principal logical
variable which defines the starting equation, F is a finite set of free logical
variables, and E is an tuple of equations (X1 = ϕ1, . . . , Xn = ϕn) where
Xi 6= Xj for i 6= j, and ϕi ∈ sHMLeq (see definition 3.3).

ϕ ∈ sHMLeq ....= ff |
∧
γ∈Γ[ηγ ]Xγ

where Γ is a finite indexing set such that for all γ ∈ Γ, ηγ ∈ Patt and Xγ ∈ LVar.

Definition 3.3: The syntactic restriction for equations.
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⟪tt⟫2
def= ({Xi = tt}, Xi, ∅)

⟪ff⟫2
def= ({Xi = ff}, Xi, ∅)

⟪Y ⟫2
def= ({Xi = Y }, Xi, {Y })

⟪ϕ ∧ ψ⟫2
def= (Eϕ ∪ Eψ ∪ {Xi = Eϕ(Xϕ) ∪ Eψ(Xψ)}, Xi,Fϕ ∪Fψ)

⟪[η]ϕ⟫2
def= (Eϕ ∪ {Xi = [η]Xϕ}, Xi,Fϕ)

⟪max Y . ϕ⟫2
def= (Eϕ′ ∪ {Xi = Eϕ′(Xϕ′)}, Xi,Fϕ′ r {Xi})

where ⟪ϑ⟫2 = (Eϑ, Xϑ,Fϑ) for all ϑ, ϕ′ denotes ϕ[Xi/Y ], and Xi is a fresh variable.

Definition 3.5: Conversion from sHML formula to a system
of equations.

Through equations, maximal fixed points can be expressed by referring
to previously defined variables. We abuse notation and use E as a map
E: LVar→ sHMLeq so that if (Xi = ϕi) ∈ E, then E(Xi) = ϕi.

Example 3.4. The formula ϕ = maxX . [i ? 3]([i ! 4]X ∧ [i ! 5]ff) can be
represented by the equations

X0 = [i ? 3]X1

X1 = [i ! 4]X2 ∧ [i ! 5]X3

X2 = [i ? 3]X1 (= X0)
X3 = ff

whereX0 is the principal variable, and F= ∅, as no variable in the equations
is free.

The conversion into a system of equations is defined by the construction
⟪ · ⟫2 : sHML → (E,Var,℘Var) in definition 3.5. Again, this is a slightly
modified version from [3, 1] which more Haskell-friendly.

Since variables are being introduced, we want to make sure that no capturing
occurs. Thus a function rename :: Formula→ (Formula, [(Int, String)]) was
implemented to rename all variables to successive natural numbers, e.g.

rename(maxX . [i ? 3](X ∧ Y ) ∧ Z)
= (max(0 . [i?3]0 ∧ 1) ∧ 2, [(0, X), (1, Y ), (2, Z)].

Variable capturing is guaranteed not to happen during intermediate stages
of rename’s execution, since the user is prohibited from using integers as
variable names. The implementation of this function is straightforward.

The system of equations is generated is as follows. First, the type synonyms
Equation

def= (String, Formula) and SoE
def= ([Equation], String, [String]) are

16
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introduced to simplify the code legibility, where X = ϕ is encoded as the
Equation (“X”, ϕ), and (E, X,F) is encoded naturally as an SoE. A function
SysEq' :: Int→ Formula→ SoE is then defined to implement definition 3.5,
where the variables are named X0, X1, . . . . The integer argument of SysEq'
is the index of the first variable it is allowed to introduce. One of the simple
cases is

SysEq'(n)(tt) = ([Xn = tt], Xn, [ ]).
One of the cases which required more care (mainly for variable indices) was
the conjunction. This was defined as follows:

SysEq'(n)(ϕ ∧ ψ) = ([Xn = E1(Xm) ∧ E2(Xt)] ++ E1 ++ E2, Xn,F1 ++ F2),

where (E1, Xm, F1) = SysEq'(n+1)(ϕ) and (E2, Xt, F2) = SysEq'(t)(ϕ), where
t is one more than the index of the last variable in E1 (obtained in Haskell
using various functions on lists, such as head, snd, etc.). The reasoning for
other cases was similar.

Finally, a function SysEq :: Formula → (SoE, [Int, String]) was defined.
This carries out rename followed by SysEq' starting from 0. The function
then returns the system, together with the list of correspondences with the
original variable names provided by rename.

As in the previous stage, a proof that the ⟪ ·⟫2 preserves semantics, i.e. that
for all ϕ ∈ sHML, J⟪ϕ⟫2K = JϕK, is given as lemma 10 in [4].

Example 3.6. Consider ϕ = maxX . [i ? req]([i ! ans][i ! ans]ff ∧ [i ! ans]X).
Running (sysEq . sf) on ϕ produces the following output:

(([(“X0”, [i ? req]X1), (“X1”, [i ! ans]X3 & [i ? ans]X6),
(“X2”, [i ! ans]X3), (“X3”, [i ! ans]X4), (“X4”, ff),
(“X5”, [i ? ans]X6), (“X6”, [i ? req]X8), (“X7”, [i ? req]X8),
(“X8”, [i ! ans]X10 & [i ? ans]X13), (“X9”, [i ! ans]X10),
(“X10”, [i ! ans]X11), (“X11”, ff), (“X12”, [i ? ans]X13),
(“X13”, [i ? req]X8)], “X0”, []), [(0,“X”)])

Or in a more legible typeface:

X0 = [i ? req]X1 X7 = [i ? req]X8

X1 = [i ! ans]X3 ∧ [i ? ans]X6 X8 = [i ! ans]X10 ∧ [i ? ans]X13

X2 = [i ! ans]X3 X9 = [i ! ans]X10

X3 = [i ! ans]X4 X10 = [i ! ans]X11

X4 = ff X11 = ff

X5 = [i ? ans]X6 X12 = [i ? ans]X13

X6 = [i ? req]X8 X13 = [i ? req]X8 (= X6)

The greyed out formulæ are not reachable from X0 and are hence redundant.

17



§3.4. Power Set Construction Luke Collins

3.4 Power Set Construction
Next, we present the power set construction ⟪ ·⟫3. Here the implementation
does not mirror the theoretical construction so closely, unlike in the previous
sections.

The previous section ensured that requirement (iii) in the definition of
sHMLnf (see section 1.2.2) is met. The goal here is to ensure the first
property (i) is adhered to, i.e. that branches in conjunctions are pairwise
disjoint.

Consider a system of equations (E, X,F) where E contains n+ 1 equations,
i.e. E = {X0 = ϕ0, . . . , Xn = ϕn}. The idea of the construction is to
introduce new variables X{0}, . . . , X{0,...,n}, indexed by the power set Γ =
℘{0, . . . n}, such that for all γ ∈ Γ,

Xγ =
∧
i∈γ

ϕi,

where we identify any variables Xj appearing in ϕi with X{j}. (Indeed, by
this definition, X{j} = ϕj = Xj .) After these equations are constructed,
any common symbolic actions are factored out, e.g. if X{0,1} = [i ? 3]X2 ∧
[i ! 3]X3 ∧ [i ? 3]X4, then we instead take

X{0,1} = [i ? 3]X{2,4} ∧ [i ! 3]X{3}.

This way, all the symbolic actions are (syntactically) disjoint.1

The way this construction is formally presented in [1, 3] mainly hinges on
subsets of Γ. In definition 3.7, we present an equivalent definition of ⟪ · ⟫3
which is more indicative of the Haskell implementation.

Indeed, first a few straightforward functions were implemented to aid with
manipulation of subsets and variable indices. The first one is nsubsets ::
Eq a ⇒ [a] → [[a]], which generates all non-empty sublists of a given list `,
such that the first |`| members are the singletons, followed by the remaining
sublists in lexicographical order. For example:

nsubsets([1, 2, 3, 4]) = [[1], [2], [3], [4], [1, 2], [1, 3], [2, 3], [1, 2, 3], [4],
[1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4]].

It is not important that the remaining sublists are in lexicographical order,
this is simply a consequence of the inbuilt function subsequences which
Haskell provides. It is important however that the singletons come first;
this way, if (E, X,F) has |E| = n variables, then we associate Xi with X{i}

1We assume for now that if η1 6= η2, then Φ(η1) ∩ Φ(η2) = ∅.
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⟪(E, Xi,F)⟫3
def= ⟪({Xγ = ∧

η∈E(γ)
(
[η]∧ fγ(η)

)
| γ ∈ ℘|E|}, X{i},F)⟫

where E(γ) is the set of symbolic events appearing in the equations Xj = E(Xj) for j ∈ γ,
i.e.

E(γ) def=
⋃
j∈γ

sas
(
E(Xj)

)
,

sas(ϕ) ⊆ SEvt is the set of symbolic actions appearing in ϕ, defined by

sas([η]ϕ) def= {η} ∪ sas(ϕ)
sas(ϕ ∧ ψ) def= sas(ϕ) ∪ sas(ψ)

sas(ϕ) def= ∅,

fγ(η) is the set of all logical variables guarded by η in the equations Xj = E(Xj) for j ∈ γ,
i.e.

fγ(η) def=
⋃
j∈γ

savars(η)
(
E(Xj)

)
,

and savars : SEvt → sHML → ℘LVar gives all the logical variables in a formula ϕ

guarded by a particular symbolic event η, defined by

savars(η)([ν]ϕ) def=
{
{η} ∪ savars(ϕ) if η = ν

savars(ϕ) otherwise

savars(ϕ ∧ ψ) def= savars(ϕ) ∪ sas(ψ)
savars(ϕ) def= ∅.

Definition 3.7: The power set construction for systems of
equations.
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for 0 6 i 6 n − 1, and Xi with XIi , where Ii ⊆ {0, . . . , n − 1} is the
corresponding ith sublist in nsubsets([0, . . . , n− 1]) for i > n.

The functions subIdx :: Int→ Int→ [Int] and idxSub :: Int→ [Int]→ Int
give the corresponding subset Ii for given i of {0, . . . , n−1}, and vice-versa.
For example,

subIdx(5)(12) = [2, 3] and idxSub(5)([2, 3]) = 12.

These allowed us to switch back and forth between the variables indexed
by subsets and by integral indices, which is what the resulting system of
equations has.

Next the function sas :: Formula→ [(Patt, BExpr)] was defined, which pro-
duces a list of pairs (p, c) corresponding to each symbolic event  p, c¡ which
occurs in a given formula. The implementation is straightforward by pattern
matching, identical to sas(ϕ) in definition 3.7.

The important function is factor :: Int → Equation → Equation, which
carries out the “factorisation” of common patterns in a given formula ϕ.
Using list comprehension and sas, the list saVarPairs is constructed, con-
sisting of pairs of type ((Patt, BExpr), [String]) where all variables guarded
by the same pattern are placed in the list. This corresponds to the function
savars in definition 3.7. For example, if

X0 = [i ? 3]X1 ∧ [ i ! k, k > 2¡]X2 ∧ [i ? 3]X3,

then saVarPairs would be [((i?3, tt), [X1, X3], ((i!k, k > 2), [X2]))]. Followed
by further manipulation and a left fold, this list is transformed into

[i ? 3](Xj) ∧ [ i ! k, k > 2¡]X2,

where j = idxSub(n)([1, 3]), the subscript corresponding to the variable
identified with X{1,3} and n is the number of equations in the system where
this equation resides, since this subscript depends on n (and this is why the
first argument is an Int).

Finally, the function norm which carries out the normalisation itself first
builds the corresponding new set of equations using nsubsets and a left fold
with ∧, and zips this with {X0, . . . , X2n−2}. Since the first subsets are {0},
. . . , {n}, then the first n equations correctly correspond with the subscripts,
and no labels subscripts need to be changed in the right-hand side of any
of the equations. Then, the factor function is applied to each equation via
map.

The preservation of semantics for the power set construction is given as
lemma 11 in [4].
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Example 3.8. Let ϕ be as in example 3.6, i.e.

ϕ = maxX . [i ? req]([i ! ans][i ! ans]ff ∧ [i ! ans]X).

Running (norm . sysEq) produces a set of 254 equations, where the only
reachable ones from X0 are

X0 = [i ? req]X2 X2 = [i ? ans]X143

X5 = ff X143 = [i ? ans]X5 ∧ [i ? req]X2

Notice that all the necessity operations are disjoint, in particular thanks to
the equation for X2, which comes from X2 = [i ? ans]X4 ∧ [i ? ans]X7 in
the un-normalised system (i.e. if we do sysEq alone on ϕ). The index 143
corresponds to idxSub(8)([4, 7]), where 8 is the number of equations in the
un-normalised the system.

3.5 Formula Reconstruction
Now we reconstruct a single formula from the normalised set of equations.
The idea is to recurse through the equations using maximal fixed points,
until a term with no free variables is encountered.

σshml(ϕ, E) def=
{

ϕ if fv(ϕ) = ∅
σshml(ϕσ, E) otherwise,

where σ def= {maxXi · E(Xi)/Xi | Xi ∈ fv(ϕ)}.

Definition 3.9: Converting a system of equations into a single
formula.

This is achieved through the map σshml : sHML ⇀ sHML in definition 3.9.
The construction ⟪ · ⟫4 is then defined as ⟪(E, X,F)⟫4

def= σshml(X, E). Thus
σshml starts from the formula ϕ = X, which has X ∈ fv(ϕ), and thus looks
up E(X) and then does σshml(X[ maxX · E(X)/X], E), and continues to recurse
until a formula with fv(ϕ) = ∅ is encountered.

Example 3.10. Consider the normalised system of equations

X0 = [i ? req]X2 X2 = [i ? ans]X143

X5 = ff X143 = [i ? ans]X5 ∧ [i ? req]X2

from example 3.8.

Applying the construction to this set of equations yields the formula

maxX0 · [i?req](maxX2 . [i !ans](maxX143 .([i !ans](maxX5 .ff)∧ [i?req]X2)))
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⟪maxX . ϕ⟫5
def=
{

maxX . ⟪ϕ⟫5 if X ∈ fv(ϕ)
⟪ϕ⟫5 otherwise

⟪ϕ ∧ ψ⟫5
def= ⟪ϕ⟫5 ∧ ⟪ψ⟫5

⟪[η]ϕ⟫5
def= [η]⟪ϕ⟫5

⟪ϕ⟫5
def= ϕ

Definition 3.12: Removing redundant fixed points to obtain
a formula in sHMLnf .

The implementation sigmaSHML of σshml is straightforward, mirroring the
definition. For substitutions, we use set comprehension and the function
sub defined in section 3.2 to build a list of substitutions which is then folded
with ◦ , i.e. function composition.

The function reconstruct is then defined in terms of sigmaSHML as described
previously. At this stage, any free variables which were renamed as integers
in section 3.3 are given back their original names using the function replace.

The proof that ⟪ · ⟫4 preserves semantics is given as lemma 12 in [4].

3.6 Redundant Fixed Point Removal
As seen in example 3.10, the reconstruction of a formula may give rise to
redundant fixed points. This violates the requirement (ii) for sHMLnf . Thus
the final stage is simply to determine which fixed points are redundant and
to remove them.

The definition of the construction ⟪ ·⟫5 is intuitive, see definition 3.12. This
is implemented as the function redfix :: Formula → Formula. The proof
that ⟪ · ⟫5 preserves semantics is given in appendix A.1 of [1].

Example 3.11. Take the resulting formula

maxX0 · [i?req](maxX2 . [i !ans](maxX143 .([i !ans](maxX5 .ff)∧ [i?req]X2)))

from example 3.10. Applying redfix to this formula yields

[i ? req](maxX2 . [i ! ans]([i ! ans]ff ∧ [i ? req]X2)) ∈ sHMLnf .
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4
Conclusion

The six stages outlined in the previous chapter convert an arbitrary closed
sHML formula into one in sHMLnf . Indeed, the stages §3.4, §3.6 and §3.3
ensure that (i), (ii) and (iii) in section 1.2.2 hold respectively.

The last function in the Normaliser module is the function nf :: Formula→
Formula, whose definition is done in one line:

nf = redfix . reconstruct . norm . sysEq . sf . simplify.

This function will carry out all the stages in order, giving a normalised
version for any closed sHML formula.

4.1 Possible Future Work
There are two main practical issues yet to tackle. First of all, the assumption
that any two syntactically disjoint symbolic actions are disjoint in section 3.4
is false in general. Indeed, one need not be creative to find an example:
 i?3, i = 4¡ and  i?3, i > 4¡ are two symbolic actions which are clearly not
disjoint. In subsection 5.4.1 of [1], the authors describe a way to manipulate
symbolic actions so that their syntactic disjointness implies their semantic
disjointness. This takes the form of two “additional” normalisation steps,
§3.i and §3.ii.

Once this is taken care of, then the algorithm described in definition 1.6 can
be implemented to actually synthesise sHML monitors.
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A
The Code

The code can be cloned from the Git repository at
https://github.com/drmenguin/shml-normaliser,

we also give it below for completeness.

A.1 The sHML Parser

1 module SHMLParser where
2
3 import System.IO
4 import Control.Monad
5 import Text.ParserCombinators.Parsec
6 import Text.ParserCombinators.Parsec.Expr
7 import Text.ParserCombinators.Parsec.Language
8 import qualified Text.ParserCombinators.Parsec.Token as Token
9

10 −− Data Structures
11 data Formula = LVar String
12 | TT
13 | FF
14 | Con Formula Formula
15 | Max String Formula
16 | Nec Patt BExpr Formula
17 deriving Eq
18
19 data Patt = Input Var AExpr
20 | Output Var AExpr
21 deriving Eq
22
23 data Var = BVar String
24 | FVar String
25 deriving Eq
26
27 data AExpr = AVar Var
28 | IntConst Integer
29 | Neg AExpr
30 | ABin ABinOp AExpr AExpr
31 deriving Eq
32
33 data ABinOp = Add
34 | Subtract
35 | Multiply
36 | Divide
37 deriving Eq
38
39 data BExpr = BoolConst Bool
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40 | Not BExpr
41 | And BExpr BExpr
42 | RBin RBinOp AExpr AExpr
43 deriving Eq
44
45 data RBinOp = Eq
46 | Neq
47 | Lt
48 | Gt
49 | LtEq
50 | GtEq
51 deriving Eq
52
53 −− Language Definition
54 lang :: LanguageDef st
55 lang =
56 emptyDef{ Token.commentStart = "/*"
57 , Token.commentEnd = "*/"
58 , Token.commentLine = "//"
59 , Token.identStart = letter
60 , Token.identLetter = alphaNum
61 , Token.opStart = oneOf "&~+−*/<>=!?$"
62 , Token.opLetter = oneOf "&~+−*/<>=!?$"
63 , Token.reservedOpNames = ["&", "~", "+", "−", "*", "/", "<", ">",
64 "<=", ">=", "==", "!=", ".", ",", "!",
65 "?", "$"]
66 , Token.reservedNames = ["tt", "ff", "max"]
67 }
68
69
70 −− Lexer for langauge
71 lexer =
72 Token.makeTokenParser lang
73
74
75 −− Trivial Parsers
76 identifier = Token.identifier lexer
77 keyword = Token.reserved lexer
78 op = Token.reservedOp lexer
79 integer = Token.integer lexer
80 roundBrackets = Token.parens lexer
81 squareBrackets = Token.brackets lexer
82 whiteSpace = Token.whiteSpace lexer
83
84 −− Main Parser, takes care of trailing whitespaces
85 formulaParser :: Parser Formula
86 formulaParser = whiteSpace >> formula
87
88 −− Parsing Formulas
89 formula :: Parser Formula
90 formula = conFormula
91 <|> formulaTerm
92
93 −− Conjunction
94 conFormula :: Parser Formula
95 conFormula =
96 buildExpressionParser [[Infix (op "&" >> return Con) AssocLeft]] formulaTerm
97
98 −− Term in a Formula
99 formulaTerm :: Parser Formula

100 formulaTerm = roundBrackets formula
101 <|> maxFormula
102 <|> necFormula
103 <|> ttFormula
104 <|> ffFormula
105 <|> lvFormula
106
107 −− Truth
108 ttFormula :: Parser Formula
109 ttFormula = keyword "tt" >> return TT
110
111 −− Falsehood
112 ffFormula :: Parser Formula
113 ffFormula = keyword "ff" >> return FF
114
115 −− Logical Variable
116 lvFormula :: Parser Formula
117 lvFormula =
118 do v <− identifier
119 return $ LVar v
120
121 −− Least Fixed Point
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122 maxFormula :: Parser Formula
123 maxFormula =
124 do keyword "max"
125 x <− identifier
126 op "."
127 phi <− formulaTerm
128 return $ Max x phi
129
130 −− Necessity
131 necFormula :: Parser Formula
132 necFormula = try condNecFormula
133 <|> simpleNecFormula
134
135 −− Necessity with condition
136 condNecFormula :: Parser Formula
137 condNecFormula =
138 do (p,c) <− squareBrackets condpatt
139 phi <− formulaTerm
140 return $ Nec p c phi
141
142 −− Inside of conditional pattern
143 condpatt :: Parser (Patt, BExpr)
144 condpatt =
145 do p <− pattern
146 op ","
147 c <− bExpression
148 return (p,c)
149
150 −− Necessity without condition
151 simpleNecFormula :: Parser Formula
152 simpleNecFormula =
153 do p <− squareBrackets pattern
154 phi <− formulaTerm
155 return $ Nec p (BoolConst True) phi
156
157 −− Variable
158 var :: Parser Var
159 var = bvar <|> fvar
160
161 −− Free Variable
162 fvar :: Parser Var
163 fvar =
164 do v <− identifier
165 return $ FVar v
166
167 −− Bound Variable
168 bvar :: Parser Var
169 bvar =
170 do op "$"
171 v <− identifier
172 return $ BVar v
173
174 −− Pattern
175 pattern :: Parser Patt
176 pattern = try inputPattern
177 <|> outputPattern
178
179 −− Input pattern
180 inputPattern :: Parser Patt
181 inputPattern =
182 do v <− var
183 op "?"
184 a <− aExpression
185 return $ Input v a
186
187 −− Output pattern
188 outputPattern :: Parser Patt
189 outputPattern =
190 do v <− var
191 op "!"
192 a <− aExpression
193 return $ Output v a
194
195 −− Arithmetic Expressions
196 aExpression :: Parser AExpr
197 aExpression = buildExpressionParser aOperators aTerm
198
199 aOperators = [ [Prefix (op "−" >> return (Neg )) ]
200 , [Infix (op "*" >> return (ABin Multiply)) AssocLeft,
201 Infix (op "/" >> return (ABin Divide )) AssocLeft]
202 , [Infix (op "+" >> return (ABin Add )) AssocLeft,
203 Infix (op "−" >> return (ABin Subtract)) AssocLeft]
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204 ]
205
206 aTerm :: Parser AExpr
207 aTerm = roundBrackets aExpression
208 <|> liftM AVar var
209 <|> liftM IntConst integer
210
211
212 −− Boolean Expressions
213 bExpression :: Parser BExpr
214 bExpression = buildExpressionParser bOperators bTerm
215
216 bOperators = [ [ Prefix (op "~" >> return Not) ]
217 , [ Infix (op "&" >> return And) AssocLeft]
218 ]
219
220 bTerm :: Parser BExpr
221 bTerm = roundBrackets bTerm
222 <|> (keyword "tt" >> return (BoolConst True))
223 <|> (keyword "ff" >> return (BoolConst False))
224 <|> rExpression
225
226
227 −− Relational Expressions
228 rExpression :: Parser BExpr
229 rExpression =
230 do a1 <− aExpression
231 rel <− relation
232 a2 <− aExpression
233 return $ RBin rel a1 a2
234
235 relation :: Parser RBinOp
236 relation = (op "==" >> return Eq)
237 <|> (op "!=" >> return Neq)
238 <|> (op "<" >> return Lt)
239 <|> (op ">" >> return Gt)
240 <|> (op "<=" >> return LtEq)
241 <|> (op ">=" >> return GtEq)
242
243
244 −− Parse String Input
245 parseF :: String −> Formula
246 parseF s =
247 case ret of
248 Left e −> LVar "ErrorParsing"
249 Right f −> f
250 where
251 ret = parse formulaParser "" s
252
253
254 −− Pretty Outputs (Parse tree)
255 indent :: Int −> String
256 indent 0 = " "
257 indent 1 = " |−"
258 indent n = " " ++ indent (n−1)
259
260 prettyf :: Formula −> Int −> String
261 prettyf f n = (indent n) ++ pf
262 where
263 pf =
264 case f of
265 LVar s −> s ++ " (logical variable)\n"
266 TT −> "TT\n"
267 FF −> "FF\n"
268 Con phi psi −> "&\n" ++ prettyf phi (n+1)
269 ++ prettyf psi (n+1)
270 Max x phi −> "max " ++ x ++ " .\n"
271 ++ prettyf phi (n+1)
272 Nec p c phi −> "Necessity\n"
273 ++ prettyp p (n+1)
274 ++ prettyb c (n+1)
275 ++ prettyf phi (n+1)
276
277 prettyp :: Patt −> Int −> String
278 prettyp p n =
279 case p of
280 Input v a −> (indent n) ++ "Input\n"
281 ++ prettyv v (n+1) ++ "\n"
282 ++ prettya a (n+1)
283 Output v a −> (indent n) ++ "Output\n"
284 ++ prettyv v (n+1) ++ "\n"
285 ++ prettya a (n+1)
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286
287 prettyv :: Var −> Int −> String
288 prettyv v n =
289 case v of
290 BVar v −> (indent n) ++ v ++ " (binding variable)"
291 FVar v −> (indent n) ++ v ++ " (free variable)"
292
293
294 prettya :: AExpr −> Int −> String
295 prettya a n =
296 case a of
297 AVar v −> prettyv v n ++ "\n"
298 IntConst i −> (indent n) ++ (show i) ++ " (int const)\n"
299 Neg a1 −>(indent n) ++ "Negation (−)\n"
300 ++ prettya a1 (n+1)
301 ABin binop a1 a2 −> (indent n) ++ sbinop ++ "\n"
302 ++ prettya a1 (n+1)
303 ++ prettya a2 (n+1)
304 where
305 sbinop =
306 case binop of
307 Add −> "+"
308 Subtract −> "−"
309 Multiply −> "*"
310 Divide −> "/"
311
312 prettyb :: BExpr −> Int −> String
313 prettyb b n = (indent n) ++ pb
314 where
315 pb =
316 case b of
317 BoolConst bc −> (show bc) ++ " (bool const)\n"
318 Not b1 −> "Negation (~)\n"
319 ++ prettyb b1 (n+1)
320 And b1 b2 −> "&\n" ++ prettyb b1 (n+1)
321 ++ prettyb b2 (n+1)
322 RBin rbinop a1 a2 −> sbinop ++ "\n"
323 ++ prettya a1 (n+1)
324 ++ prettya a2 (n+1)
325 where
326 sbinop =
327 case rbinop of
328 Eq −> "="
329 Neq −> "!="
330 Lt −> "<"
331 Gt −> ">"
332 LtEq −> "<="
333 GtEq −> ">="
334
335
336 −− Output Parse Tree of a given Formula
337 parseTree :: Formula −> IO ()
338 parseTree f = putStrLn (prettyf f 0)
339
340 −− String to Parse Tree
341 stringParseTree :: String −> IO ()
342 stringParseTree s =
343 case ret of
344 Left e −> putStrLn $ "Error: " ++ (show e)
345 Right f −> putStrLn $ "Interpreted as:\n" ++ (prettyf f 0)
346 where
347 ret = parse formulaParser "" s
348
349
350 −− Normal output (formula)
351 instance Show Formula where
352 showsPrec _ TT = showString "tt"
353 showsPrec _ FF = showString "ff"
354 showsPrec _ (LVar v) = showString v
355 showsPrec p (Con f1 f2) =
356 showParen (p >= 2) $ (showsPrec 2 f1) . (" & " ++) . showsPrec 2 f2
357 showsPrec p (Max x f) =
358 showParen (p >= 3) $ (("max " ++ x ++ " . ") ++) . showsPrec 3 f
359 showsPrec p (Nec pt c f) =
360 case c of
361 BoolConst True −>
362 showParen (p >= 4) $ (("[" ++ show pt ++ "]") ++) . showsPrec 4 f
363 _ −>
364 showParen (p >= 4) $ (("[" ++ show pt ++"," ++ show c ++ "]") ++) .

showsPrec 4 f
365
366 instance Show Patt where
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367 show (Input v a) = (show v) ++ " ? " ++ (show a)
368 show (Output v a) = (show v) ++ " ! " ++ (show a)
369
370 instance Show Var where
371 show (FVar v) = v
372 show (BVar v) = "$" ++ v
373
374 instance Show AExpr where
375 showsPrec _ (AVar v) = shows v
376 showsPrec _ (IntConst i) = shows i
377 showsPrec p (ABin op a1 a2) =
378 case op of
379 Add −>
380 showParen (p >= 5) $ (showsPrec 5 a1) . (" + " ++) . showsPrec 5 a2
381 Subtract −>
382 showParen (p >= 5) $ (showsPrec 5 a1) . (" − " ++) . showsPrec 5 a2
383 Multiply −>
384 showParen (p >= 6) $ (showsPrec 6 a1) . (" * " ++) . showsPrec 6 a2
385 Divide −>
386 showParen (p >= 6) $ (showsPrec 6 a1) . (" / " ++) . showsPrec 6 a2
387
388 instance Show BExpr where
389 showsPrec _ (BoolConst b) = shows b
390 showsPrec _ (Not b) = ("~" ++) . (shows b)
391 showsPrec p (And b1 b2) = (shows b1) . (" & " ++) . (shows b2)
392 showsPrec p (RBin op b1 b2) =
393 case op of
394 Eq −>
395 (shows b1) . (" = " ++) . (shows b2)
396 Neq −>
397 (shows b1) . (" != " ++) . (shows b2)
398 Lt −>
399 (shows b1) . (" < " ++) . (shows b2)
400 Gt −>
401 (shows b1) . (" > " ++) . (shows b2)
402 LtEq −>
403 (shows b1) . (" <= " ++) . (shows b2)
404 GtEq −>
405 (shows b1) . (" >= " ++) . (shows b2)

A.2 The Normalisation Algorithm

1 module SHMLNormaliser where
2
3 import Data.List
4 import Data.Char
5 import SHMLParser as Parser
6
7 −− Substitution of free variables
8 sub :: Formula −> String −> Formula −> Formula
9 sub phi v psi =

10 case psi of
11 LVar u
12 | u == v −> phi
13 | otherwise −> psi
14 Con f1 f2 −> Con (sub phi v f1) (sub phi v f2)
15 Max u f
16 | u == v −> psi
17 | otherwise −> Max u (sub phi v f)
18 Nec p c f −> Nec p c (sub phi v f)
19 _ −> psi
20
21
22 −− Replace free/bound variables of a formula
23 −− (Possibly introduces variable capture)
24 replace :: String −> String −> Formula −> Formula
25 replace x y phi =
26 case phi of
27 LVar u
28 | u == x −> LVar y
29 | otherwise −> phi
30 Con f1 f2 −> Con (replace x y f1) (replace x y f2)
31 Max u f
32 | u == x −> Max y (replace x y f)
33 | otherwise −> Max u (replace x y f)
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34 Nec p c f −> Nec p c (replace x y f)
35 _ −> phi
36
37
38 −− Basic Logical Simplifications (step 1)
39 simplify :: Formula −> Formula
40 simplify (Con phi psi) = simplifyCon (simplify phi) (simplify psi)
41 where
42 simplifyCon :: Formula −> Formula −> Formula
43 simplifyCon FF _ = FF
44 simplifyCon _ FF = FF
45 simplifyCon TT b = b
46 simplifyCon b TT = b
47 simplifyCon a b
48 | a == b = a
49 | otherwise = (Con a b)
50 simplify (Max x psi) = simplifyMax x (simplify psi)
51 where
52 simplifyMax :: String −> Formula −> Formula
53 simplifyMax x TT = TT
54 simplifyMax x FF = FF
55 simplifyMax x (LVar y)
56 | x == y = TT
57 | otherwise = Max x (LVar y)
58 simplifyMax x (Con phi psi)
59 | phi == LVar x = simplify (Max x psi)
60 | psi == LVar x = simplify (Max x phi)
61 | otherwise = Max x (Con phi psi)
62 simplifyMax x phi = Max x phi
63 simplify (Nec p c phi)
64 | simpPhi == TT = TT
65 | otherwise = Nec p c simpPhi
66 where
67 simpPhi = simplify phi
68 simplify phi = phi
69
70
71 −− Standard form (step 2)
72 sf :: Formula −> Formula
73 sf f = simplify (conj (sf' f []))
74 where
75 conj :: (Formula, [String]) −> Formula
76 conj (phi, []) = phi
77 conj (phi, v:vs) = Con phi (conj (LVar v, vs))
78
79 sf' :: Formula −> [String] −> (Formula, [String])
80 sf' (LVar x) bv
81 | x `elem` bv = (LVar x, [])
82 | otherwise = (TT, [x])
83 sf' (Con phi1 phi2) bv = (Con psi1 psi2, nub (vars1 ++ vars2))
84 where
85 (psi1, vars1) = sf' phi1 bv
86 (psi2, vars2) = sf' phi2 bv
87 sf' (Max x phi) bv = (sub (Max x psi) x psi, delete x vars)
88 where
89 (psi, vars) = sf' phi (x:bv)
90 sf' (Nec p c phi) bv = (Nec p c (sf phi), [])
91 sf' phi _ = (phi, [])
92
93
94 −− All variables which appear in formula (free or bound)
95 variables :: Formula −> [String]
96 variables = nub . variables'
97
98 variables' :: Formula −> [String]
99 variables' (LVar x) = [x]

100 variables' (Con phi psi) = (variables' phi) ++ (variables' psi)
101 variables' (Max x phi) = [x] ++ (variables' phi)
102 variables' (Nec p c phi) = variables' phi
103 variables' _ = []
104
105
106 −− Rename the variables in a formula using integers
107 rename :: Formula −> (Formula, [(Int, String)])
108 rename phi = (psi, sigma)
109 where
110 sigma = zip [0..] (variables phi)
111
112 listReplace :: [(Int, String)] −> Formula −> Formula
113 listReplace (p:ps) =
114 (listReplace ps).(replace (snd p) (show (fst p)))
115 listReplace [] = id
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116
117 psi = listReplace sigma phi
118
119
120 −− Equation 'X = phi' encoded as (X, phi)
121 type Equation = (String, Formula)
122 type SoE = ([Equation], String, [String])
123
124
125 −− System of Equations (step 3)
126 sysEq :: Formula −> (SoE, [(Int, String)])
127 sysEq phi = (sysEq' 0 phi', sigma)
128 where
129 (phi', sigma) = rename phi
130
131 sysEq' :: Int −> Formula −> SoE
132 sysEq' n TT = ([(x, TT)], x, [])
133 where
134 x = "X" ++ show n
135
136 sysEq' n FF = ([(x, FF)], x, [])
137 where
138 x = "X" ++ show n
139
140 sysEq' n (LVar y) = ([(x, LVar y)], x, [y])
141 where
142 x = "X" ++ show n
143
144 sysEq' n (Con f1 f2) = (eq, x, y1 ++ y2)
145 where
146 x = "X" ++ show n
147 (eq1, x1, y1) = sysEq' (n+1) f1
148 lastEq1 = read ((tail.fst.last) eq1) :: Int
149 (eq2, x2, y2) = sysEq' (lastEq1+1) f2
150 eq = [(x, Con (snd (head eq1)) (snd (head eq2)))] ++ eq1 ++ eq2
151
152 sysEq' n (Max u f) = (eq, x, y)
153 where
154 x = "X" ++ show n
155 (eq1, x1, y1) = sysEq' (n+1) (replace u x f)
156
157 expandX :: Equation −> Equation
158 expandX (v, rhs)
159 | rhs == LVar x = (v, snd(head eq1))
160 | otherwise = (v, rhs)
161
162 eq = [(x, snd(head eq1))] ++ (map expandX eq1)
163 y = filter (\v−>v/=x) y1
164
165 sysEq' n (Nec p c f) = (eq, x, y)
166 where
167 x = "X" ++ show n
168 (eq1, x1, y) = sysEq' (n+1) f
169 eq = [(x, Nec p c (LVar x1))] ++ eq1
170
171
172 −− Normalisation of System of Equations (Power Set Construction, step 4)
173
174 −− The following functions are for subset/index manipulation
175 −− nsubsets (Non−empty subsets, with singletons first, then lexicographical)
176 nsubsets :: Eq a => [a] −> [[a]]
177 nsubsets s = [[i]|i<−s] ++ (subsequences s \\ ([]:[[i]|i<−s]))
178
179 −− Index (subscript) of a variable Xi
180 idx :: String −> Int
181 idx (x:xs) | x == 'X' = read xs :: Int
182 | otherwise = −1
183
184 −− Subset corresponding to given index
185 subIdx :: Int −> Int −> [Int]
186 subIdx n = (!!) $ nsubsets [0..n−1]
187
188 −− Index corresponding to given Subset
189 idxSub :: Int −> [Int] −> Int
190 idxSub n [k] | k < n = k
191 | otherwise = error "Not a valid subset"
192 idxSub n s = binarysum (n−1) (reverse memberQSet) + n − 2 − maximum s
193 where
194 binarysum k [] = 0
195 binarysum k (x:xs) = (2^k * x) + binarysum (k−1) xs
196 btoi True = 1
197 btoi False = 0
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198 memberQSet = [btoi (i `elem` s) | i <− [0..(n−1)]]
199
200
201 −− All symbolic actions in a formula
202 sas :: Formula −> [(Patt, BExpr)]
203 sas = nub . sas'
204
205 sas' :: Formula −> [(Patt, BExpr)]
206 sas' (Nec p c phi) = (p,c) : sas' phi
207 sas' (Con phi psi) = (sas' phi) ++ (sas' psi)
208 sas' (Max x phi) = sas' phi
209 sas' _ = []
210
211 −− Factor (i.e. normalise) a single equation in SoE with n equations
212 factor :: Int −> Equation −> Equation
213 factor n (v, FF) = (v, FF)
214 factor n (v, LVar x) = (v, LVar x)
215 factor n (v, rhs)
216 = (v, bigWedge ((map saVarToFormula $ saVarPairs rhs) ++ (unguardedVars rhs)))
217 where
218 saVars (p,c) (Nec p' c' (LVar x))
219 | p == p' && c == c' = [x]
220 | otherwise = []
221 saVars (p,c) (Con phi psi) = saVars (p,c) phi ++ saVars (p,c) psi
222 saVars (p,c) _ = []
223
224 guardedVars phi = concat [saVars sa phi | sa <− sas phi]
225 unguardedVars phi = map (\x −> LVar x) (variables phi \\ guardedVars phi)
226 saVarPairs phi = [(sa, map idx $ saVars sa phi) | sa <− sas phi]
227
228 saVarToFormula ((p,c), v) = Nec p c (LVar ("X" ++ show (idxSub n v)))
229
230 bigWedge [] = FF
231 bigWedge lst = foldl1 (\x y −> Con x y) lst
232
233 −− Normalisation of SoE's
234 norm :: (SoE, a) −> (SoE, a)
235 norm ((eq, x, y), sigma) = ((map (factor n) psEqs, x, y), sigma)
236 where
237 n = length eq
238 conj = \x y −> Con x y
239 lhs = ["X" ++ show i | i <− [0..2^n−2]]
240 rhs = map (foldl1 conj) $ (nsubsets.snd.unzip) eq
241 psEqs = zip lhs rhs
242
243
244 −− Formula Reconstruction (step 5)
245
246 −− Free variables
247 fv :: Formula −> [String]
248 fv (LVar x) = [x]
249 fv (Con phi psi) = fv phi ++ fv psi
250 fv (Nec p c phi) = fv phi
251 fv (Max x phi) = fv phi \\ [x]
252 fv _ = []
253
254 −− Compose a list of maps
255 compose :: [a −> a] −> (a −> a)
256 compose [] = id
257 compose (f:fs) = f . (compose fs)
258
259 −− Reconstruction
260 reconstruct :: (SoE, [(Int, String)]) −> Formula
261 reconstruct ((eq, x, y), sigma) = sigma' recon
262 where
263 recon = sigmaSHML (LVar x) (eq, x, y)
264 sigma' = compose [replace (show u) v | (u,v) <− sigma]
265
266 −− Recursive SigmaSHML Map
267 sigmaSHML :: Formula −> SoE −> Formula
268 sigmaSHML phi (eq, x, y)
269 | fv phi == [] = phi
270 | fv phi `subset` y = phi
271 | otherwise = sigmaSHML ((compose subs) phi) (eq, x, y)
272 where
273 getEq v = case lookup v eq of
274 Nothing −> TT
275 Just rhs −> rhs
276
277 subs = [sub (Max x (getEq x)) x | x <− fv phi]
278
279 subset (a:as) b = elem a b && subset as b
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280 subset [] b = True
281
282
283 −− Redundant fixed points (step 6)
284 redfix :: Formula −> Formula
285 redfix (Max x phi)
286 | x `elem` (fv phi) = Max x (redfix phi)
287 | otherwise = redfix phi
288 redfix (Con phi psi) = Con (redfix phi) (redfix psi)
289 redfix (Nec p c phi) = Nec p c (redfix phi)
290 redfix phi = phi
291
292
293 −− Normal Form (all steps in order)
294 nf :: Formula −> Formula
295 nf = redfix . reconstruct . norm . sysEq . sf . simplify
296
297 −− Normal Form from string
298 nfs :: String −> Formula
299 nfs = nf . parseF
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