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Instructions
Read the following instructions carefully.

• Attempt only THREE questions.

• Each question carries 35 marks.

• Calculators and mathematical formulæ booklet will be provided. Calculator
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Attempt only THREE questions."

Question 1.

(a) Use a truth table to show that (ϕ∧ (¬ϕ∨ψ))∨ψ↔ψ is a tautology.

(b) A function f : A→Rwhere A⊆R is said to be continuous if

∀a ∈A,∀ε> 0,∃δ> 0 :∀x ∈A, (0< |x −a| < δ =⇒ |f (x)− f (a)| < ε).

Write out, in symbols, the negation of this statement.

(c) Write out the elements of the following sets.

(1,8]∩2Z(i) {x ∈R : x2 < 6x +7}∩Z(ii)

(d) Let A,B,C ⊆Ω, and for all subsets S ⊆Ω, let S ..=ΩàS . Prove that:

If A⊆B, then B ⊆A(i) A∪B =A∩B(ii)

AàB =A∩B(iii) AàB =A∪B(iv)

[5, 5, 5, 20 marks]

Question 2.

(a) You may assume that n ∈ Z is not a multiple of 3 if and only if it can be

expressed in the form 3k +1 or 3k +2 for an appropriate k ∈Z.
(i) Show that if n3 is divisible by 3, then n is.

(ii) Hence, show that
3p3 is irrational.

(iii) Show, by contradiction, that
1+2 3p3

3p3−1
is irrational.

(b) (i) Show that k2+k is even for any k ∈Z.
(ii) If a is odd, show that the equation 8x+a2 = 1 always has an integer

solution x ∈Z.
(c) Using induction, show that

12+22+·· ·+n2 = 1
3 n

(
n+ 1

2
)
(n+1).

[15, 10, 10 marks]
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Question 3.

(a) Qagħaq tal-għasel are sold in packets of 3 or 10.

Show that you can purchase any number of qagħaq

greater than 17.

[In other words, show that any whole number n > 17
can be expressed as a sum of 3’s and 10’s only.]

(b) Show that the function f : R2*R2 defined by f (x ,y)= (5x +2y ,2x +y)
is a bijection, and find a formula for the inverse f −1.

(c) Let f : R*R be defined by f (x)=p
x . Find:

f ([1,4])(i) f ({9})(ii) f ([1,2]∪ (3,4])(iii)

f ([−3,3])(iv) f −1({3})(v) f −1([−3,3])(vi)

(d) Let f : X *Y be any function.

(i) Show that for any A,B ⊆Y , we have f −1(A∪B)= f −1(A)∪ f −1(B).

(ii) Is it always true that f (A∪B) = f (A)∪ f (B) for A,B ⊆ X? If yes,

prove it, if no, give a counterexample.
[10, 10, 6, 9 marks]

Question 4.

(a) (i) State and prove the handshaking lemma.

(ii) Show that δ(G) É (n − 1)ρ(G) É ∆(G), where ρ(G) denotes the

density of the graph G , and n = |V (G)|.
(b) Show that the degrees of a graph cannot all be distinct.

[Hint: use the pigeonhole principle.]

(c) Let G be a connected graph, and let P be a shortest path joining the

vertices x and y in G . Show that any vertex v ∈V (G) cannot have more

than 3 neighbours on the path P .

(d) (i) Show that any tree has at least two leaves.

(ii) Prove that the number of edges in a tree on n vertices is n−1.

(iii) Show that a tree on n vertices whose degrees are all either 1 or 3

has precisely n
2 +1 leaves.

[Hint: use the handshaking lemma.] [10, 7, 6, 12 marks]
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Answers and Hints
1. (a) Use https://lc.mt/tt to check this.

(b) ∃a ∈A,∃ε> 0 :∀δ> 0,∃x ∈A : 0< |x −a| < δ∧|f (x)− f (a)| Ê ε.

(c) (i) {2,4,6,8} (ii) {0,1,2,3,4,5,6}

(d) (i) x ∈B =⇒ x ∈ΩàB (definition of S̄ )
=⇒ x ∈Ω∧x ∉B (definition of à)
=⇒ x ∈Ω∧x ∉A (contrapositive of definition of A⊆B)
=⇒ x ∈ΩàA (definition of à)
=⇒ x ∈A (definition of S̄ )

Thus B ⊆A.

(ii) x ∈A∪B ⇐⇒ x ∈Ωà (A∪B) (definition of S̄ )
⇐⇒ x ∈Ω∧x ∉A∪B (definition of à)
⇐⇒ x ∈Ω∧¬(x ∈A∪B) (definition of ∉)
⇐⇒ x ∈Ω∧¬(x ∈A∨x ∈B) (definition of ∪)
⇐⇒ x ∈Ω∧ (x ∉A∧x ∉B) (de Morgan’s law)
⇐⇒ x ∈Ω∧x ∈Ω∧ (x ∉A∧x ∉B) (ϕ↔ϕ∧ϕ)
⇐⇒ (x ∈Ω∧x ∉A)∧ (x ∈Ω∧x ∉B)

(associativity & commutativity)

⇐⇒ (x ∈ΩàA)∧ (x ∈ΩàB) (definition of à)
⇐⇒ x ∈A∧x ∈B (definition of S̄ )
⇐⇒ x ∈A∩B, (definition of ∩)

Therefore A∪B =A∩B.

(iii) x ∈AàB ⇐⇒ x ∈A∧x ∉B (definition of à)
⇐⇒ x ∈A∧x ∈A∧x ∉B (ϕ↔ϕ∧ϕ)
⇐⇒ x ∈A∧x ∈Ω∧x ∉B (A⊆Ω)
⇐⇒ x ∈A∧ (x ∈ΩàB) (definition of à)
⇐⇒ x ∈A∧ (x ∈B) (definition of S)
⇐⇒ x ∈A∩B, (definition of ∩)

Thus AàB =A∩B.
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(iv) x ∈AàB ⇐⇒ x ∈Ωà (AàB) (definition of S )
⇐⇒ x ∈Ω∧x ∉ (AàB) (definition of à)
⇐⇒ x ∈Ω∧¬(x ∈A∧x ∉B) (definition of à)
⇐⇒ x ∈Ω∧ (x ∉A∨x ∈B) (de Morgan’s law)
⇐⇒ (x ∈Ω∧x ∉A)∨ (x ∈Ω∧x ∈B) (distributivity)
⇐⇒ (x ∈Ω∧x ∉A)∨x ∈B (∧-elimination/B ⊆Ω)
⇐⇒ (x ∈ΩàA)∨x ∈B (definition of à)
⇐⇒ x ∈A∨x ∈B (definition of S)
⇐⇒ x ∈A∪B, (definition of ∪)

Thus AàB =A∪B.

2. (a) (i) By contrapositive: we show that if n is not divisible by 3, then

n3 is not divisible by 3.

Indeed, if n is not divisible by 3, then it equals 3k +1 or 3k +2
for appropriate k . In the first case,

n3 = (3k +1)3 = 3(9k3+9k2+3k)+1,

so it is not divisible by 3. In the second case,

n3 = (3k +2)3 = 3(9k3+18k2+12+2)+2,

so it is also not divisible by 3.

(ii) By contradiction: suppose that we can write
3p3 = a/b with

a,b ∈ Z and hcf(a,b) = 1. Then a3 = 3b3, so a3 is a multiple of

3, which by (i) implies that a is a multiple of 3, say, a = 3k . But
then (3k)3 = 3b3 which implies that b3 = 3(3k3), so b3 is also a

multiple of 3, which again by (i) implies that b is a multiple of

3. This contradicts that hcf(a,b)= 1.

(iii) By contradiction: If the given number is rational, say equal to

a/b, then we may express

3p3= a+b
a−2b ,

which contradicts (ii).
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(b) (i) k2 + k = k(k +1) is the product of two consecutive numbers,

so one of them must be even. Thus the product is even.

(ii) If a is odd, then a = 2k+1. Thus the equation is 8x+(2k+1)2 = 1,
which expands to 8x +4(k2 +k) = 0. Since k2 +k is even, say

equal to 2b, then the equation is 8x +8b = 0, which clearly has

the solution x =−b.

(c) When n = 1, LHS = 12 = 1 and RHS = 1
3(1)(1+ 1

2)(1+1) = 1, so the

result holds. Now for the inductive step,

12+22+·· ·+n2 = 1
3(n−1)(n− 1

2)n+n2 (by IH)

= 1
3 n

[
(n−1)(n− 1

2)+3n
]

= 1
3 n

[
n2+ 3

2n+ 1
2
]

= 1
3 n

(
n+ 1

2
)
(n+1),

which completes the proof.

3. (a) When n = 18, we can write 18= 3+3+3+3+3+3 which starts the

induction. Now for any n > 18, suppose we have expressed (by the

IH) n−1 as a sum of 3’s and 10’s. If there are at least three 3’s in
this representation, then replacing any three of them with a single

10 transforms the representation of n−1 into one of n.

Now for the remaining case, suppose that there are at most two 3’s
in the representation. Then there must be at least two 10’s (other-
wise the number would be too small). Replacing any two 10s with
seven 3’swill transform the representation of n−1 into one of n.

(b) We need to show that f is (i) functional, (ii) total, (iii) injective and

(iv) surjective.

(i) Clearly f is functional, since it unambiguously assigns a unique

pair of coordinates to each input pair (x ,y) ∈R2.

(ii) It is also clear that f is total, since it assigns every point in the

domain R2 a corresponding pair of coordinates.
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(iii) To see that f is injective, suppose that f (x ,y)= f (a,b), i.e.,

(5x +2y ,2x +y)= (5a+2b,2a+b)

=⇒
{

5x +2y = 5a+2b (1)
2x + y = 2a+b (2)

=⇒
{

5x +2y = 5a+2b (1)
4x +2y = 4a+2b 2 · (2)

and subtracting the two equations gives us that x = a, and then
by (2) we clearly get that y = b. Thus, if f (x ,y) = f (a,b), then
(x ,y)= (a,b), so that f is injective.

(iv) Finally, to see that f is surjective, take any point (x ,y) in the

codomain R2, and solve

f (a,b)= (x ,y)
=⇒ (5a+2b,2a+b)= (x ,y)

=⇒
{

5a+2b = x (1)
2a+ b = y (2)

=⇒
{

5a+2b = x (1)
4a+2b = 2y 2 · (2)

subtracting gives a = x − 2y , and then using (2), we get that

b = y −2(x −2y)= 5y −2x . Thus we see that

f (x −2y ,5y −2x)= (x ,y),

and since this works for all (x ,y) in the codomain, we see that

f is surjective.

We also immediately obtain a formula for f −1, namely,

f −1(x ,y)= (x −2y ,5y −2x).

(c) [1,2](i) {3}(ii) [1,
p

2]∪ (
p

3,2](iii)

[0,
p

3](iv) {9}(v) [0,9](vi)
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(d) (i) x ∈ f −1(A∪B) ⇐⇒ f (x) ∈A∪B (definition of f −1)

⇐⇒ f (x) ∈A∨ f (x) ∈B (definition ∪)
⇐⇒ x ∈ f −1(A)∨x ∈ f −1(B) (definition of f −1)

⇐⇒ x ∈ f −1(A)∪ f −1(B) (definition of ∪),
which completes the proof.

(ii) It is true, and the proof is similar:

y ∈ f (A∪B)
⇐⇒ ∃x : (x ∈A∪B∧ f (x)= y) (definition of f (S))
⇐⇒ ∃x : ((x ∈A∨x ∈B)∧ f (x)= y) (definition of ∪)
⇐⇒ ∃x : (x ∈A∧ f (x)= y)∨ (x ∈B∧ f (x)= y) (distributivity)

⇐⇒ y ∈ f (A)∨y ∈ f (B) (definition of f (S))
⇐⇒ y ∈ f (A)∪ f (B), (definition of ∪)
as required.

4. (a) (i) For all graphs G , ∑
v∈V (G)

deg(v)= 2|E (G)|.

Proof 1. The number deg(v) counts the number of edges inci-

dent to the vertex v . Since each edge in the graph is incident

to precisely two vertices, then each edge in |E (G)| contributes
2 to the sum.

Proof 2. We have∑
v∈V (G)

deg(v)= ∑
v∈V (G)

|N(v)|

= ∑
v∈V (G)

∑
e∈E(G)

1v∈e

= ∑
e∈E(G)

∑
v∈V (G)

1v∈e =
∑

e∈E(G)
2= 2|E (G)|.

(ii) First of all, observe that

(n−1)ρ(G)= (n−1)|E (G)|
n(n−1)/2 = 2|E (G)|

|V (G)| .
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Now clearly∑
v∈V (G)

δ(G)É ∑
v∈V (G)

deg(v)É ∑
v∈V (G)

∆(G)

=⇒ |V (G)|δ(G)É 2|E (G)| É |V (G)|∆(G),

and dividing through by |V (G)| gives

δ(G)É 2|V (G)|
|E (G)| É∆(G),

where the middle term is (n−1)ρ(G) as observed earlier.

(b) Consider first the case of graphs which have no vertex of degree

zero. If the number of vertices is n, then every vertex must satisfy

1É deg(v)É n−1, so there are n−1 possible degreeswhichwemust

assign to n vertices, and so the pigeonhole principle ensures that

there must be at least two vertices which receive the same degree.

Now consider graphs which do contain a vertex of degree zero. If

there is more than one such vertex, then we are done, so suppose

there is precisely one vertex of degree zero. If we temporarily ig-

nore it, then we get a graph on n−1 vertices which has no vertex

of degree zero, and we can apply the argument from earlier since

now we must have 1 É deg(v) É n− 2 for all of the n− 1 vertices,

and so the pigeonhole principle guarantees that a pair of vertices

in this subgraph receive the same degree.

(c) By contradiction: if v has neighbours u1,u2,u3,u4 on the shortest

path from x to y (suppose these are labelled according to the order

one encounters them when travelling along the path), then going

from x to v1 and then to v4 is a “shortcut”, contradicting that P is

the shortest path from x to y .

(d) (i) Let P be a longest path in the tree. This necessarily has two

leaves at its end, since otherwise it is not a longest path.

(ii) By induction on n. Clearly when n = 1 we have 0= n−1 edges,

which establishes the base case. Now given a tree T on n
vertices, remove a leaf ` (guaranteed to exist by (i)) to getT−`,
which by the IH has (n−1)−1= n−2 edges. But adding ` back
increases the numberof edges by1, sowe have n−1 edges.
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(iii) Suppose there are k vertices of degree 1. Then there are n−k
vertices of degree 3, and so the sum of degrees is k +3(n−k),
which by the handshaking lemma is 2|E (G)| = 2(n−1). Solving
the equation k +3(n−k)= 2(n−1) for k gives k = n

2 +1.
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