L-Universita Department of Mathematics
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Semester | Examination Session 2022/23

MAT1804: Mathematics for Computing 23rd January 2023
13:00-15:05

Instructions
Read the following instructions carefully.

e Attempt only THREE questions.
e Each question carries 35 marks.

e Calculators and mathematical formulae booklet will be provided.
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/\ Attempt only THREE questions.

Question 1.

(@) Use a truth table to show that (p A (- v v)) vy < v is a tautology.

(b) A function f: A— R where AcR is said to be continuous if
VaeA Ve>0,30>0:VxeA (0<Ix—al<d = |f(x)—f(a)l<e).
Write out, in symbols, the negation of this statement.

(c) Write out the elements of the following sets.

(i) (1,8]n2z (i) xeR:x2<6x+7INZ

(d) Let A, B, C <€, and for all subsets Sc, let S:=Q~S. Prove that:

() IfAcB,then BS A (i) AUB=AnB
(i) A~\B=AnB (ivy A~NB=AuUB
[5, 5, 5, 20 marks]
Question 2.

(@) You may assume that n € Z is not a multiple of 3 if and only if it can be
expressed in the form 3k + 1 or 3k + 2 for an appropriate k € Z.

(i) Show that if n? is divisible by 3, then n is.
(i) Hence, show that v/3 is irrational.

. 1+2v

(iii) Show, by contradiction, that —
V3-1

(b) (i) Show that k2 + k is even for any k € Z.

is irrational.

(i) If ais odd, show that the equation 8x + a2 = 1 always has an integer
solution x € Z.

(c) Using induction, show that
12422+ +n*=3n(n+3)(n+1).

[15, 10, 10 marks]
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Question 3.
(@) Qaghagq tal-ghasel are sold in packets of 3 or 10.

Show that you can purchase any number of gaghaq O..,' '
greater than 17. & »
B

[In other words, show that any whole number n > 17
can be expressed as a sum of 3’s and 10’s only.]

(b) Show that the function f: R? — R? defined by f(x,y) = (5x +2y,2x +y)
is a bijection, and find a formula for the inverse F1

(c) Let f: R — R be defined by f(x) = y/x. Find:
(i) f([1,4]) (i) F({9}) (i) F([1,2]u(3,4])
(iv) f([-3,3]) v) F1(3}) (vi) F71([-3,3])

(d) Let f: X — Y be any function.
(i) Show that forany A,B< Y, we have f 1(AuB)=f"1(A)uf-1(B).
(i) Is it always true that f(AuB) = f(A)uf(B) for A,B< X? If yes,

prove it, if no, give a counterexample. (10, 10, 6, 9 marks]
Question 4.

(@) (i) State and prove the handshaking lemma.

(ii) Show that 6(G) < (n—1)p(G) < A(G), where p(G) denotes the
density of the graph G, and n=|V(G)|.

(b) Show that the degrees of a graph cannot all be distinct.
[Hint: use the pigeonhole principle.]

(c) Let G be a connected graph, and let P be a shortest path joining the
vertices x and y in G. Show that any vertex v € V(G) cannot have more
than 3 neighbours on the path P.

(d) (i) Show that any tree has at least two leaves.
(ii) Prove that the number of edges in a tree on n vertices is n—1.

(iii) Show that a tree on n vertices whose degrees are all either 1 or 3
has precisely 7 + 1 leaves.

[Hint: use the handshaking lemma.] [10, 7, 6, 12 marks]
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Answers and Hints
1. (a) Use https://1lc.mt/tt to check this.

(b) 3a€ A, Fe>0:V6>0,3xc A:0<|x—al<dAIf(x)—f(a)l=e.

)
(c) (i) {2,4,6,8}
(d)

(i) {0,1,2,3,4,5, 6}

() xeB= xeQ~B (definition of S)

= x€QAx¢ B (definition of ~)

= xeQAx¢A (contrapositive of definition of A< B)

= xe€Q~A (definition of ~)
— x€eA (definition of S)
Thus B < A. O
(i) xe AUB <= xeQ~(AUB) (definition of S)

«— xeQAx¢AuUB (definition of ~)
— xeQA-(xeAuB) (definition of ¢)
— xeQA(xeAvxeB) (definition of L)
—= xeQA(x¢Anx¢B) (de Morgan’s law)
= xeQAXxeQA(xEAAXEB)  (p—@np)

— (xeQAxeA)A(xeQAxeB)
(associativity & commutativity)

—= (xeQ~A)A(xeQ~B) (definition of ~)
— xeAAxeB (definition of S)
< x€AnB, (definition of N)
Therefore AUB=ANB. O
(iii) xe A~B < x€AAx¢B (definition of ~)

= x€eAAXxEAAXxEB (p—@np)

— xeAAxeQAax¢B (AcQ)

< x€e AN (xeQ~B) (definition of ~)
(definition of S)
(

definition of n)

— xeAn(x€B)

— xe€ ANnB,

Thus A~B=AnB. O
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(iv) xe A~B <= x€Q~(A~B) (definition of S)
— xe€QAx¢(A~B) (definition of ~)
— xeQA(xeArx¢B) (definition of ~)
— xeQA(xe¢AvxeB) (de Morgan’s law)
— (xeQAx¢eA)Vv(xeQaxeB) (distributivity)
— (xeQAx¢A)vxeB (A-elimination/B < Q)
(definition of ~)
(definition of S)
— xe€AuUB, (definition of U)

Thus A~B=AUB. O

— (xeQ~A)vxeB

~— x€AvxeB

2. (a) (i) By contrapositive: we show that if nis not divisible by 3, then
n3 is not divisible by 3.

Indeed, if n is not divisible by 3, then it equals 3k+1 or 3k +2
for appropriate k. In the first case,

n® = (3k+1)% =3(9k> + 9k +3k) +1,
so it is not divisible by 3. In the second case,
n=(3k+2)> =3(9k>+18k* +12+2) +2,

so it is also not divisible by 3. O

(ii) By contradiction: suppose that we can write V3 = a/b with
a,be Z and hcf(a, b) = 1. Then a® = 3b3, so a% is a multiple of
3, which by (i) implies that a is a multiple of 3, say, a=3k. But
then (3k)3 = 3b3 which implies that b® = 3(3k3), so b3 is also a
multiple of 3, which again by (i) implies that b is a multiple of
3. This contradicts that hcf(a, b) = 1. O

(iii) By contradiction: If the given number is rational, say equal to
a/b, then we may express

3/5 a+b
V3= a-2b’

which contradicts (ii). O
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(b) (i) k2+k= k(k +1) is the product of two consecutive numbers,
so one of them must be even. Thus the product is even.

(ii) If aisodd,then a=2k+1. Thusthe equationis 8x+(2k+1)2 =1,
which expands to 8x +4(k? + k) = 0. Since k® + k is even, say
equal to 2b, then the equation is 8x +8b = 0, which clearly has
the solution x = —b.

() When n=1,LHS=12=1and RHS = (1)(1 +3)(1+1) = 1, so the
result holds. Now for the inductive step,

12+22+---+n2:%(n 1)(n——)n+n2 (by IH)
:%n[(n 1)( n—— )+3n]
:%n[n2+ n+2]
=%n(n+3)(n+1),
which completes the proof. O

3. (a) When n=18, we can write 18 =3+ 3 +3+3+3+ 3 which starts the
induction. Now for any n > 18, suppose we have expressed (by the
IH) n—1 as a sum of 3's and 10’s. If there are at least three 3's in
this representation, then replacing any three of them with a single
10 transforms the representation of n—1 into one of n.

Now for the remaining case, suppose that there are at most two 3’s
in the representation. Then there must be at least two 10’s (other-
wise the number would be too small). Replacing any two 10s with
seven 3’s will transform the representation of n—1intooneofn. [

(b) We need to show that f is (i) functional, (ii) total, (iii) injective and
(iv) surjective.

(i) Clearly f is functional, since it unambiguously assigns a unique
pair of coordinates to each input pair (x, y) € R?.

(ii) Itis also clear that f is total, since it assigns every point in the
domain R? a corresponding pair of coordinates.
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(iii) To see that f is injective, suppose that f(x,y) =f(a,b), i.e.,
(5x+2y,2x+y)=(5a+2b,2a+b)

1)

{5x+2y:53+2b
> 2

(
(

2x+ y=2a+b

)
5x+2y=5a+2b (1)
—_—>
4x +2y =4a+2b 2-(2)

and subtracting the two equations gives us that x = a, and then
by (2) we clearly get that y = b. Thus, if f(x,y) = f(a, b), then
(x,y)=(a,b), so that f is injective.

(iv) Finally, to see that f is surjective, take any point (x,y) in the
codomain R2, and solve

f(a,b)=(x.y)
= (5a+2b,2a+b) =(x,y)
5a+2b=x (1)
- {23+ b=y (2
= D

ba+2b=x (
4a+2b=2y  2-(2)

subtracting gives a = x — 2y, and then using (2), we get that
b=y—-2(x—-2y)=5y—2x. Thus we see that

f(x=2y,5y—2x)=(x,y),

and since this works for all (x, y) in the codomain, we see that
f is surjective.

We also immediately obtain a formula for =1, namely,

f_l(x,y) =(x—2y,5y —2x).

(© i) [1,2] (ii) {3} (i) [1,v2]u(V3,2]
(iv) [0, V3] (v) {9 (vi) [0,9]
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definition of f~1)
definition u)

(d) () xef(AUB) < f(x)eAUB
— f(x)eAvf(x)eB
— xef(A)vxef(B) (definition of 1)

= xef YA uf(B) definition of u),
which completes the proof. O

(
(
(
(

(i) Itis true, and the proof is similar:

yef(AuB)
< Ix:(xe AUBAf(x)=Yy) (definition of f(S))
— Ix:((xe AvxeB)Af(x)=y) (definition of L)
— Ix:(xe AAf(x)=y)v(xe BAf(x)=y) (distributivity)
— yef(A)vyef(B (definition of £(S5))
— yef(A)uf(B), (definition of L)

as required. O

4. (a) (i) Forall graphs G,

Y deg(v)=2IE(G)I.

veV(G)

Proof 1. The number deg(v) counts the number of edges inci-
dent to the vertex v. Since each edge in the graph is incident
to precisely two vertices, then each edge in |E(G)| contributes
2 to the sum. O

Proof 2. We have

>, deg(v)= ) IN(v)

veV(G) veV(G)
= Z Z Tvee
veV(G)ecE(G)
=Y Y lee= ¥ 2=2E(G). O
ecE(G)veV(G) ecE(G)

(i) First of all, observe that

(n-1)IE(G)l _2IE(G)]
n(n-1)/2 — |V(G)|

(n=1)p(G) =
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Now clearly

< Y deg(v)< Y. A(G)

VEV(G) VEV(G VGV(G)
= [V(G)I6(G) <2IE(G)I<IV(G)IA(G),
and dividing through by |V(G)| gives

5(G) < ”:_V(( ))| <A(G),

where the middle term is (n—1)p(G) as observed earlier. [

(b) Consider first the case of graphs which have no vertex of degree
zero. If the number of vertices is n, then every vertex must satisfy
1 <deg(v) < n—1, so there are n—1 possible degrees which we must
assign to n vertices, and so the pigeonhole principle ensures that
there must be at least two vertices which receive the same degree.

Now consider graphs which do contain a vertex of degree zero. If
there is more than one such vertex, then we are done, so suppose
there is precisely one vertex of degree zero. If we temporarily ig-
nore it, then we get a graph on n—1 vertices which has no vertex
of degree zero, and we can apply the argument from earlier since
now we must have 1 < deg(v) < n—2 for all of the n—1 vertices,
and so the pigeonhole principle guarantees that a pair of vertices
in this subgraph receive the same degree. O

(c) By contradiction: if v has neighbours uy, uy, u3, us on the shortest
path from x to y (suppose these are labelled according to the order
one encounters them when travelling along the path), then going
from x to v; and then to v is a “shortcut”, contradicting that P is
the shortest path from x to y. m

(d) (i) Let P be alongest path in the tree. This necessarily has two
leaves at its end, since otherwise it is not a longest path.

(ii) By induction on n. Clearly when n=1 we have 0 = n—1 edges,
which establishes the base case. Now given a tree T on n
vertices, remove a leaf ¢ (guaranteed to exist by (i)) to get T—¢,
which by the IH has (n—1) -1 = n—2 edges. But adding ¢ back
increases the number of edges by 1, sowe have n—1edges. [
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(iii) Suppose there are k vertices of degree 1. Then there are n—k
vertices of degree 3, and so the sum of degrees is k +3(n— k),
which by the handshaking lemmais 2|E(G)| = 2(n—1). Solving
the equation k+3(n—k) =2(n-1) for k gives k=3 +1. O
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