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Practical Matters

My name is Luke Collins, and this year I will be teaching you this study-unit,
Mathematics for Computing. The primary goal behind this course is to endow

you with the necessary mathematical tools and language to be able to pursue the study
of computer science and related fields at undergraduate level.

Lectures. This course consists of fifteen two-hour long lectures, which will be held
on Mondays at 14:00–16:00 (GMT+02:00). Most of these will be online since I live
in London, but we will be meeting in person on the following dates:

• Tuesday, 8th October 2024, 13:00–15:00 (GMT+02:00),
(Lecture)

Hall D1, Gateway Building, Msida Campus

• Wednesday, 9th October 2024, 18:00–20:00 (GMT+02:00),
(Lecture)

M401, Maths and Physics Building, Msida Campus

We will also meet again in person for some lectures and tutorials around Christmas
time, on the following dates:

• Monday, 16th December 2024, 16:00–18:00 (GMT+01:00),
(Lecture)

MP405, Maths and Physics Building, Msida Campus

• Tuesday, 17th December 2023, 13:00–15:00 (GMT+01:00),
(Lecture)

MP401, Maths and Physics Building, Msida Campus

• Wednesday, 18th December 2023, 14:00–16:00 (GMT+01:00),
(Tutorial)

MP401, Maths and Physics Building, Msida Campus

• Thursday, 19th December 2023, 14:00–16:00 (GMT+01:00),
(Lecture)

(Venue TBA)

Preliminaries. Any topics listed under the MATSEC intermediate pure mathematics
syllabus are considered obvious throughout this course. You can find the syllabus here,
and if you need to go over anything to refresh your memory, I recommend Serge Lang’s
books, here and here.

Lecture notes. I will be updating this PDF document throughout the term, adding
the material we cover in each lecture as we go along. Look at the front page (or footer
of each page) to check the date and ensure you have the latest version.

The official reference texts for this course are [1] and [2].

Exercises. It is important to work through all the exercises provided, not only to
reinforce what you have learned, but to also garner sufficient instincts for what is to
come. It is not enough to be able to do the exercises—by the end of them, you should

3 PRELIMINARY VERSION (11/11/2024)

https://lc.mt
https://universityofmalta.zoom.us/j/97182993209
https://www.openstreetmap.org/way/31283988
https://www.openstreetmap.org/way/31283986
https://www.openstreetmap.org/way/31283986
https://www.openstreetmap.org/way/31283986
https://www.openstreetmap.org/way/31283986
https://www.um.edu.mt/__data/assets/pdf_file/0010/465571/IM27PureMaths2023.pdf
https://hydi.um.edu.mt/permalink/f/1b6nr0f/356MALT_alma2125600640003956
https://link.springer.com/book/10.1007/978-1-4613-0077-9
https://en.wikipedia.org/wiki/Cistercian_numerals


MAT1804 LECTURE NOTES, 2024–2025 LUKE COLLINS ◦ lc.mt

be able to do similar exercises easily, almost without thinking. This way, when we
go on to more advanced topics, your focus will be entirely on the new material, and
you will not sacrifice any of your brain’s “processing power” to understand more basic
steps. When an exercise is annotated with a symbol, this is instructing you to pour
yourself a cup of tea and dedicate some time to think about the problem, it might be
harder than the others.

Course outline. The course content is divided into the following chapters. Note that
they are not equal in size nor in scope.

1. Propositional Logic
2. Set theory
3. Proofs

4. Relations and functions
5. Linear algebra
6. Graph theory

Weekend assignments. Throughout the term, I will be giving you three weekend
assignments; i.e., short worksheets containing a few questions on what we would be
covering around that time. This will force you to interact with the course material
throughout the term, not just before the final exam, and will serve as feedback for me
to gauge the level of the class as a whole, and for you to get some “official” feedback
on your mathematical abilities.

– Weekend Assignment 1 (1–3 November, 2024).
This assignment will be on logic, set theory and a bit of proofs.

– Weekend Assignment 2 (29 November–1 December, 2024).
This assignment will primarily be on proofs (especially induction), relations, and
functions, but might also feature some material from the first two chapters.

– Weekend Assignment 3 (3–5 January, 2025).
This assignment will primarily focus on linear algebra and graph theory, but might
also feature material from previous chapters.

Resources. On VLE, I’ve provided you with a sample weekend assignment, to give
you a feel for what to expect before you get one of the real ones. I’ve also provided three
sample exam papers, as well as four real past papers, all of which have corresponding
solutions. Only last year’s papers contain any questions on linear algebra, since I didn’t
manage to cover that topic in time last year. Naturally I will provide you with some
more exam-style questions on linear algebra so you know what to expect for your exam.

If you have any questions about the course, don’t hesitate to contact me via email on
luke.collins@um.edu.mt, or talk to me after one of my lectures.
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1. Propositional Logic

Logic is the foundational language of mathematics. It tells us how to to construct✠ JMJ ✠

Lecture 1
8 Oct 2024

statements, how to deduce statements from others, and what happens when we
combine them in different ways.

Propositions
A proposition, or statement, is a meaningful sentence which is decidedly true or false.
Examples of statements include:

“Today is a rainy day”, “1 + 1 = 5”, and “282 589 933 − 1 is prime”,

whereas examples of non-statements are

“What time is it?”, “Edam cheese”, “73”, or “This statement is false”.2

In propositional logic, a statement is taken in its entirety, usually represented by a single
Greek letter (such as ϕ or ψ), and we only concern ourselves with whether or not it
is true or false, rather than the individual components making up the statement. If a
statement’s truth depends on a variable, we instead call it a predicate. For instance,
“x is prime” is a predicate, which we might call ϕ(x), to show that it depends on the
variable x . If we substitute a specific value for x , say x = 2, we then get the statement
ϕ(2), i.e., “2 is prime”.

We will discuss predicates in more detail later on, focusing only on propositions for
now. This is called propositional or zeroth order logic . When we deal with predicates,
we graduate to what’s called predicate or first order logic .

For what we study here, it is not important how we are able to determine the truth-value
of a statement (i.e., whether it is true or false); we only care that it can be done. In
practice, we might require very different techniques in order to do so, depending on the
nature of the statement (e.g., we would use different techniques for checking whether
or not “Today is a rainy day” is true, than we would for checking “1+1 = 5”). Our goal
is to study what happens when we combine statements together, developing a calculus
which allows us to discover things about the truth-values of a compound proposition,
assuming we know the truth-values of its individual component propositions.

2This is an interesting one. Why is it not a statement? Well, statements must be either true or
false; so let us suppose that it is true. We immediately see the contradiction that arises: it claims
itself to be false, so it cannot be true. Suppose therefore that it is false. In this case, it makes a claim
which is true—contradicting that it should be false. Thus we cannot say that the statement is true,
nor that it is false.

This special statement is an instance of what’s called The Liar’s Paradox,
and the reason it is problematic is because it is talking about itself: it is
self-referential. There are many self-referential objects in mathematics, and
they need to be dealt with extra carefully, in order to avoid paradoxes like
this one.
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Connectives
Towards this goal, we now introduce the following connectives which allow us to
construct compound propositions from simpler ones.

Definition 1.1 (Negation). Let ϕ be a statement. Then the negation of ϕ is another
statement, denoted ¬ϕ (read: “not ϕ”), which is defined to be true precisely when ϕ
is false, and vice-versa.

Examples 1.2. (i) If ϕ is the statement “The moon is made of cheese”, then ¬ϕ is
the statement “The moon is not made of cheese”.

(ii) If ψ is “1 + 1 = 2”, then ¬ψ is “1 + 1 ̸= 2”.

(iii) If ξ is “3 < 5”, then ¬ξ is “3 ⩾ 5”.

We can summarise the behaviour of negation by tabulating all possibilities for ϕ,
namely, the only two we care about: true or false. This is called a truth table.

ϕ ¬ϕ
true false

false true

Table 1: Truth table for ¬ϕ

Definition 1.3 (Conjunction). Let ϕ and ψ be statements. Then the conjunction of
ϕ and ψ is another statement, denoted ϕ ∧ ψ (read: “ϕ and ψ”), which is defined to
be true precisely when ϕ and ψ are both true, and false otherwise.

Example 1.4. If ϕ is the statement “Boris went to Eton” and ψ is the statement “Boris
went to Oxford”, then ϕ ∧ ψ is “Boris went to Eton and Boris went to Oxford”.

In order to construct a truth table for ϕ∧ψ, this time we require four rows, since the
two possibilities for ϕ each in turn have two corresponding possibilities for ψ.

◦

◦
◦

◦false

true

◦
◦

◦false

true
false

true

ϕ ψ

Figure 1: Possibilities double for ϕ and ψ

ϕ ψ ϕ ∧ ψ
true true true

true false false

false true false

false false false

Table 2: Truth table for ϕ ∧ ψ
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Definition 1.5 (Disjunction). Let ϕ and ψ be statements. Then the disjunction of ϕ
and ψ is another statement, denoted ϕ ∨ ψ (read: “ϕ or ψ”), which is defined to be
true precisely when at least one of ϕ or ψ is true, and false otherwise.

Remark 1.6 (Exclusive v.s. Inclusive ‘or’). In ordinary English, the word ‘or’ is often
interpreted as an exclusive or; that is, it may carry an implicit meaning of “only one”
(as in “you can have normal chips or sweet potato chips with your burger”). This is
not the case in mathematical usage, where ‘ϕ∨ψ’ should be interpreted to mean that
ϕ holds, or ψ holds, or both do. If we mean to use an exclusive ‘or’, we should say
something extra to indicate that (like “. . . but not both”).

Example 1.7. If ϕ is the statement “It is rainy today” and ψ is the statement “It will
be rainy tomorrow”, then ϕ ∨ ψ is the statement “It is rainy today or it will be rainy
tomorrow (or both)”.

As with conjunction, the truth table for disjunction requires four rows, since it is a
binary connective (i.e., a connective involving two statements ϕ and ψ) as opposed to
negation which is a unary connective (i.e., a connective involving only one statement).

ϕ ψ ϕ ∨ ψ
true true true

true false true

false true true

false false false

Table 3: Truth table for ϕ ∨ ψ

Definition 1.8 (Material Implication). Let ϕ and ψ be statements. Then the material
implication of ϕ and ψ is another statement, denoted ϕ → ψ (read: “ϕ implies ψ”),
which is defined to be true, except when ϕ is true yet ψ is false, in which case it is
defined to be false.

ϕ ψ ϕ→ ψ

true true true

true false false

false true true

false false true

Table 4: Truth table for ϕ→ ψ

Remark 1.9 (Material Implication as a Promise). The material implication ϕ → ψ is
equivalent to the statement “If ϕ, then ψ”. It is best understood as a promise: ϕ→ ψ
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is ‘promising’ that ψ will be true if ϕ is. So, for example, if ϕ is “You come to class”
and ψ is “You get a free croissant”, then ϕ→ ψ is the promise “If you come to class,
you get a free croissant”.

If I, your lecturer, were to make such a promise, in what case would I be breaking it? If
you don’t come to class, (i.e., ϕ is false), then you didn’t keep your end of the bargain,
so whether or not you get a free croissant, the promise was kept (and so ϕ → ψ is
true). If you come to class and get your croissant, the promise is also kept. The only
instance in which the promise is broken is if you do come to class (ϕ is true), but don’t
get a free croissant (ψ is false).

Remark 1.10 (Equivalent Phrases). There are many common phrases in English which
are equivalent to “If ϕ, then ψ”, it’s worth listing a few of them:

(i) ϕ implies ψ;

(ii) ϕ only if ψ;

(iii) ϕ is a sufficient condition for ψ;

(iv) ψ when ϕ;

(v) ψ if ϕ;

(vi) ψ is a necessary condition for ϕ.

Remark 1.11 (Implication ̸= Causation). In ordinary English usage, “implies” or “if . . .
then . . . ” tends to be understood to indicate a degree of causation. So if I say ϕ
implies ψ I would usually mean that ϕ had something to do with ψ (e.g., “if you had
not fallen asleep then you would have got more out of this lecture”). In mathematical
usage this does not need to be the case (although it usually is the case for most useful
statements). So if we say ϕ → ψ, we simply mean that whenever ϕ is true ψ is also
true. So “If Paris is the capital of France then the Thames flows through London” is a
true statement, despite the fact that there is obviously no connection between these
two facts. Similarly, “If Malta is on Mars then Versailles is on Venus” is also a true
statement (because, since the ‘ϕ’ in this case is never true, it actually does not matter
what we say afterwards—the statement ϕ → ψ will still be true. Such a statement
is, however, completely useless). A statement like this, where the ‘ϕ’ is never true, is
said to be vacuously true.

Remark 1.12 (→ is not symmetric). Of the three binary connectives we’ve seen so
far, ϕ ∧ψ, ϕ ∨ψ and ϕ→ ψ, the latter is the only one which isn’t symmetric; i.e., it
makes a difference which comes first: ϕ→ ψ and ψ → ϕ are not the same statement.
(We will address this in more detail later on).

Definition 1.13 (Converse). Consider the implication ϕ → ψ.
The implication with the statements swapped, i.e., ψ → ϕ, is
called the converse of ϕ→ ψ.
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Activity 1.14 (Wason selection task, 1966).

Part 1. Consider the following set of four cards, each of which has a number
on one side, and a colour on the other.

3 8
Card A Card B Card C Card D

State which card(s) you must necessarily turn over in order to verify the truth
of the following statement:

“If a card shows an even number on one face, then the other face
must be red.”

Part 2. Consider the Maltese law that

“If you drink alcohol, you must be over 17 years old.”

Now suppose you own an establishment which serves alcohol, and you see the
following four people:

A. Someone drinking orange juice, whose age you don’t know.

B. Someone drinking vodka, whose age you don’t know.

C. Someone over 17 years old, with a drink you can’t identify.

D. Someone not over 17 years old, with a drink you can’t identify.

Which of them do you examine to ensure that the law is being respected?

Part 3. Did you spot a connection between the two puzzles? Take a look at
the Wikipedia article for the “Wason selection task” to check your answers.

Definition 1.15 (Biconditional). Let ϕ and ψ be statements. Then the biconditional
of ϕ and ψ is another statement, denoted ϕ↔ ψ (read: “ϕ if and only if ψ”), which
is defined to be true when ϕ and ψ have the same truth-value, and false otherwise.

As the symbol suggests, the biconditional of ϕ and ψ ensures that both ϕ → ψ and
ψ → ϕ are true. In fact, it is equivalent to the statement (ϕ→ ψ) ∧ (ψ → ϕ).

Remark 1.16 (Equivalence). If ϕ↔ ψ is true, then it essentially means that ϕ are ψ
are equivalent statements. For instance, suppose ϕ is “I exercise” and ψ is “I ride my
bike”. If the only way that I exercise is by riding my bike, and not engaging in other
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ϕ ψ ϕ↔ ψ

true true true

true false false

false true false

false false true

Table 5: Truth table for ϕ↔ ψ

activities, then the statement ϕ → ψ (i.e., exercise → bike) is true. This does not
exclude me from riding my bike for other purposes, however.

If, in addition, I declare that I only use my bike for the purpose of exercise, and nothing
else, in other words, ψ → ϕ (i.e., bike→ exercise), then combining the two pieces of
information we have that ϕ↔ ψ is true.

Therefore, since the biconditional is true, the two statements “I exercise” and “I ride
my bike” have become equivalent to each other.

Example 1.17 (Pythagoras’ theorem). Consider the following
pair of statements:

ϕ: The triangle contains a right-angle

ψ: The triangle’s sides lengths satisfy the
equation a2 + b2 = c2

Pythagoras’ theorem states that ϕ → ψ. The converse
of Pythagoras’ theorem turns out to also be true, i.e., if a
triangle’s side lengths satisfy the equation a2+b2 = c2, then
it must have a right angle. Thus, since both are true, ϕ↔ ψ

is true, and ϕ and ψ are equivalent statements. Figure 2: Pythagoras

Here is a truth-table summarising the five connectives we’ve seen in this section.

ϕ ψ ¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ

true true false true true true true

true false false false true false false

false true true false true true false

false false true false false true true

Table 6: Truth table for the five connectives, ¬, ∧, ∨, →, ↔
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Well-Formed Formulæ
So far we have seen the five simple propositions

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ.

But we can build other complex propositions, called well-formed formulæ, by applying
the following rules.

Definition 1.18 (Well-formed formulæ). A proposition is called a well-formed formula
(or wff) if it is constructed with the following set of rules:

(i) Any atomic proposition is a wff.

(ii) If Φ is a wff, then ¬Φ is also a wff.

If Φ and Ψ are wff’s, then:

(Φ ∧Ψ) is also a wff;(iii) (Φ ∨Ψ) is also a wff;(iv)

(Φ→ Ψ) is also a wff;(v) (Φ↔ Ψ) is also a wff.(vi)

Unless constructed using only (i)-(vi) above, then any combination of symbols and
connectives isn’t a well-formed formula.

Example 1.19. ϕ ∧ ψ¬, ϕ¬ψ and ψ ∧ ∧ϕ are not wffs.

Example 1.20. ¬((ϕ ∧ ψ) ∨ (ϕ ∨ ξ)) is a wff. Indeed,

(1) ϕ, ψ and ξ are wff’s by (i).

(2) (ϕ ∧ ψ) is a wff by (iii) and (1) above.

(3) (ϕ ∨ ξ) is a wff by (iv) and (1) above.

(4) ((ϕ ∧ ψ) ∨ (ϕ ∨ ξ)) is a wff by (iv) and (2), (3) above.

(5) Finally, ¬((ϕ ∧ ψ) ∨ (ϕ ∨ ξ)) is a wff by (ii) and (5) above.

¬

∨

∨

ξϕ

∧

ψϕ

Figure 3: Syntax tree for the well-formed
formula ¬((ϕ ∧ ψ) ∨ (ϕ ∨ ξ))

−

+

+

76

×

32

Figure 4: Syntax tree for the arithmetical
expression −((2× 3) + (6 + 7))
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This example should give you a feel as to how you should think of the way these
expressions are built up. Indeed, it is helpful to mentally visualise a syntax tree for the
expression (see figures 3 and 4), just as we do when we have arithmetical expressions
such as

−((2× 3) + (6 + 7)).

In order to avoid using a large amount of brackets, we introduce the idea of relative
precedence. For instance, in arithmetic, 1 + 2 × 3 is unambiguously interpreted as
1 + (2× 3).

×

3+

21

1 + 2× 3
= (1 + 2)× 3
= 3 + 3

= 6

✗

+

×

32

1

1 + 2× 3
= 1 + (2× 3)
= 1 + 6

= 7

✓

Figure 5: Two possible interpretations for 1+2×3. Using the established rules of precedence,
we pick the one on the right.

¬ ∧ ∨ → ↔

decreasing precedence

−( · ) ÷ × + −

decreasing precedence

Logical connectives Arithmetical operations

Figure 6: Rules of precedence for both logic and arithmetic operators, where −( · ) denotes
the unary (i.e., prefix) minus operator

We say that multiplication takes precedence over addition—i.e., without brackets we
carry out multiplication before addition. The operators with higher precedence can be
seen as if surrounded by brackets. Thus,

−1 + 2× 3− 5 + 6 means (((−1) + (2× 3))− 5) + 6,

and similarly

ϕ ∧ ψ → ϕ ∨ ψ means ((ϕ ∧ ψ)→ (ϕ ∨ ψ)).

Similarly, ¬ϕ → ψ ∧ ξ ↔ π means ((¬ϕ) → (ψ ∧ ξ)) ↔ π. Although we can reduce
brackets to a minimum, we usually like to use brackets to distinguish between ∧ and
∨, and between → and ↔. Therefore, we would usually write ϕ ∨ (ψ ∧ ξ), even if
ϕ ∨ ψ ∧ ξ would do. Similarly, we write ϕ↔ (ψ → ξ) when ϕ↔ ψ → ξ would do.
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An issue we have yet to address is how to interpret unbracketed expressions with more
than one use of the same operator, such as ϕ ∧ ψ ∧ ξ. Should this be interpreted as
(ϕ∧ψ)∧ξ or as ϕ∧(ψ∧ξ)? Later on, we will prove that the two expressions are logically
equivalent. However, syntactically, the expressions are different (i.e., their trees are
different), and we thus have to decide which expression we mean when we leave out
the brackets. Furthermore, such an equivalence does not hold for all operators.

In arithmetic, for instance, (1− 2)− 3 is not equal to 1− (2− 3). Usually, when we
write 1 − 2 − 3, we mean (1 − 2) − 3. This is called left associativity . An operator
∗ is said to be right associative when x ∗ y ∗ z is to be interpreted as x ∗ (y ∗ z).
Conjunction and disjunction are left associative, while implication and biconditional
are right associative. Therefore, using precedence and associativity, we could write
ϕ ∧ ψ ∧ ξ→ π → ζ instead of ((ϕ ∧ ψ) ∧ ξ)→ (π → ζ).

Exercise 1.21. 1. Which of the following are statements?

Knights always tell the truth.a) Topological graph theory.b)
Is it raining outside?c) 1 + 2 ̸= 3.d)
Jurassic Park is better than Jurassic World.e)
Let’s go to the theatre on Wednesday.f)
Do you like ice cream?g) The Earth is an oblate spheroid.h)
Is this a statement?i) Engineers don’t know any maths.j)
This is a false statement.k) This is a statement.l)

2. Deduce the negation of the following statements.

Knights always tell the truth.a) 1 < 2.b)
My cat can fly.c) There are infinitely many primes.d)
Wallace and Gromit went to
the moon.

e) Imaginary numbers don’t exist!f)

3. Consider the following four statements.

p ..= “Pam is going” q ..= “Quincy is going”

r ..= “Richard is going” s ..= “Sara is going”

Express the following as propositions in terms of p, q, r and s.

a) Pam is not going.
b) Pam is going, but Quincy is not.
c) If Pam is going, then so is Quincy.
d) Pam is going if Quincy is.
e) Pam is going only if Quincy is.
f) Pam is going if and only if Quincy is.
g) Neither Pam nor Quincy is going.
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h) Pam and Quincy are not both going.
i) Either Pam is not going or Quincy is not going.
j) Pam is not going if Quincy is.
k) Either Pam is going, or Richard and Quincy are going.
l) If Pam is going, then both Richard and Quincy are going.

m) Pam is staying, but Richard and Quincy are going.
n) If Richard is going, then if Pam is staying, Quincy is going.
o) If neither Richard nor Quincy is going, then Pam is going.
p) Richard is going only if Pam and Quincy are staying.
q) Richard and Quincy are going, although Pam and Sara are staying.
r) If either Richard or Quincy is going, then Pam is going and Sara is

staying.
s) Richard and Quincy are going if and only if either Pam or Sara is

going.
t) If Sara is going, then either Richard or Pam is going, and if Sara is

not going, then both Pam and Quincy are going.

4. For each of the following, give two possible syntax trees (there may be
more possible), together with the corresponding implied bracketing; one
of them being the correct interpretation, and highlight which is which.

ϕ ∧ ψ → ϕa) ϕ↔ ¬ψ ∨ ξb) ϕ∨ψ∧ξ∧π → ¬ϕc)
ϕ→ ψ → ξ↔ ψ ∧ ϕ→ ξd) ¬ϕ ∨ ψ ↔ ϕ→ ξe)

5. On an island called The Island of Knights and
Knaves, certain inhabitants called knights always
tell the truth, and other inhabitants called knaves
always lie.

Every inhabitant on this island is either a knight or
a knave.

You, a tourist, arrive on the island and are greeted by three people,
A, B and C. You ask A: “Are you a knight or a knave?”. He
answers, but you don’t hear him. B proceeds to say “A said that he
is a knave”. C promptly interrupts: “Don’t believe B, he is lying!”.
What are B and C?

a)

Suppose instead of asking A whether he is a knight or a knave, you
ask “How many knights are among you?”. Again you don’t hear his
answer, and B says: “A said that there is one knight among us.”
Then C again claims that “B is lying!”. Now what are B and C?

b)
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In this problem, there are only two people, A and B, each of which
whom is either a knight or a knave. A makes the following state-
ment: “At least one of us is a knave.” What are A and B?

c)

Suppose A says “I am a knave or B is a knight”. What are A and
B?

d)

Suppose A says “I am a knave or 2+2 = 5”. What do you conclude?e)
Again we have three people, A, B and C, each of whom is either a
knight or a knave. The following discourse ensues:

A : All of us are knaves.

B : Exactly one of us is a knight.

What are A, B and C?

f)

6. When Alice entered the Forest of Forgetfulness, she did not forget every-
thing; only certain things. She often forgot her name, and most likely the
day of the week.

Now, the Lion and the Unicorn were frequent visitors
of the forest. These two are strange creatures: the lion
lies on Mondays, Tuesdays and Wednesdays and tells the
truth on the other days of the week. The Unicorn, on
the other hand lies on Thursdays, Fridays and Saturdays,
but tells the truth on other days of the week.

One day Alice met the Lion and the Unicorn resting under a tree.
The following discourse ensued:

Lion : Yesterday was one of my lying days.

Unicorn : Yesterday was one of my lying days too.

Alice, who was a very bright girl, was able to deduce the day of the
week. What day was it?

a)

On another occasion Alice met the lion alone. He made the fol-
lowing statements: “I lied yesterday”, “I will lie again two days after
tomorrow”. What day of the week is it?

b)

On what days of the week is it possible for the Lion to make the fol-
lowing two statements: “I lied yesterday”, “I will lie again tomorrow”.

c)

On what days of the week is it possible for the lion to say “I lied
yesterday and I will lie again tomorrow”.
[Warning: The answer is not the same as the previous problem.]

d)
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Truth Tables
We’ve already seen truth tables which tell us the truth-values of the simple propositions

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ.

We can similarly construct a truth table for any wff.

In general, the number of rows in a truth table is determined by the number of atomic
propositions in the formula or formulæ to be considered. If there is only one atomic
proposition, then there are only two possibilities: the statement it stands for can either
be true or false, hence the table will have two rows.

If there are two atomic propositions, then as we’ve already seen, there are four possible
combinations of truth and falsity and consequently the table has four rows. In general,
if the number of atomic propositions is n, the number of rows is 2n. Thus if a formula
contains three different atomic propositions, its truth table has 23 = 8 rows, and so
on.

◦

◦

◦
◦
◦false

true

◦
◦
◦false

true
false

true

◦

◦
◦
◦false

true

◦
◦
◦false

true
false

true
false

true

ϕ ψ ξ

Figure 7: 8 possibilities with three atomic propositions ϕ,
ψ and ξ

ϕ ψ ξ

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

Table 7: The left side
of a truth table for a wff
containing three atomic
propositions, ϕ, ψ and ξ

To set up a truth table for a formula, write the formula at the upper right side of the
table and list the atomic propositions it contains in alphabetical order to the left. If
there are n of them, write beneath the rightmost of them a column of 2n alternating
T’s and F’s, beginning with T. Then, under the next letter to the left (if any remain),
write another column of 2n T’s and F’s, again beginning with T, but alternating every
two rows. Repeat this procedure, moving again to the left and doubling the alternation
interval each time, until each letter has a column of T’s and F’s beneath it. If, for
example, the formula contains three atomic propositions, ϕ, ψ, and ξ, the left side of
the the table should resemble table 7.
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Then on the right-hand side of the table, write, under each operator in order of
precedence (i.e., from the “low-hanging fruit” of the syntax tree, going upwards),
the resulting truth-value in each case. Once you’ve filled in the final column (which
corresponds to the root of the syntax tree), circle it, since this represents the truth-
value of the whole expression.

Worked Example 1.22. Let’s start with something easy, say, the truth table for ¬¬ϕ.

ϕ ¬ ¬ ϕ
T T F

F F T

Table 8: Truth table for ¬¬ϕ

¬

¬

ϕ

Figure 8: Syntax tree of ¬¬ϕ

The table has two rows, since there is only one atomic proposition. The negation sign
to the immediate left of ϕ is the first operator we come across when “climbing” the
syntax tree, this reverses the values of ϕ in each row, and the negation sign to its left
(which is the root of the tree) reverses them again, so that ¬¬ϕ has the same truth
value as ϕ in every situation.

Remark 1.23 (Involution). When performing an operation (logical or otherwise), we
say it is an involution, or involutionary, if doing it twice is equivalent to having done
nothing at all. Thus, negation is involutionary since ¬¬ϕ is equivalent to ϕ. Similarly
in arithmetic, the minus prefix is an involution, since −(−x) is the same as x . Rotation
by 180◦ is also an involution, as is pressing the mute button on a TV remote control.

Worked Example 1.24. We construct the truth table for ¬ϕ ∨ ψ.

ϕ ψ ¬ϕ ∨ ψ
T T F T

T F F F

F T T T

F F T T

Table 9: Truth table for ¬ϕ ∨ ψ

∨

ψ¬

ϕ

Figure 9: Syntax tree of ¬ϕ ∨ ψ

Here we begin by computing the negation ¬ϕ, simply flipping the value of ϕ in each row.
Then, we compare these negated values with the value of ψ in that row, computing
their disjunction in the column below the ∨. This is the final result, so we circle it.
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Remark 1.25. It is not necessary to present the syntax tree when computing truth
tables, we provide them here just for explanatory purposes.

Definition 1.26 (Tautologies and Contradiction). If a proposition is always true, no
matter the truth-value of its atomic propositions, then it is said to be a tautology .
Similarly, if a proposition is always false, it is said to be a contradiction.

We can tell whether a proposition is a tautology from its truth table, since its final
column will be entirely full of T’s. Similarly, the final column of a contradiction will
consist entirely of F’s.

Remark 1.27. Saying that two propositions ϕ and ψ are equivalent to each other is
the same as saying that ϕ↔ ψ is a tautology.

Worked Example 1.28. Let us give two more examples of truth tables.

(i) (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ)

ϕ ψ (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ)
T T T F F T

T F T T T F

F T T T T F

F F F F T F

Table 10: Truth table of (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ)

∧

¬

∧

ψϕ

∨

ψϕ

Figure 10: Syntax tree

(ii) (ϕ ∧ ψ) ∧ ξ↔ ϕ ∧ (ψ ∧ ξ)

ϕ ψ ξ (ϕ ∧ ψ) ∧ ξ ↔ ϕ ∧ (ψ ∧ ξ)
T T T T T T T T

T T F T F T F F

T F T F F T F F

T F F F F T F F

F T T F F T F T

F T F F F T F F

F F T F F T F F

F F F F F T F F

Table 11: Truth table of (ϕ ∧ ψ) ∧ ξ↔ ϕ ∧ (ψ ∧ ξ)

↔

∧

∧

ξψ

ϕ

∧

ξ∧

ψϕ

Figure 11: Syntax tree
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Notice that this is an example of a tautology. In particular, this truth table shows
the logical equivalence of the syntactically distinct statements (ϕ ∧ ψ) ∧ ξ and
ϕ ∧ (ψ ∧ ξ) which we alluded to when discussing left- and right-associativity.

Exercise 1.29. 1. Construct truth tables for the following propositions. Say
which of these are tautologies and contradictions.

(ϕ→ ψ)→ (ψ → ϕ)a) ϕ ∧ ψ → ϕ ∨ ψb)
ϕ ∧ ¬ϕc) ϕ ∨ (ψ ∧ ξ)→ (ϕ ∨ ψ) ∧ ξd)
ϕ ∨ (ψ → ξ)→ ξe) ¬ϕ ∨ ¬ψ → ϕ ∨ ψf)

2. The following are important tautologies in propositional logic. Prove them
using truth-tables, and explain in words why each of them is true, giving
real-world examples to aid your explanation.

a) ϕ ∨ ¬ϕ (Law of the Excluded Middle)
b) ¬¬ϕ↔ ϕ (Negation Involution)
c) ¬(ϕ→ ψ)↔ (ϕ ∧ ¬ψ) (Negated Implication)
d) false→ ϕ (Principle of Explosion)
e) ϕ→ true (Principle of Absolute Truth)
f) ϕ ∧ ψ → ϕ (Conjunction Elimination)
g) ϕ→ ϕ ∨ ψ (Disjunction Introduction)
h) (ϕ→ ψ) ∧ (ψ → ξ)→ (ϕ→ ξ) (Law of Syllogism)
i) (ϕ→ ψ)↔ (¬ψ → ¬ϕ) (Law of Contrapositive)
j) ϕ ∨ (ψ ∧ ξ)↔ (ϕ ∨ ψ) ∧ (ϕ ∨ ξ) (∨ distributes over ∧)
k) ϕ ∧ (ψ ∨ ξ)↔ (ϕ ∧ ψ) ∨ (ϕ ∧ ξ) (∧ distributes over ∨)
l) ¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ (De Morgan’s Law for ∨)

m) ¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ (De Morgan’s Law for ∧)

3. (Universal Logic Operator). Define a new logical operator ⋄ by

(ϕ ⋄ ψ)↔ ¬ϕ ∧ ¬ψ.

a) Construct a truth table for ϕ ⋄ ψ.

b) Show that ¬ϕ↔ ϕ ⋄ ϕ and that ϕ ∧ ψ ↔ (ϕ ⋄ ϕ) ⋄ (ψ ⋄ ψ).
c) Find a way of expressing ϕ∨ψ and ϕ→ ψ using only the ⋄ operator.

4. (How computers add using logic). Define a new logical operator ⊕ by

(ϕ⊕ ψ)↔ ¬(ϕ↔ ψ).

a) Construct a truth table for ϕ⊕ ψ.

b) Prove that ϕ⊕ ψ ↔ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ).
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c) Figure 12 depicts a digital circuit known as a binary half-adder which
performs binary addition in a computer’s CPU. In a computer, true
is represented by the value 1, and false is represented by the value 0.
The addition of binary bits works using carries, as shown in table 12.

A B sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 12: Binary Addition

A
B

sum

carry

⊕

∧

Figure 12: Binary Half-Adder

Express the sum and carry in figure 12 as two propositions in terms
of A and B, using the ⊕ and ∧ operators. Hence, via truth-tables or
otherwise, verify that the circuit behaves as desired by considering
the different possible values (0 or 1) of A and B.

d) A binary full-adder is a circuit which performs binary addition, but
accepts a carry-in as well, which we shall denote by Cin, effectively
adding three numbers together.

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 13: Addition with Cin

A
B

⊕
Cin

⊕

Cout

S

∧

∧
∨

Figure 13: Binary Full-Adder

Let S(A,B, Cin) denote the sum output of the full binary-adder given
inputs A, B and Cin, and similarly let C(A,B, Cin) denote the carry-
out.3 Translate these into two propositions using the ⊕, ∧ and ∨
operators by referring to the circuit in figure 13. Hence via truth-
tables or otherwise, verify that the circuit behaves as desired.
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e) Full-binary adders may be connected in series to achieve what is
known as a ripple-carry adder. This is how computers add numbers
together!

Suppose we are working with 4-bit numbers, that is, binary numbers
which are four digits long. To be able to refer to each digit, we will
give each one a label by writing the entire 4-bit number as A4A3A2A1.
So for example, if the number is 1010, then A4 = 1, A3 = 0, A2 = 1
and A1 = 0. Two 4-bit numbers A4A3A2A1 and B4B3B2B1 can be
added together by using the following 4-bit ripple-carry adder:

Cin = 0+

X1

A1 B1

+

X2

A2 B2

+

X3

A3 B3

+

X4

A4 B4

Cout

Figure 14: Ripple-carry adder, made up of four full-binary adders

The result is then the 4-bit number X4X3X2X1. This fact may seem
like it came out of nowhere, but think of how similar it is to when
we add two numbers normally. We start from the right, adding the
last two digits of the numbers, and then pass any carries to the next
column of digits, and so on until we are done. This is what is being
done here, simply in binary, and by a circuit. Note that we start with
a carry of zero, as we would when adding two numbers normally.

Express the digits X1, X2, X3 and X4 as propositions, using the two
operators S(A,B, Cin) and C(A,B, Cin) we described before. Hence,
by referring to table 13 as the truth-table for these logical operators,
work out 6 + 7 in binary, given that 6 is 0110, and 7 is 0111.

3Note that these are regular logical operators which take three propositions as inputs instead of
the usual one or two (such as ¬, ∨, ∧, etc.).
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2. Set Theory

A set is a collection of distinct “objects” . In particular, the defining characteristic
of a set is the idea of membership—an object x is either a member of a set S,

or not. We write x ∈ S for “x is an element of the set S” (or x is in S), and similarly
y /∈ S for the negation “y is not an element of S”. Sets may be defined by listing their
elements between curly brackets, e.g.,

A = {1, 2, 3, 4, 5}

defines the set A whose elements are 1, 2, 3, 4 and 5. We have 1 ∈ A, but 0 /∈ A (for
example). It is conventional to use capital letters for sets.

Standard Sets
Some of the important sets which we encounter are:

• The empty set, denoted by the symbol ∅, is the set such that

x /∈ ∅ for all x.

• The set of natural numbers, denoted by the symbol N, is the infinite set con-
taining all positive whole numbers and zero:

N = {0, 1, 2, 3, 4, . . . }.

• The set of integers, denoted by the symbol Z (for the German zählen, meaning
counting), is the infinite set containing the positive whole numbers, the negative
whole numbers and zero:

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

• The set of rational numbers, denoted by the symbol Q (for quotient), is the set
of all numbers which can be expressed as a ratio of two integers. For example,
this set contains the numbers 12 ,

22
7 , −13 , 0 and 5 (= 5/1).

• The set of real numbers, denoted by the symbol R, contains all of the rational
numbers, together with all the numbers which have infinitely many digits after
the decimal point. Some of these are rational (e.g. 1

3 = 0.333 . . . and 1
7 =

0.142857142 . . . ), but others are irrational, that is, not rational (e.g.
√
2 =

1.41421 . . . , π = 3.14159 . . . and e = 2.7182818 . . . ).

It is not easy to see that some numbers are irrational. Later we will see a proof
of the fact that

√
2 is irrational.
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Subsets, Intervals and Set Comprehension
Notice that each of the sets we defined (∅, N, Z, Q, R) contains all the elements of
the previous one. When a set B contains all the elements of A, or more formally, if

For all x , x ∈ A→ x ∈ B,

we say A is a subset of B and write A ⊆ B. For example, take the sets A = {1, 2, 3}
and B = {1, 2, 3, 4}, then A ⊆ B. We can visualise the two sets in what is often called
a Venn diagram.

BA
1

2

3

4

Figure 15: Venn Diagram for A ⊆ B

RQZN
√
2

π1
2

−54−23

Figure 16: Venn Diagram for N,Z,Q,R

Remark 2.1. Note that by this definition, every set S is a subset of itself. Also note
that it is not necessarily the case that for two given sets, one set is a subset of the
other or vice-versa; for example if C = {2, 4, 6, 8}, we neither have A ⊆ C nor C ⊆ A.4

If A contains every element of B, and B contains every element of A, that is, if both
A ⊆ B and B ⊆ A, we say that A is equal to B, written A = B. Equivalently, A = B
is the same as saying that for all x , x ∈ A↔ x ∈ B. Observe that

∅ ⊆ N ⊆ Z ⊆ Q ⊆ R

but none of these are equal. In particular, by proving that
√
2 ∈ R but

√
2 /∈ Q, we

will see that Q ̸= R.

Remark 2.2. Do not confuse the two relations ∈ and ⊆. Make sure you understand
why each of the following are true.

(i) 4 ∈ {1, 2, 3, 4} but 4 ⊈ {1, 2, 3, 4}

(ii) {1, 2, 3} /∈ {1, 2, 3, 4} but {1, 2, 3} ⊆ {1, 2, 3, 4}

(iii) {1} ∈ {{1}, {1, 2}, {1, 2, 3}} but {1} ⊈ {{1}, {1, 2}, {1, 2, 3}}

(iv) {1, 2} ∈ {1, 2, {1, 2}} and {1, 2} ⊆ {1, 2, {1, 2}}
4Unlike the similar looking relation “⩽” for real numbers, where it must be the case that x ⩽ y or

y ⩽ x . Because of this, ⊆ is called a partial order, and ⩽ is called a total order.

23 PRELIMINARY VERSION (11/11/2024)

https://lc.mt
https://en.wikipedia.org/wiki/Cistercian_numerals


MAT1804 LECTURE NOTES, 2024–2025 LUKE COLLINS ◦ lc.mt

Notation. An important group of notations we introduce are the subsets of real num-
bers called the real intervals:

• [a, b] is the set of x ∈ R such that a ⩽ x ⩽ b

• [a, b) or [a, b[ is the set of x ∈ R such that a ⩽ x < b

• (a, b] or ]a, b] is the set of x ∈ R such that a < x ⩽ b

• (a, b) or ]a, b[ is the set of x ∈ R such that a < x < b

• [a,∞) or [a,∞[ is the set of x ∈ R such that a ⩽ x

• (a,∞) or ]a,∞[ is the set of x ∈ R such that a < x

• (−∞, b] or ]−∞, b] is the set of x ∈ R such that x ⩽ b

• (−∞, b) or ]−∞, b[ is the set of x ∈ R such that x < b

So for example, if x is a real number such that 1 ⩽ x ⩽ 2, then x ∈ [1, 2]. If moreover,
x ̸= 2, then x ∈ [1, 2). If y is a positive real number, then y ∈ (0,∞), whereas if y is
a non-negative real number, then y ∈ [0,∞).

Exercise 2.3. 1. Consider the sets A = {1, 2, 3}, B = {2, 4, 6, 8}, C =
{−1, 0, 1} and D = {

√
2, e, π}. For each of the following, say whether

they are true and false.

1 ∈ Aa) {1, 2} ∈ Ab) 4 /∈ Ac)
A ⊆ Bd) A = Ce) C ⊆ Cf)
D ⊆ Qg) C ⊆ Zh)

√
2 ⊆ Ri)

[−1, 2] ⊆ [−2, 2)j) (−3, 3) ⊆ [−3,∞)k)

Notation (Set Comprehension). Here we introduce an alternative notation to describe✠ JMJ ✠

Lecture 2
9 Oct 2024

sets, instead of explicitly listing their elements. Suppose we want to describe the set
of even numbers, E. Since there are infinitely many, in our current notation, we are
forced to use ellipses (. . . ) and let the reader deduce what the set contains:

E = {. . . ,−4,−2, 0, 2, 4, . . . }.

There is a level of ambiguity with this notation however. Alternatively, using set
comprehension, we write this as

E = {2n : n ∈ Z},

where the colon is read “such that”. The whole expression is read as “E = the set
of all things of the form 2n, such that n ∈ Z”; in other words, E is the set of even
numbers. In general, the notation

X = {x ∈ S : ϕ(x)}
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defines the set of all things “x ” in S which satisfy the predicate ϕ(x). For example,
the set of prime numbers can be written as

P = {n ∈ N : n is prime}

or as
P = {n : n ∈ N and n is prime}.

In general, there are many ways to express the same set using comprehension.

Examples 2.4. We give some examples of set comprehension.

{n2 : n ∈ N} = {0, 1, 4, 9, 16, . . . }
{5n : n ∈ Z} = {. . . ,−5, 0, 5, 10, . . . }

{x ∈ R : 1 ⩽ x ⩽ 2} = [1, 2]
{x ∈ Q : x + 2 = 1} = {−1}
{x ∈ N : x + 2 = 1} = ∅

{2x : x ∈ R} = R
{x ∈ R : x > 0} = (0,∞)

{a/b : a, b ∈ Z and b ̸= 0} = Q

Exercise 2.5. 1. Express the following sets by listing their elements. E.g.,
the set {2x+6y : x, y ∈ N} can be written as {0, 2, 6, 8, 10, 12, 14, 16 . . . }.

{4n + 1 : n ∈ Z}a) {7n − 2 : n ∈ Z}b)
{n2 : n ∈ Z}c) {n ∈ Z : −5 < n ⩽ 5}d)
{n ∈ N : −5 ⩽ n < 5}e) {x ∈ R : x2 = 5}f)
{x ∈ Z : x2 = 3}g) {x ∈ R : x2 = 3 or x2 = 4}h)
{q ∈ Q : q = 1

1+n and n ∈ N}i) {(a, b) : a ∈ N and b ∈ Z}j)
{5a + 2b : a, b ∈ Z}k) {{a, b} : a ∈ N and b ∈ {0, 1}}l)

2. Write each of the following sets using set comprehension notation.

{10, 11, 12, 13, 14, 15, 16}a) {3, 5, 7, 9, 11, 13}b)
{2, 4, 8, 16, 32, 64, . . . }c) {1, 9, 25, 49, 81, 121, . . . }d)
{. . . ,−14,−7, 0, 7, 14, . . . }e) {. . . , 18 ,

1
4 ,
1
2 , 1, 2, 4, 8, . . . }f)

{. . . ,−1, 3, 7, 11, 15, . . . }g) {∅, {0}, {0, 1}, {0, 1, 2}, . . . }h)
{. . . ,−2π3 ,−

π
3 , 0,

π
3 ,
2π
3 , . . . }i) {1, 2, 3, 5, 6, 7, 9, 10, 11, . . . }j)

{1, 1.1, 1.11, 1.111, . . . }k) {3, {3}, {{3}}, {{{3}}}, . . . }l)
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Set Operations
Now, let us define some set operations, that is, ways to combine sets to create new
sets.

Definitions 2.6. Suppose A and B are two sets. Then

(i) The union of A and B, denoted A ∪ B, is the set defined by the property

x ∈ A ∨ x ∈ B ↔ x ∈ A ∪ B.

(ii) The intersection of A and B, denoted A ∩ B, is the set defined by the property

x ∈ A ∧ x ∈ B ↔ x ∈ A ∩ B.

(iii) The difference between A and B, denoted A ∖ B, is the set defined by the
property

x ∈ A ∧ x /∈ B ↔ x ∈ A∖ B.

BA

Figure 17: A ∪ B

BA

Figure 18: A ∩ B

A B

Figure 19: A∖ B

BA

C

2
4

1

3

5

6
8

10

−10

Figure 20: Sets in Examples 2.7

Examples 2.7. If A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 10} and C = {−1, 0, 1}, then

A ∪ B = {1, 2, 3, 4, 5, 6, 8, 10}
A ∩ B = {2, 4}
A∖ B = {1, 3, 5}

(A ∪ B) ∩ C = {1, 2, 3, 4, 5, 6, 8, 10} ∩ {−1, 0, 1} = {1}
A ∪ (B ∩ C) = {1, 2, 3, 4, 5} ∪ ∅ = {1, 2, 3, 4, 5} = A
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Notice that for any element x of A or B, we can summarise whether it is in A∪B, A∩B
or A∖B using a table listing the four possible cases, as in table 14. Indeed, it should

is it in A? is it in B? is it in A ∪ B? is it in A ∩ B? is it in A∖ B?

✓ ✓ ✓ ✓ ✗

✓ ✗ ✓ ✗ ✓

✗ ✓ ✓ ✗ ✗

✗ ✗ ✗ ✗ ✗

Table 14: Table summmarising behaviour for A ∪ B, A ∩ B and A∖ B

be clear that this is just a truth table, where instead of atomic propositions ϕ and ψ,
this time we have the propositions x ∈ A and x ∈ B determining the truth/falsity of
x ∈ A ∪ B, x ∈ A ∩ B or x ∈ A∖ B (see table 15).

x ∈ A x ∈ B x ∈ A ∪ B x ∈ A ∩ B x ∈ A∖ B
T T T T F

T F T F T

F T T F F

F F F F F

Table 15: Truth tables for A ∪ B, A ∩ B and A∖ B in familiar format

We see that ∪ and ∩ behave identically to ∨ and ∧ respectively, whereas ∖ is equivalent
to a negated implication (i.e., x ∈ A∖ B ↔ ¬(x ∈ A → x ∈ B)). This is because of
the definition of A∖B, indeed, one can check by truth table that ¬(ϕ→ ψ)↔ ϕ∧¬ψ.

One can easily prove various properties about these operators, most of them are very
intuitive and follow immediately from the properties of the corresponding zeroth-order
logic operators or (∨), and (∧), and not (¬).

Worked Example 2.8. We prove, using a truth table, that for any three sets A, B and
C, we have (A ∩ B) ∩ C = A ∩ (B ∩ C).

Indeed, this is the same as checking that for any x , the proposition x ∈ (A∩B)∩C ↔
x ∈ A ∩ (B ∩ C) is a tautology. Using the rules above, we can construct a truth table
to check whether this is a tautology, which we do in table 16.

Remark 2.9. It is not difficult to actually construct the truth table, what we’ve done
here is basically the same as in worked example 1.28(ii). The important thing is
that you understand why constructing this truth table establishes that the two sets
A ∩ (B ∩ C) and (A ∩ B) ∩ C are the same: the table shows that, depending on all
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x ∈ A x ∈ B x ∈ C x ∈ (A ∩ B) ∩ C ↔ x ∈ A ∩ (B ∩ C)
T T T T T T T T

T T F T F T F F

T F T F F T F F

T F F F F T F F

F T T F F T F T

F T F F F T F F

F F T F F T F F

F F F F F T F F

Table 16: Truth table to prove that A ∩ (B ∩ C) = (A ∩ B) ∩ C

possible cases of whether or not any given element x is in A, B or C, then x will be in
A ∩ (B ∩ C) precisely when it is in (A ∩ B) ∩ C, and vice-versa. Thus, these two sets
must consist of precisely the same elements, establishing their equality. Think of this
truth table in terms of table 14 if it makes things clearer.

You should also be capable of drawing a Venn diagram which shows that the region
corresponding to (A ∩ B) ∩ C is the same as A ∩ (B ∩ C), as in figure 21.

Worked Example 2.10. Let’s give another example. Let’s prove that for any set A, we
have A∖ A = ∅.

Thus, we need to prove that for any x , x ∈ A ∖ A ↔ x ∈ ∅. Recall that x ∈ ∅ is, by
definition of ∅, always false, and that the behaviour of ∖ is summarised in table 15.
As can be seen in table 17, x ∈ A∖ A↔ x ∈ ∅ is indeed a tautology, thus A∖ A = ∅

x ∈ A x ∈ A∖ A ↔ x ∈ ∅
T F T F

F F T F

Table 17: Truth table to prove that A∖ A = ∅

for any set A.

Worked Example 2.11. Let’s give one more example for good measure. We prove that
for any two sets A and B, we have A∖ (A∖ B) ⊆ A ∩ B.

This time, since it’s ⊆ intead of =, we need to check (by definition of ⊆) that if
x ∈ A∖(A∖B), then x ∈ A∩B, i.e., that the proposition x ∈ A∖(A∖B)→ x ∈ A∩B
is tautological. As we can see by table 18, x ∈ A∖(A∖B)→ x ∈ A∩B is a tautology,
therefore A∖ (A∖ B) ⊆ A ∩ B.
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A B

C

A ∩ B

∩C−−−−−−→

A B

C

(A ∩ B) ∩ C

A B

C

B ∩ C

A∩−−−−−−→

A B

C

A ∩ (B ∩ C)

Figure 21: Venn Diagrams showing that (A ∩ B) ∩ C and A ∩ (B ∩ C) are the same set

x ∈ A x ∈ B x ∈ A∖ (A∖ B)→ x ∈ A ∩ B
T T T F T T

T F F T T F

F T F F T F

F F F F T F

Table 18: Truth table to prove that A∖ (A∖ B) ⊆ A ∩ B

Below we give a reasonably comprehensive list of common properties concerning the
operations we’ve introduced so far. They can all be proved using truth tables.

Proposition 2.12 (Union, Intersection, Difference Properties). Let A, B and C be
sets. Then

A ∪ (B ∪ C) = (A ∪ B) ∪ C(i) A ∩ (B ∩ C) = (A ∩ B) ∩ C(ii)
A ∪ B = B ∪ A(iii) A ∩ B = B ∩ A(iv)
A ∪ ∅ = A(v) A ∩ ∅ = ∅(vi)
A ∪ A = A ∩ A = A(vii) A∖ ∅ = A(viii)
A∖ A = ∅(ix) A∖ (A∖ B) = A ∩ B(x)
A∖ (B ∪ C) = (A∖ B) ∩ (A∖ C)(xi) A∖ (B ∩ C) = (A∖ B) ∪ (A∖ C)(xii)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)(xiii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)(xiv)

Other useful laws are known as the complement laws, where we assume that we have
some all-encompassing universal set Ω. This allows us to have what can be thought
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Ω

BA

Figure 22: Ā

of as the set theoretic analogue to negation (¬), just as ∩ and ∪ are clearly analogues
of ∧ and ∨. The complement of A is just Ω ∖ A, i.e., “everything except for what’s
in the set A”, where the term “everything” here is always within the confines of the
universal set.

Proposition 2.13 (Complement Laws). If Ω is a set, A,B, C ⊆ Ω and the notation
S denotes Ω∖ S for any set S, then

A ∪ B = A ∩ B(i) A ∪ B = A ∩ B(ii)
A ∪ A = Ω(iii) A ∩ A = ∅(iv)
Ω = ∅(v) ∅ = Ω(vi)

If A ⊆ B, then B ⊆ A(vii) A = A(viii)
A∖ B = A ∩ B(ix) A∖ B = A ∪ B(x)
A∖ B = B ∖ A(xi)

Proof. We give a proof of (i), and leave the rest as an exercise.

For (i), we need to show that A ∪ B = A∩B, i.e., Ω∖ (A∪B) = (Ω∖A)∩ (Ω∖B).
Since all relevant sets are subsets of Ω, we have that “x ∈ Ω” is true in all cases.
Table 19 shows that we have the required tautology.

x ∈ A x ∈ B x ∈ Ω∖ (A ∪ B)↔ x ∈ (Ω∖ A) ∩ (Ω∖ B)
T T T F T T T F F T F

T F T F T T T F F T T

F T T F T T T T F T F

F F T T F T T T T T T

Table 19: Truth table to prove that A ∪ B = A ∩ B

Remark 2.14. Even though Ω∖A is a composite operation on the set A (in the sense
that it is made up of Ω and ∖), it is faster, when constructing a truth table, to think
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of “Ω∖ ” as a single operator on a given set, because it behaves identically to ¬ (see
table 20).

x ∈ A x ∈ Ω∖ A
T F

F T

Table 20: Truth tables for Ω∖ A

Worked Example 2.15. Let’s give one last example to demonstrate the observation
above, we’ll prove (vii) from proposition 2.13. Let’s translate this into a proposition
with logic symbols. We need to show that if A ⊆ B, then B ⊆ A, i.e., A ⊆ B →
(Ω∖B ⊆ Ω∖A), i.e., (x ∈ A→ x ∈ B)→ (x ∈ Ω∖B → x ∈ Ω∖A). The required

x ∈ A x ∈ B (x ∈ A→ x ∈ B)→ (x ∈ Ω∖ B → x ∈ Ω∖ A)
T T T T F T F

T F F T T F F

F T T T F T T

F F T T T T T

Table 21: Truth table to prove proposition 2.13(vii)

truth table can be seen in table 21.

We’ll conclude this section with the notion of a power set.

Definition 2.16. Given a set A, the power set of A is the set

{A : A ⊆ X}

of all subsets of X and is denoted by ℘X.

Example 2.17. For example,

℘{1, 2, 3} = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
and

℘℘{1, 2} = {
∅, {∅}, {{1}}, {{2}}, {{1, 2}}, {∅, {1}}, {∅, {2}},
{∅, {1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}},
{∅, {1}, {2}}, {∅, {1}, {1, 2}}, {∅, {2}, {1, 2}},
{{1}, {2}, {1, 2}}, {∅, {1}, {2}, {1, 2}}

}
Notice that B ⊆ A if and only if B ∈ ℘A, and A ⊈ ℘A ⊈ ℘℘A, etc.
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Exercise 2.18. 1. Consider the sets A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {2, 4, 6, 8,
10, 12, 14}, and C = {2, 3, 6, 9}. Determine:

A ∪ Ba) A ∩ Bb) B ∪ Cc)
A∖ Cd) B ∩ Ce) B ∖ Af)
A∖ Bg) A ∩ Ch) C ∖ Bi)
C ∪ (B ∩ A)j) (A∖ B) ∪ (B ∖ C) ∪ (C ∖ A)k)
℘(A ∩ C)l)

2. Let X = {4, 7, 2, 1}, Y = {4, 6, 12, 7, 3} and Z = {0, 1, 2}. Determine:

X ∪ Ya) X ∖ Yb) (X∖Y )∪ (Y ∖X)c)
X ∩ Y ∩ Zd) X ∪ (Y ∩ Z)e) (X ∪ Y ) ∩ Zf)
X∖(Y ∖(Z∖X))g)

3. Let A, B and C be sets. Draw Venn diagrams and shade the appropriate
regions to illustrate the following.

Aa) B ∖ Ab) (A∖ B) ∩ Cc)
(A ∪ B)∖ Cd) A ∪ (B ∩ C)e) (A ∪B) ∩ (A ∪ C)f)
A ∩ (B ∪ C)g) (A ∩ B) ∪ (A ∩ C)h)
Based on (e) and (f), is A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)?i)
Based on (g) and (h), is A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)?j)

4. Prove the facts in proposition 2.12 using truth tables.

5. Prove the facts in proposition 2.13 using truth tables.

6. Prove the following propositions about sets.

A ∩ B = ∅ ↔ B ∖ A = Ba) A ⊆ B ↔ A ∩ B = Ab)
A ⊆ B ↔ A∖ B = ∅c) A∖ (A∖ B) ⊆ Bd)
If A ⊆ C, B ⊆ C and C ∖ A ⊆ B, then C = A ∪ Be)
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Predicate Logic
A predicate captures the idea of a proposition with “holes”. For instance, consider the
propositions:

(i) 4 is an even number,

(ii) 8 is an even number,

(iii) 5 is an even number.

We can identify these as different instances of the predicate

ϕ(x) = “x is an even number” ,

where x is a “hole” we plug things into; we call x a variable. Indeed, we would write (i) as
ϕ(4), (ii) as ϕ(8) and (iii) as ϕ(5). Notice that for different values of x , the predicate
is sometimes true, and sometimes false. The distinction between a proposition and a
predicate is that a proposition has no variables; for instance, “Today is a Monday” is a
proposition, whereas “x is a Monday” is a predicate.

Sometimes we deal with statements like “there is at least one x such that ϕ(x) is true”
or “for every x , ϕ(x) is false”. In such statements, x is usually understood to be a
member of some set.

This leads us to introduce two new kinds of statements.

Definition 2.19 (Universally quantified statement). Let ϕ(x) be a predicate, and let
X be a set. Then the universal statement ∀x ∈ X, ϕ(x) (read: “for all x ∈ X, ϕ(x)”)
is the statement defined to be true so long as ϕ(x) holds for each x ∈ X, and false
otherwise.

For example, if ϕ(n) is “n can be factorised into a product of prime numbers”, then
∀n ∈ N, ϕ(n) is the statement “for all n ∈ N, n can be factorised into a product
of prime numbers”; or, more succinctly, “all natural numbers can be factorised into a
product of prime numbers”.

Remark 2.20 (∀ = ∧). A universally quantified statement is equivalent to (possibly
infinitely many) ∧’s chained together. In the example we gave about primes, we can
think of it as ϕ(0) ∧ ϕ(1) ∧ ϕ(2) ∧ ϕ(3) ∧ · · · .

Definition 2.21 (Existentially quantified statement). Let ϕ(x) be a predicate, and let
X be a set. Then the existential statement ∃x ∈ X: ϕ(x) (read: “there exists x ∈ X
such that ϕ(x)”) is the statement defined to be true so long as ϕ(x) holds for at least
one x ∈ X, and false otherwise.

Example 2.22. If ϕ(n) is “n is the sum of three squares” and S = {n ∈ N : 1 ⩽ n ⩽ 15},
then ∃n ∈ S : ϕ(n) is a true statement (since, e.g., 14 = 12 + 22 + 32).
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Remark 2.23 (∃ = ∨). An existentially quantified statement is equivalent to (possibly
infinitely many) ∨’s chained together. In the example we gave, we can think of it as
ϕ(1) ∨ ϕ(2) ∨ ϕ(3) ∨ · · · ∨ ϕ(15).

Remark 2.24 (Dummy Variables). When a predicate is quantified, i.e., when one of ∀ or
∃ is placed in front of a predicate ϕ(x), the result is no longer a predicate, but becomes
a proposition. This is because there is no longer a variable which can be substituted
for. For example, if ϕ(x) is “I rolled an x on the dice” where x ∈ D = {1, 2, 3, 4, 5, 6},
then we can substitute a value for x in ϕ(x) (e.g., ϕ(4) is “I rolled a 4 on the dice”),
but

∃x ∈ D : ϕ(x) is ϕ(1) ∨ ϕ(2) ∨ ϕ(3) ∨ ϕ(4) ∨ ϕ(5) ∨ ϕ(6),
i.e., I rolled a 1 or I rolled a 2 or, . . . , or I rolled a 6,

which contains no variable. In this context, x is called a dummy variable, because it
appears in the notation ∀x ∈ D,ϕ(x) but there isn’t actually a variable there.

This is analogous to how
∫ 10
1
dt
t and

∑10
i=1 i

2 are both numbers, even though they look
like they contain variables.

Negation of Quantified Statements. Suppose I make the universal statement “All
the cars in the world are red”. In order to disprove my claim, all you need to do is to
prove the existence of a car that is not red.

In other words, if C is the set of cars in the world, then

¬(∀c ∈ C, c is red) ↔ ∃c ∈ C : ¬(c is red).

And in general, we have the rules

¬∀x ∈ X,ϕ(x) ↔ ∃x ∈ X : ¬ϕ(x)

¬∃x ∈ X,ϕ(x) ↔ ∀x ∈ X : ¬ϕ(x)

Example 2.25. The negation of ∀x ∈ R, x2 ⩾ 0 is ∃x ∈ R : x2 < 0.

Remark 2.26. Recall that we have seen the following tautologies about negated state-
ments:

¬(¬ϕ)↔ ϕ ¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ

¬(ϕ→ ψ)↔ ϕ ∧ ¬ψ

They do come in handy when negating quantified statements.

Example 2.27. The negation of “For all x, y ∈ R, if x − y < 2, then f (x)− f (y) < 4”
becomes “there exist x, y ∈ R such that x − y < 2 but f (x)− f (y) ⩾ 4”.

34 PRELIMINARY VERSION (11/11/2024)

https://lc.mt
https://en.wikipedia.org/wiki/Cistercian_numerals


MAT1804 LECTURE NOTES, 2024–2025 LUKE COLLINS ◦ lc.mt

Remark 2.28. (i) Sometimes we write things like ∀x, y , z ∈ R, ϕ(x, y , z). Instead
of ∀x ∈ R,∀y ∈ R,∀z ∈ R, ϕ(x, y , z).

(ii) We also write things like ∀ϵ > 0 rather than ∀ϵ ∈ (0,∞). In general, we tend
to assume a variable introduced by an inequality like this is a real number (as
opposed to an integer or rational number greater than 0).

(iii) The order of quantifiers matters! Let M be the set of men, and W be the set of
women. Let ϕ(m,w) be the statement “m and w will be happy together”. The
statements ∀m ∈ M,∃w ∈ W : ϕ(m,w) and ∃w ∈ W : ∀m ∈ M,ϕ(m,w) mean
different things. In the first one, since m is introduced before w , then w may
depend on m (i.e., w may be different for different m’s). In the second one, w
is introduced before m, so we are talking about the same woman for each man!

This is analogous to how we can do things like:

for(i=0;i<10;i++)

for(j=i,j<10,j++)

printf("%d",i+j);

Notice that the second for-loop depends on a variable introduced by the first
one; we cannot swap the for-loops.

Exercise 2.29. 1. a) What is the difference between a proposition and a
predicate?

b) Explain the difference between the statements

∀n ∈ N,∃m ∈ N : n < m and ∃m ∈ N : ∀n ∈ N, n < m.

Which of the two is correct?

c) Let the predicate ϕ be “n(n + 1) ⩽ 30”. Write out ∀n ∈ {n ∈ N :
n ⩽ 5}, ϕ(n) as a proposition, and determine whether it is true.

2. Negate the following statements.

∀x > 1, x2 > xa) ∃ x, y > 0 : x + y < 2√xyb)

∀a ∈ N,∃ b ∈ N : a2 = bc)

∀n ∈ N,∃ a, b, c, d ∈ N : n = a2 + b2 + c2 + d2d)

∀a, b, c ∈ R,∃ x1, x2 ∈ R : ax12 + bx1 + c = ax22 + bx2 + c = 0.e)

∀ϵ > 0,∃N ∈ N : ∀n ⩾ N, a − ϵ < an < a + ϵf)

∀ϵ > 0,∃ δ > 0 : |x − x0| < δ → |f (x)− f (x0)| < ϵ.g)

∃ x ∈ A : ∀y ∈ B,∃z ∈ C : x + y + z = 3 3√xyzh)
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3. Proofs

The day-to-day job of mathematicians (such as myself) is to come up with proofs✠ JMJ ✠

Lecture 3
14 Oct 2024

for mathematical statements, all of which can essentially be formulated using
the symbols we’ve learned over the last two chapters.

Even though the symbols of logic and set theory are essential to “speak” the language
of mathematics, we tend to prefer writing things like “every even number N ⩾ 4 can
be expressed as the sum of two primes”, as opposed to

∀N ∈ N, even(N) ∧ (N ⩾ 4)→ ∃p, q ∈ N : prime(p) ∧ prime(q) ∧ (N = p + q).

We feel confident of the fact that, if necessary, we can encode every single mathemat-
ical theorem in terms of these symbols, so that mathematics is based on a rock solid,
formal, logical foundation. But insisting on using them exclusively is a bit like insisting
we only program a computer using 1s and 0s, namely, it is a bit limiting.

Take for instance, the fundamental theorem of calculus (i.e., the fact that integration
and differentiation are opposites): for any differentiable function f defined on [a, b],
we have ∫ b

a

f ′(x) dx = f (b)− f (a).

If we wanted to, we could encode this high-level statement in terms of logical symbols,
and give a proof using only logical symbols. In fact, there are many online projects
dedicated to doing precisely so, you can find one of them here. Every step is justified
by something you can click on, and you can keep clicking till you end up at the very
“bottom”, down with the axioms of propositional and predicate logic.

Optional Discussion: How are logic and set theory enough?

A natural question which might come to you at this stage is—“but how can
we encode integrals as sets or propositions, aren’t they an entirely separate
type of ‘object’?”. Indeed, take a simpler proposition which we’ve seen already:
1 + 1 = 2. Here we’re using the symbol = which we’ve defined in terms of
⊆, but what about ‘1’, ‘2’, and +? Are these different ‘objects’ to sets and
propositions?

In formal mathematics, the answer is actually no—we try to encode everything
using sets—and when we say everything, we mean everything. There are very
important reasons for this: we like to think that all mathematical statements
live in the same axiomatic system (usually called the ZF(C) universe), this way,
all of mathematics is built on only 9 axioms of set theory. For instance, take
the natural numbers,

N = {0, 1, 2, 3, 4, . . . }.

What are these numbers exactly? Can we think of them as being “constructed”
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from a more basic kind of object? The answer is yes, and in mathematics, we
choose sets to be our building blocks for everything else.

What are numbers exactly? Formally, we define the set N as the closure of
the set {∅} under the successor operation x 7→ x ∪ {x}. This means that N
is the smallest set containing ∅, together with any other set(s) which can be
obtained by repeatedly applying the operation x 7→ x ∪ {x}. The successor of
each natural number represents the next natural number in the usual order, so
identifying 0 with the empty set, we have

0 = ∅
1 = 0 ∪ {0} = ∅ ∪ {0} = {0} = {∅}
2 = 1 ∪ {1} = {0, 1} = {∅, {∅}}
3 = 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
4 = 3 ∪ {3} = {0, 1, 2, 3},

and so on. In general, each natural number k ends up being structurally repre-
sented as the set of all its predecessors:

k = {0, 1, 2, . . . , k − 1}.

There is nothing inherently special about this way of encoding N. This is just
one of many ways to construct a set which captures the behaviour of N, namely,
a set where we have

• a least element 0, (i.e., ∅), and

• a way to always “add 1” (i.e., the successor operation x 7→ x ∪ {x}).

When encoded this way, the natural numbers are called von Neumann ordinals.
The two properties above capture entirely the essence of the natural numbers,
and by constructing an object which behaves this way, we showed that it is
possible to encode N with sets alone, and we don’t need to think of numbers as
autonomous “objects” in their own right.a One can define a notion of “addition”
and “multiplication” and so on, all in terms of the underlying set representations,
and prove things like 1 + 1 = 2 (refer to the “meme” above). But of course in
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practice, we still think of the natural numbers as usual, only now safer in the
knowledge that they are built on a more fundamental idea which we understand
well. Similarly, we can construct Z, Q and R in terms of sets alone, but we will
not get into that here.

aThis is analogous to how any photo, video or text on a computer is just 1s and 0s at the
lowest level, but we still don’t think about them in terms of 1’s and 0’s!

Types of Proof
Direct Proof. A direct (or deductive) proof of a statement ω begins from some
previously proven statement α, and demonstrates step by step, that α→ β, then that
β → γ, and so on, obtaining the chain of implications

α→ β → γ → · · · → ω.

To prove a conditional statement ϕ→ ψ, we assume that ϕ is true, and continue as
above to show that ψ is true.

Proof by Contrapositive. In order to prove ϕ→ ψ, assume that ψ is false and show
that this implies ϕ is also false. This will be a proof of ¬ψ → ¬ϕ, which is logically
equivalent to ϕ→ ψ.

Proof by Contradiction. To prove a statement ϕ, assume that it is false, and deduce
from this assumption a false statement, i.e., prove that ¬ϕ → false. This is logically
equivalent to ϕ.

To prove a conditional statement ϕ → ψ by contradiction, assume that ¬(ϕ → ψ),
i.e., assume that ¬ϕ ∧ ψ, and show that you get a contradiction.

Examples 3.1. Let us give a proof of each kind for two simple statements.

(i) If x2 − 3x + 2 < 0, then x > 0.

Direct Proof. We have

x2 − 3x + 2 < 0 =⇒ 3x > 2 + x2 ( + 3x both sides)

=⇒ 3x > 2 (since x2 ⩾ 0)

=⇒ x > 2/3 (÷ 3 both sides)

=⇒ x > 0.

Proof by Contrapositive.

x ⩽ 0 =⇒ x − 1 < 0 ∧ x − 2 < 0
=⇒ (x − 1)(x − 2) > 0 (a, b < 0⇒ ab > 0)

=⇒ x2 − 3x − 2 ⩾ 0.
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Proof by Contradiction. Suppose that x2 − 3x + 2 < 0, and (for contradiction)
that x ⩽ 0. Then

x2 < 3x − 2 =⇒ x2 < −2 (since x ⩽ 0⇒ 3x ⩽ 0),

which is impossible.

(ii) For any two positive real numbers x and y , xy +
y
x ⩾ 2.

Direct Proof. Let x and y be two positive real numbers. Then

x

y
+
y

x
=
x2 + y2

xy

=
x2 + y2 − 2xy + 2xy

xy

=
(x − y)2

xy
+ 2 ⩾ 2, ( (x−y)

2

xy ⩾ 0 since x, y > 0)

which completes the proof.

We can’t really give a contrapositive proof of this statement, since it isn’t a
conditional (if. . . then. . . ) statement.

Proof by contradiction. Let x and y be two positive real numbers, and assume
(for contradiction) that

x

y
+
y

x
< 2 =⇒

x2 + y2

xy
< 2

=⇒ x2 + y2 < 2xy (since xy > 0)

=⇒ (x − y)2 < 0,

which is nonsense.

Example 3.2. Let us prove the following biconditional statement.

x = 2 if and only if x3 + x = 2(x2 + 1).

Since this is a biconditional statement (⇔), we need to prove two conditional state-
ments, namely, the both directions (⇒ and ⇐). We will give a direct proof for both.

Proof. (⇒). This is the easy direction, we simply need to show that assuming x = 2,
the equation on the right is true. Indeed,

LHS = x3 + x = 23 + 2 = 8 + 2 = 10

RHS = 2(x2 + 1) = 2(22 + 1) = 2 · 5 = 10,
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and thus LHS = RHS, as required.

(⇐). For this direction, we need to show that if the equation holds, it must follow
that x is 2. Essentially, we need to solve the equation.

x3 + x = 2(x2 + 1)

=⇒ x3 − 2x2 + x − 2 = 0
=⇒ x2(x − 2) + (x − 2) = 0
=⇒ (x − 2)[x2 + 1] = 0
=⇒ x − 2 = 0 or x2 + 1 = 0 (since R is an integral domain5)

=⇒ x = 2 or x2 = −1
=⇒ x = 2 or false (squares are always ⩾ 0)

=⇒ x = 2, (ϕ ∨ false→ ϕ)

which completes the proof.

Remark 3.3 (⇐ but ⇒?). Don’t be confused about the direction of the arrows in the
second part of the proof, the argument is still in the right direction, i.e., we started
from x3 + x = 2(x2 + 1) and concluded that x = 2:

x = 2 ⇐= · · · ⇐= x3 − 2x2 + x − 2 = 0 ⇐= x2 + x = 2(x2 + 1).

√
2 is irrational

Let us give a few more examples. But first, we need to give some definitions.

Definition 3.4 (Divides). We say that an integer a divides another integer b, written
a | b, if there exists an integer d such that b = ad . We also say that a is a factor of
b, that b is a multiple of a, or that b is divisible by a.

We say that a number is even if it is divisible by 2, and we say it is odd otherwise. It
can be shown (by induction, which we will cover shortly) that odd numbers are precisely
those numbers which can be written in the form 2k + 1 for some integer k .

Example Theorem 3.5. The sum of two even numbers is even.

Proof. Suppose a and b are two even numbers. Then they are divisible by 2, i.e.,
a = 2k and b = 2ℓ for appropriate integers k and ℓ. But their sum is then

a + b = 2k + 2ℓ = 2(k + ℓ),

which is clearly divisible by two.
5An integral domain is a fancy name for a structure where if the product of two things is zero,

then one of them must be zero. This is not always the case, e.g., for matrices,
(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
,

so a product of two non-zero matrices can be the zero matrix.

40 PRELIMINARY VERSION (11/11/2024)

https://lc.mt
https://en.wikipedia.org/wiki/Cistercian_numerals


MAT1804 LECTURE NOTES, 2024–2025 LUKE COLLINS ◦ lc.mt

More generally, we have the following.

Example Theorem 3.6. Let n, a, b ∈ Z. If n | a and n | b, then n | (a + b).

Proof. If n | a, then a = nk for some k ∈ Z, and similarly, if n | b, then b = nℓ for
some ℓ ∈ Z. Thus

a + b = nk + nℓ = n(k + ℓ),

which is clearly divisible by n.

Activity 3.7 (You try!). Show that the sum of any five consecutive integers is
divisible by 5.

Remark 3.8 (Theorem vs Proposition vs Lemma). We’ve been using the term theorem
so far, this is essentially another word for a true statement or true proposition. When
reading mathematics, if something is labelled as a theorem, it is probably an impor-
tant statement. By contrast, a proposition (when the term appears in mathematical
literature) tends to be less important, and a lemma is usually just used as a stepping
stone to something more important.

Logically speaking, they all mean the same thing, namely, “a true statement”—you
can think of it as being similar to the difference in a novel between the protagonist, a
secondary character and a character that appears only once over a couple of pages.

Lemma 3.9. Suppose n ∈ Z. If n2 is even, then n is even.

Proof. We prove this by contrapositive: if n is not even, then n2 is not even, i.e., if n
is odd, then n2 is odd. Indeed, if n is odd, then we can write it as 2k + 1 for some k .
But then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

i.e., n2 is of the form 2m + 1 for some integer m, which shows that n2 is odd.

Remark 3.10. Try to get a feel as to why it makes sense to prove this by contrapositive.
It’s easier to make an assumption about n, and then see what happens to n2, than
going in the other direction.

Now let’s address the title of this section—the fact that
√
2 is irrational. It is not✠ JMJ ✠

Lecture 4
21 Oct 2024

easy to convince students that there are irrational numbers. The ancient Greeks, in
particular, the Pythagoreans, believed that numbers were either whole (i.e., integers)
or parts of a whole (i.e., rationals). This seems perfectly reasonable. Pythagoras is
famous for his theorem relating the lengths of sides in a right-angled triangle,6 and

6Although there is evidence which suggests that the theorem was known to the Babylonians before
Pythagoras.
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perhaps the simplest case we can consider is when the legs of the right-angled triangle
are both equal to 1.

1

1

h

Figure 23: Right-angled triangle with legs of unit length

By Pythagoras’ theorem, we get that the hypotenuse h must satisfy h2 = 12 + 12,
from which one easily obtains h =

√
2. Naturally, since numbers are either whole or

parts of a whole, there must be a way to express
√
2 =

a

b

for some integers a, b ∈ Z, right? That’s what the Pythagoreans believed.

Let us prove that this is impossible.7 We will do this by contradiction; that is, we
will assume that there exist integers a and b such that

√
2 = a

b , and show that this
assumption leads us to an absurd conclusion. Before we proceed with the proof, we
just need to make the following observation.

Definition 3.11 (HCF). The highest common factor of two integers a and b (not
both zero), denoted by hcf(a, b), is the largest integer d such that d | a and d | b.
Two integers a and b are said to be relatively prime or coprime if hcf(a, b) = 1.

Lemma 3.12. A number x ∈ R is rational if and only if we can express it as x = a
b

with a, b ∈ Z coprime.

The important part here is that a and b are coprime. E.g., 286 is a rational number,
and indeed we can write it as 143 where we have that hcf(14, 3) = 1.

Proof. (⇐). This direction is obvious. If x ∈ R can be expressed as ab with a, b

coprime, then in particular it can be expressed as ab , so by definition it is rational.

(⇒). Suppose x ∈ R is rational. Then by definition, we may write it as x = c
d for

appropriate c, d ∈ Z. Now if hcf(c, d) = 1, we are done, so suppose hcf(c, d) = t ̸= 1.
This means we can write c = ta and d = tb for appropriate a, b ∈ Z, and so
x = ta

tb =
a
b . Now, if we show that hcf(a, b) = 1, we will be done, since we’ve expressed

x = a
b . Indeed, suppose (for contradiction) that it is not, i.e., hcf(a, b) = r ̸= 1. This

means that a = ru and b = rv for some u, v ∈ Z. But this in turn implies that
c = tru and d = trv , i.e., that tr | c and tr | d . But since r ̸= 1, then tr > t, which
contradicts the fact that t is the highest common factor of c and d .

7If you wish, you can watch a YouTube version of this proof here.
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Now we are ready to give the proof.

Proof that
√
2 is irrational. Suppose (for contradiction) that

√
2 is rational, i.e., that

we may write
√
2 = a

b , where by lemma 3.12 we may assume that hcf(a, b) = 1.

√
2 =

a

b
=⇒ 2 =

(a
b

)2
=⇒ 2 =

a2

b2
=⇒ a2 = 2b2.

In particular, this means that a2 is even, which by lemma 3.9, means a is even. But
since a is even, then a = 2n for some n ∈ Z, which means

a2 = 2b2 =⇒ (2n)2 = 2b2 =⇒ 4n2 = 2b2 =⇒ 2n2 = b2.

This similarly gives us that b2 is even, which again by lemma 3.9 means that b is also
even. Therefore a and b are both divisible by 2. But we chose a and b so that they
have no common divisors, so this is a contradiction.

Remark 3.13 (A). It is said that one of the disciples of Pythagoras, Hippasos of
Metapontion, presented an argument to Pythagoras that

√
2 is irrational. He was so

outraged by this proof that he had Hipassos killed by throwing him to the sea!

Remark 3.14 (What’s the point?). Okay, so there is no rational number which, when
squared, gives 2. But why do we expand our number system from Q to R to incorporate√
2 (and many other numbers)? Why should we accept that there is a “real” number

whose square root is 2? After all, there is no real number such that r2 = −1, so why
aren’t we on Pythagoras’ side of the argument?

The issue with Q is essentially that it has “holes”, and it is because of these holes
that we need the real numbers. The holes are not as gaping and obvious to spot as
they are in a set like Z; indeed, between any two rationals p and q, there is another
rational (an easy one would be p+q2 ), so the holes aren’t something we can immediately
visualise. To detect them, it’s best to consider something like the plot in figure 24.
If we only worked with rational numbers, then this graph doesn’t intersect the x-axis,

x

y

y = x2 − 2

−2

Figure 24: A plot of the parabola y = x2 − 2

since the intercepts are at x = ±
√
2, which aren’t rational numbers. We can get
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rational numbers very close to
√
2, e.g., by taking the first few digits of the decimal

representation of
√
2 ≈ 1.41421356237. This is rational because it equals

141 421 356 237

100 000 000 000
,

but it is not exactly
√
2. It is because of the discomfort of these situations (and others

where these holes cause problems) that we choose to work with a larger number system
where these holes are “filled in”, namely, the real numbers.

There are infinitely many primes
A classical theorem, which dates back to Euclid in 300 BC, is the fact that there are
infinitely many prime numbers.

Definition 3.15 (Prime). We say that an integer p ⩾ 2 is prime if its only divisors are
±1 and ±p.

We will need to assume the following fact, which we will prove later (by induction).

Theorem 3.16. Every integer n ⩾ 2 is prime or a product of primes.

Theorem 3.17. There are infinitely many primes.

Euclid’s proof. For contradiction, suppose there are finitely many primes, and let
p1, . . . , pn denote all of them. Define N ..= 1 +

∏n
i=1 pi . Clearly N ⩾ 2, and it is

not prime since it is larger than each pi , but it is neither a product of primes since if
pi | N, then by example theorem 3.6, pi | (N −

∏n
i=1 pi) = 1 which is impossible. This

contradicts theorem 3.16.

Remark 3.18. Certain proofs are very elegant and succinct, but it’s difficult to see how
one can come up with them. For instance, a well known proof of the fact that π < 22

7

(where 227 is typically used as an approximation of π) is to observe that

0 <

∫ 1
0

x4(1− x4)
1 + x2

dx =
22

7
− π,

where it is clear that the integral is positive since it represents the area between 0 and
1 bounded by the curve y = x4(1−x4)

1+x2
, which is clearly positive for all inputs x .

Exercise 3.19. 1. a) Show that the sum of two odd numbers is even.

b) Show that the product of two odd numbers is odd.

c) Show that if ab is even, then at least one of a and b must be even.

d) Show that a is odd if and only if a3 is odd.
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2. Prove that for every integer x , x + 4 is odd if and only if x + 7 is even.

3. If x, y > 0, show that
(
1
x +

1
y

)
(x + y) ⩾ 4.

4. Show that if n is not divisible by 2, then it is not divisible by 4.

5. Prove that if you add the squares of three consecutive numbers and then
subtract two, you always get a multiple of 3.

6. Show that if x is irrational, then 3
√
x is also irrational.

7. Show that k(k + 1) is even for every integer k .

8. Prove that for every integer x , if x is odd then there exists an integer y
such that x2 = 8y + 1.

9. Throughout this question, you may use the fact that any integer can be
expressed as either 3k , 3k + 1 or 3k + 2 for some k ∈ Z.

a) Show that a square can never be two more than a multiple of 3.
Hence, deduce that the number 10 · · · 0︸ ︷︷ ︸

n zeroes

1 is not a square for any n.

b) Show that if n2 is a multiple of 3, then so is n.

c) Show that
√
3 is irrational.

d) Hence, show that 2+5
√
3

1+
√
3

is irrational.

e) At what stage would the proof fail if you would try to prove that
√
4

is irrational?

10. Show that the product of any four consecutive integers is a multiple of
eight.

11. Let x ⩾ 0 be a real number. Show that x < ϵ for any ϵ > 0 if and only if
x = 0.

12. Prove that for all integers a and m, if a and m are the lengths of the sides
of a right-angled triangle and m+1 is the length of the hypotenuse, then
a is an odd integer.

13. Throughout this question, you may assume Bézout’s lemma: that for any
a, b ∈ Z, there exist s, t ∈ Z such that hcf(a, b) = sa + tb.

a) Show that for all non-zero a, b, k ∈ Z, k hcf(a, b) = hcf(ka, kb).

b) Define hcf(a1, . . . , ak) in the obvious way, i.e., as the largest number
d such that d | a1, . . . , and d | ak for all k . Show that hcf(a, b, c) =
hcf(hcf(a, b), c) and that hcf(a, b, c, d) = hcf(hcf(a, b, c), d).
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c) Hence, show that for all integers a and b, if 5 | ab, then 5 | a or
5 | b.

For questions 14 and 15, it may be useful to remember the fact that ax2+bx+c
has rational roots⇔ it can be factorised as (px +q)(rx + s) where p, q, r, s are
integers ⇔ the discriminant ∆ = b2 − 4ac is a square number.

14. Consider the quadratic p(x) = 2x2−5x+a, where a is an integer. Suppose
p can be factorised over the integers (i.e., p has rational roots).

a) Suppose k is an integer. Show that 4k2 − 25 not divisible by 8.

b) Prove that (n + 5)(n − 5) is divisible by 8 if and only if n is odd.

c) Show that a has the form −18(n + 5)(n − 5) where n is odd.

d) Obtain a factorisation of p(x) in terms of n.

15. Let a/b be a rational number different from 1. Show that a/b plus its
reciprocal b/a can never equal an integer.

16. Show that it is possible to have irrationalirrational = rational.

[Hint: consider
√
2
√
2
.]

17. If a, b, c, d are in arithmetic progression, show that
a2 − d2

b2 − c2 = 3.

18. Prove that for all real numbers x and y , x4 + x2y + 4y2 ⩾ 5x2y .

19. Show that, to square a number ending in 5, you can just remove the 5,
multiply the remaining number by one more than itself, and stick 25 on
the end. E.g.,

652 → (6× 7)⌣25 = 4225
4952 → (49× 50)⌣25 = 245025

20. a) (Cauchy–Schwarz Inequality). For any real numbers a, b, x, y , show
that

(ax + by)2 ⩽ (a2 + b2)(x2 + y2).

b) Deduce that that a+b ⩽
√
2
√
a2 + b2. Hence or otherwise, deduce

that for any x, y > 0,√
x

x + y
+

√
y

x + y
⩽
√
2.

Is this bound sharp? (i.e., is there an assignment of x and y for
which we have equality instead of ⩽?)
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Proof by Induction

Induction is a powerful tool we use to prove statements about natural numbers
(0, 1, 2, 3, . . . ), or for discrete structure more generally.

The idea behind it can be understood by considering the so-called domino effect.
Consider an infinite line of dominoes. We wish to prove that all the dominoes will fall,
and we do this as follows:

(1) Prove that the first one will fall.

(2) Prove that for any n, if the nth domino falls, then the (n + 1)st domino falls.

Suppose we manage to prove both (1) and (2). By (1), we know that the first domino
falls. But then by (2), the second one falls also. But now we can use (2) again to
conclude that the third domino falls. And the fourth. And the fifth. This can continue
indefinitely, thus proving that all the dominoes fall.

Let us transfer this to a mathematical context. Suppose we wish to prove that a
statement ϕ(n) is true for every natural number n. We can do this by:

(1) Proving that ϕ(n) is true for the case n = 0, i.e., proving that ϕ(0) is true. This
is called the base case.

(2) Assume that ϕ(n) is true (we call this the inductive hypothesis, IH). Based on
this assumption, prove that ϕ(n + 1) is true. This is called the inductive step.

Example 3.20. Let us prove a very popular formula by induction. The sum of the first
n positive integers:

1 + 2 + · · ·+ n = n
2(n + 1).

Let the formula above be the statement ϕ(n). Clear ϕ(0) is true, because the left-
hand side is

∑0
k=1 k = 0 =

0
2(0 + 1), which equals the right-hand side. So the base

case is done.

Next we assume ϕ(n) is true, i.e. that 1+2+ · · ·+n = n
2(n+1). This is the inductive

hypothesis.

Now can we prove ϕ(n + 1)? We have:

1 + 2 + · · ·+ n + (n + 1) = n
2(n + 1) + (n + 1) (by the IH)

= (n + 1)(n2 + 1)

= n+1
2 (n + 2)

= n+1
2 ((n + 1) + 1),

in other words, we have that ϕ(n + 1) is true! This concludes the proof.

Make sure you understand this proof, in that it achieves both (1) and (2). Understand
why we are allowed to use ϕ(n) in the inductive step.
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Example 3.21. We show that the number 4n + 2 is always divisible by 3.✠ JMJ ✠

Lecture 5
4 Nov 2024 We let ϕ(n)↔ (∃α ∈ N : 4n + 2 = 3α), because this is what it means to be divisible

by 3.

For ϕ(0), we have 40 + 2 = 1 + 2 = 3 = 3(1), so we take α = 1 and this completes
the base case.

Now assume ϕ(n) holds, i.e. 4n + 2 = 3α for some α ∈ N. Can we show ϕ(n + 1)?

4n+1 + 2 = 4(4n) + 2

= 4(4n + 2− 2) + 2
= 4(3α− 2) + 2 (by IH)

= 12α− 8 + 2
= 12α− 6
= 3(4α− 2)
= 3β where β = (4α− 2) ∈ N

i.e. ϕ(n + 1) is true.

Remark 3.22. It’s more common to assume ϕ(n−1) and prove ϕ(n), rather that what
we’ve been doing. This is obviously equivalent, but stylistically it is preferable. Let’s
give an example where we prove things this way.

Example 3.23. How about an example with matrices. If A =
(
3 1
0 2

)
, then the matrix

power An is given by

An =

(
3n 3n − 2n
0 2n

)
.

Proof. By induction on n. For the base case, A0 =
(
1 0
0 1

)
=

(
30 30−20
0 20

)
, so the

statement holds when n = 0. Now when n ⩾ 1,

An = An−1A

=

(
3n−1 3n−1 − 2n−1
0 2n−1

)(
3 1

0 2

)
(by the IH)

=

(
3n−1(3) + 0 3n−1 + 2(3n−1 − 2n−1)

0 2n−1(2)

)

=

(
3n 3n−1 + 2(3n−1)− 2n
0 2k+1

)

=

(
3n 3n−1(1 + 2)− 2n
0 2k+1

)
=

(
3n 3n − 2n
0 2n

)
,

as required.
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Notice that in the last example, we do not explicitly define a predicate ϕ(n), nor do we
actually state the inductive hypothesis. This is typically how one presents an inductive
argument, since the predicate is always simply a copy of the result we wish to prove,
as is the inductive hypothesis (simply with n − 1 instead of n). It suffices to open the
proof with the phrase “by induction on n”, the reader will be familiar with the structure
of the proof.

The general strategy for the inductive step is to try and “break down” the object we
are working with into an analogous object of a “lesser kind”, plus something else which
elevates it to the object under consideration (e.g., the matrix An into An−1A1, or
a sum

∑n
k=1 f (k) into

∑n−1
k=1 f (k) + f (n)). This allows one to apply the inductive

hypothesis. Thus, one deduces that induction would not be very useful when it is very
difficult, or impossible, to relate what ϕ(n− 1) says with what ϕ(n) says. Let us give
an example with series, which emphasises this strategy of breaking the ϕ(n) case down
into the ϕ(n − 1) case “plus other stuff”.

Example 3.24. We prove that
∑2n
k=n k(k + 2) =

n
6(n + 1)(14n + 19).

Proof. For the base case, we have
∑0
k=0 k(k + 2) = 0 =

0
6(0 + 1)(14(0) + 19), so

the statement holds.8 Now when n ⩾ 1,

2n∑
k=n

k(k + 2)

=

2(n−1)∑
k=n−1

k(k + 2)︸ ︷︷ ︸
the ϕ(n − 1) case

−
n−1∑
k=n−1

k(k + 2) +

2(n−1)+2∑
k=2(n−1)+1

k(k + 2)

︸ ︷︷ ︸
“other stuff”

=
n − 1
6

n(14(n − 1) + 19)− (n − 1)(n + 1) + (2n − 1)(2n + 1) + 2n(2n + 2)
(by IH)

=
1

6
(14n3 + 33n2 + 19n) 9

=
n

6
(n + 1)(14n + 19),

as required.
8Sometimes, in cases where the n = 0 feels a bit vacuous, we prove the n = 1 case instead.

Technically, if one does this and excludes the zero case, this proves the result for n ⩾ 1, and not for all
n ∈ N. But it’s fine usually, because the reason we consider n = 1 in the first place is because n = 0
is not interesting. In this case, n = 1 gives

∑2
k=1 k(k + 2) = 1(1 + 2) + 2(2 + 2) = 11 =

1
6
· 2 · 33 =

1
6
(1 + 1)(14 + 19), so the case n = 1 holds. At least it feels like we’ve actually proved something!

9Even though this cubic might seem like a headache to factorise (factor theorem, etc.), remember
that we know what this should equal if the result is true; it should be n

6
(n+1)(14n+19)—so we can

use this fact to make an “educated guess” about the factors.
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Base Cases different from Zero
If we want to prove a statement, not for all natural numbers, but only for all numbers
n greater than or equal to a certain number a, then the proof by induction consists of
the following:

(1) Proving that ϕ(a) is true,

(2) Assuming that ϕ(n − 1) is true for some n > a, prove that ϕ(n) is true.

Example 3.25. Let’s show that 3n < n! for all n ⩾ 7.

Proof. By induction on n. When n = 7, we have 3n = 37 = 2187 < 5040 = 7!, which
establishes the base case.

For n > 7, we have

3n = 3 · 3n−1
IH
< 3 · (n − 1)! < n(n − 1)! = n!,

which completes the proof.

Example 3.26. Suppose Bertu sells imqaret in boxes of 4 or 5 pieces, exclusively. Then
we can buy precisely any whole number N ⩾ 12 of imqaret. (In other words, any
number N ⩾ 12 can be written as a sum of 4’s and 5’s.)

Proof. By induction on N. When N = 12, then N = 4 + 4 + 4, which completes the
base case. Now consider N > 12. If, by the inductive hypothesis, N− 1 has a solution
involving at least one 4, then we can change it to a 5 and the proof is done.

Thus, suppose N−1 is written only using 5’s. Then N−1 is a multiple of 5, so it is at
least 15, thus it contains at least three 5’s. But replacing 5+5+5 with 4+4+4+4
increases the sum by 1.

Strong Induction
In a previous lecture we mentioned that we would prove theorem 3.16 using induction.
This states that any integer n ⩾ 2 is prime, or can be expressed as a product of primes.
Let’s try and prove it now.

Attempted Proof of Theorem 3.16. Clearly 2 is prime, so that completes the base
case.

Now for n > 2, if n is prime, we would be done, so suppose n is not prime, i.e., n has
a divisor d in the range 1 < d < n. Thus we can write n = da for some a ∈ N.

By the IH n − 1 is prime or a product of primes. Now what. . . ? ⊠
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We get stuck here because knowing something about the factorisation of n−1 doesn’t
really help with the factorisation of n. On the other hand, if we could apply the IH to
the numbers a and d , then that might be helpful. Can we do this?

If we go back to the intuition with dominoes, it makes sense that we can. If we make
the following change:

(1) Prove that the first one will fall.

(2) Prove that for any n, if all dominoes before the nth one fall, then the nth
domino falls.

All we’ve done here is said that all the dominoes before the current one fell, as opposed
to just the previous one, which corresponds to the following mathematical formulation:

(1) Proving that ϕ(0) is true (or an appropriate base case),

(2) Assuming that ϕ(k) is true for all k < n, prove that ϕ(n) is true.

Using this new principle, we can finally prove theorem 3.16.

Proof of theorem 3.16. Clearly 2 is prime, so that completes the base case.

Now for n > 2, if n is prime, we would be done, so suppose n is not prime, i.e., n has
a divisor d in the range 1 < d < n. Thus we can write n = da for some a ∈ N.

By the IH, since a and d are both < n, then they are both either prime or a product
of primes. Write a = p1 · · · pr (where r = 1 if a is prime, and r > 1 if it is a
product of primes), and similarly d = q1 · · · qs , where pi , qi are all prime. But then
n = p1 · · · prq1 · · · qs , so we have written n as a product of primes.

Exercise 3.27. 1. Prove the following by induction for all n ⩾ 1.

1 + 22 + · · ·+ n2 = n
6(n + 1)(2n + 1)a)

1 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2b)

For any x ∈ R, x + x2 + · · ·+ xn =
xn+1 − x
x − 1 .c)

n∑
k=1

k2 + k + 1

k2 + k
=
n(n + 2)

n + 1
d)

3n∑
k=3

1

4k2 − 1 =
3n − 2
30n + 5

e)

2. Prove the following by induction.
n∑
k=1

k!

(k − 2)! =
n

3
(n2 − 1)a)

4n∑
k=2n

k2 =
n

3
(2n+ 1)(28n+ 1)b)
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n∏
k=2

(
1−
1

k

)
=
1

n
c) 1 ·1!+ · · ·+n ·n! = (n+1)!−1d)

n∑
k=2

1√
k − 1 +

√
k
=
√
n − 1e)

3. Use induction to show that de Morgan’s laws generalise to any finite
number of sets,

n⋂
k=1

Ak =

n⋃
k=1

Ak and
n⋃
k=1

Ak =

n⋂
k=1

Ak .

4. Let A be a set of n elements. Show, using induction, that

a) A has 2n possible subsets, including ∅.

b) A has n(n − 1)/2 possible subsets of size 2.

5. (A mathematical joke). Since we saw in example 3.20 that

1 + 2 + · · ·+ n =
n
2 ·
n+1
2
1
2

,

we have

sin(1) + sin(2) + · · ·+ sin(n) =
sin

(
n
2

)
· sin

(
n+1
2

)
sin

(
1
2

) .

Proof. Take the sine of everything.

Why is the joke funny? (Or if it didn’t make you laugh, what is wrong
with the “proof”?) Prove that the second statement is actually true by
induction.

6. Prove the following by induction.

7n + 11 is a multiple of 6a) 23n + 43 is a multiple of 11b)
2n+2 + 32n−1 is divisible by 7c) 3n+7n−1+8 is divisible by 12d)
n2 + 5n − 2 is evene) 3n2 + 15n − 15 is oddf)
19 divides 22n+1(3n+2) + 52n+1(2n+2)g)

7. Prove that for n ∈ N,

(1 +
√
5)n + (1−

√
5)n

2n−1

is even.
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8. Bernoulli’s inequality states that for any real number x > −1 and any
positive integer n > 1,

(1 + x)n > 1 + nx.

Prove this result by induction on n.

9. Prove the following by induction.

2n + 4 ⩽ 2n+2a) (2n)! < (2n n!)2b)
1
2(a
n + bn) ⩾ 1

2n (a + b)
nc) 2! · 4! · · · (2n)! ⩾ [(n + 1)!]nd)

10. Show that 1 +
1√
2
+ · · ·+

1√
n
< 2
√
n.

11. Show that for real a, b, c ⩾ 1, we have 4(1+abc) ⩾ (1+a)(1+b)(1+c).
[Hint: Prove more generally that 2n−1

(
1 +

∏n
k=1 ak

)
⩾

∏n
k=1(1 + ak).]

12. Prove, using ordinary induction, that the principle of strong induction
holds.

13. Prove that

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

n 2’s

= 2cos
( π

2n+1

)
.

14. Prove that for all n ⩾ 3, the sum of the interior angles of a regular polygon
with n vertices is 180◦(n − 2).

15. (Powers of 5). Prove that for all n ∈ N, the number 5n can always be
expressed as a sum of two squares.

16. (Catalan Numbers). A sequence of open and closed brackets is said to be
balanced if each open bracket can be matched with a closed bracket. For
example,

((())) ()()() ()(()())(())

are balanced, whereas )(, ())( and (()))(() are not. If we have n pairs
of open/closed brackets, the Catalan number Cn is the number of distinct
balanced arrangements of the 2n brackets. For example, C3 = 5, since
the only possibilities are ()()(), (())(), ()(()), (()()), and ((())).

a) Show that in general, Cn+1 = CnC0 + Cn−1C1 + · · ·+ C0Cn, where
C0 = 1 by convention.

b) (Optional if you don’t know much calculus). Show that Cn is the
coefficient of xn in the Maclaurin series expansion of the function
f (x) = (1−

√
1− 4x)/2. [Hint: Consider

(∑∞
n=0 Cnx

n
)2.]
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Hence, deduce that Cn =
1

n + 1

(
2n

n

)
.

c) Show that Cn is the number of monotonic paths from (0, 0) to (n, n)
in N2 which do not go above the diagonal. A monotonic path is one
which goes only rightwards or upwards.

Here is an illustration for the case n = 4:

These are all such paths from (0, 0) to (4, 4), so C4 = 14.

17. (Pick’s Theorem). Consider the points in the plane with whole number
coordinates (this is called Z2). A simple polygon is a polygon whose edges
do not intersect each other.

Show that the area of a simple polygon with vertices at integer coordinates
is i + 12b − 1, where i is the number of points contained entirely within
the polygon, and b is the number of points that lie on the boundary of
the polygon (i.e., on some edge).

x

y

In the example above, there are i = 15 points inside the polygon, and
b = 8 on the boundary. Thus the area is A = 15 + 12(8)− 1 = 18.
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Discussion: Recursion and the Fibonacci Numbers

A very important result, which goes hand-in-hand with induction, is the idea of✠ JMJ ✠

Lecture 6
11 Nov 2024

definition by recursion. This idea is essential in mathematics and computer
science, the idea of a function “using itself” in a definition.

Let us motivate this with an example, before we state the theorem. Recall that
N! = N · (N − 1) · · · 2 · 1. An alternative way to define this is the following: suppose
we want to find 5!, but we already know what 4! is. How can we use this information?
Well if we already know what 4! is, we can just multiply this by 5 and we get 5!—
in general, we have that N! = N · (N − 1)!. We could use this to define factorial
differently—let fac(N) denote our “newly” defined factorial.

If we define fac(N) = N · fac(N − 1), this almost works. Indeed, if we try to evaluate
5! this way, we do

fac(5) = 5 · fac(4)
= 5 · 4 · fac(3)
= 5 · 4 · 3 · fac(2)
= 5 · 4 · 3 · 2 · fac(1)
= 5 · 4 · 3 · 2 · 1 · fac(0) (∗)
= 5 · 4 · 3 · 2 · 1 · 0 · fac(−1)
...

Something seems to have gone wrong here. The “unrolling” of the fac’s seems to have
worked, because we did get the product 5 · · · 1 appearing, but this will keep on going
forever. We need some mechanism which stops this infinite expansion. If we instead
say fac(0) = 1, then we would actually stop at the line (∗). This is called the base
case. Familiar?

So we define

fac(N) =

{
1 if N = 0

N · fac(N − 1) otherwise.

And this works! Apart from being nicely succinct (without having to use informal
notions such as · · · ), this gives us a way to write an elegant algorithm for computing
N!:

1: function fac(N)
2: if N = 0 then
3: return 1
4: else
5: return N ∗ fac(N − 1)
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But is this always allowed? Can we similarly define a function, say,

f (N) =

{
1 if N = 0

N f (N + 1) otherwise?

Try to work out f (5). It’s not hard to see why this definition is problematic. Thus,
we need to see precisely when we are allowed to do this. Indeed, notice that fac(N)
made use of N, and of the value of fac(N − 1). In other words, in defining f (N), if
we only allow f (N − 1) to appear (and possibly N), then the definition should be fine.

This is what the following theorem guarantees.

Theorem 3.28 (Definition by Recursion). Suppose X is a set, let x ∈ X and let
g : N×X → X be a total function. Then there exists a unique total function f : N→ X

such that

f (N) =

{
x if N = 0

g(N, f (N − 1)) otherwise.

Don’t worry too much about the wording here, we haven’t even rigorously defined the
term “function” yet (although we will in the next lecture), just think of it the way you’re
used to from sixth form. All this theorem is telling us is that we are allowed to have
f (N − 1) appearing in the definition of f (and only that), and this will determine a
unique, valid function from N to X. We will not prove it here, since it is a bit technical
(although not difficult). You probably guessed it, but the proof is by induction!

For N!, the function g : N×N→ N we need to take g(N, t) = Nt.

This theorem can be generalised so that we have any number of base cases.

Theorem 3.29 (General Definition by Recursion). Let X be a set, let x0, . . . , xr ∈ X,
and let g : Xr+1×N→ X be a function. Then there exists a unique function f : N→ X

such that

f (N) =

{
xN if 0 ⩽ N ⩽ r ,

g(f (N − r), f (N − r + 1), . . . , f (N − 2), f (N − 1), N) otherwise.

This looks a bit complicated, so let us give an example to clarify. The Fibonacci se-
quence, named after Leonardo Bonacci of Pisa (1170–1270 A.D.), is defined as follows.

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 otherwise.
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Here we have r = 1 in theorem 3.29 with X = N, so our definition must match the
form

f (N) =


x0 if N = 0

x1 if N = 1

g(f (N − 1), f (N − 2), N) otherwise

if we are allowed to define it. The base cases are clearly compatible. But what about
the last case? Is it a function of the form g(f (N − 2), f (N − 1), N)? Yes! It simply
does not make use of the variable N, but it makes use of “what it’s allowed to”, namely
the values of FN for the previous two natural numbers.

Activity 3.30. Show, using induction, that the nth Fibonacci number is given
by the formula

Fn =
1√
5

(
ϕn −

1

(−ϕ)n
)
,

where ϕ = 1+
√
5

2 is an important number called the Golden Ratio.

Remark 3.31. If you are interested in the formal details of induction and recursion
(and they are very interesting), it turns out you can do induction and recursion on any
set which can be ordered (i.e., a ranked poset), not just the natural numbers. Such
structures include programming languages: you can prove things about programming
languages using induction (e.g. type safety, normalisation, etc.).

But this falls out of the scope of this course. However, if you are interested, for the
mathematical side, I suggest looking at the Recursion Theorem in chapter 3 of [5].
For the computer science side, I suggest investing in a copy of the famous “Wizard
book” ([10]).

Exercise 3.32. 1. Prove the following properties of the Fibonacci sequence
by induction.

Fn < 2
na) Fn ⩾

(
3
2

)n−2
b)

n∑
k=1

(Fk)
2 = FnFn+1c)

n∑
k=1

Fk = Fn+2 − 1d)

Fn−1Fn+1 = Fn
2 + (−1)ne)

2. Suppose you toss a fair coin n times. Show that the probability that you
get at least 2 successive heads is 1− Fn+2/2n.

3. A derangement of 1, 2, . . . , N is an arrangement of the numbers such
that no number i is in the ith position. For example, 4321 and 21534 are
derangements, but 54321 is not, because 3 appears in the 3rd position.

The number of derangements of the numbers 1, . . . , N is denoted by !N.
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a) Explain why

!N =


1 if N = 0

0 if N = 1

(N − 1)[!(N − 1)+!(N − 2)] otherwise,

using combinatorial reasoning.

b) Prove, using induction, that !N = N!( 12! −
1
3! + · · ·+ (−1)

N 1
N!).

c) Deduce that !N ≈ N!/e.

d) 15 people in an office organise a “Secret Santa” for Christmas, where
they each write their names on a piece of paper, place them in a hat,
and subsequently each person picks one from the hat.

If someone gets their own name, they have to do the whole process
again. What is the probability that they have to do the process N
times?

Remark 3.33 (Mathematician vs Programmer). As a mathematician, I don’t worry
too much about computation. But it’s important to realise that even though it is
quite elegant, the following algorithm, which can be inferred from the way we defined
Fibonacci numbers, is quite bad.

1: function fib(N)
2: if N < 2 then
3: return N
4: else
5: return fib(N − 1) + fib(N − 2)

F50

F48

F46

F44

...
...

F45

...
...

F47

F45

...
...

F46

...
...

F49

F47

F45

...
...

F46

...
...

F48

F46

...
...

F47

...
...

Figure 25: Recursive function calls for the Θ(ϕN) Fibonacci algorithm

Notice that when computing, say, F50 using this algorithm, many redundant calls are
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F50

F48F49

F47F48

F46F47

F45F46

F44F45

F43
...

Figure 26: Recursive function calls for the Fibonacci algorithm with caching. The boxed
function calls are efficient since we just need to fetch them from the cache.

being made. For instance, we will wastefully compute F48 twice, and in turn this will
produce two evaluation trees which are identical and needlessly repeat computations.
Similarly we end up working out F47 three times, F46 four times, and so on. Refer to
figure 25.

What we can do is cache the value once it has been computed, so we never work out
a Fibonacci number if it’s already been worked out. Here is the updated algorithm
which does the caching:

1: fibs_done← array full of N zeros
2: function fib(N)
3: if N < 2 then
4: return N
5: else if fibs_done[N] ̸= 0 then
6: return fibs_done[N]
7: else
8: ans← fib(N − 1) + fib(N − 2)
9: fibs_done[N]← ans

10: return ans

This time, we only make a recursive function call once per Fibonacci call! Look at the
two recursive call trees in figures 25 and 26 to get a better understanding.

So as a takeaway from this example, when designing an algorithm, always consider
how you can speed things up by saving previously computed terms. This ties into a
broader principle of algorithm design, known as dynamic programming. I’m sure you’ll
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cover this in some other relevant study-unit.

It’s worth mentioning that in this case, there is actually a simple non-recursive solution
(which actually doesn’t require storing N previous values). The idea is to keep only
the previous two terms, and work iteratively, rather than recursively.

Here it is:
1: function fib(N)
2: previous← 0
3: current← 1
4: for N − 1 times do
5: new← previous+ current
6: previous← current
7: current← new
8: return current

This method is quite natural to formulate, but had we started with it, we would have
deprived ourselves of the exploration of recursion, which wouldn’t have been very fun.
Moreover, there are other algorithms whose recursive formulation is very elegant, and
cannot easily be transformed into an iterative implementation.

Exercise 3.34 (Binomial Coefficients). The number
(
n
k

)
is the number of subsets

of size k , of a set of size n. In other words,(
n

k

)
= #{X ∈ ℘{1, . . . , n} : #X = k}.10

For example,
(
5
3

)
= 10 since there are 10 subsets of {1, 2, 3, 4, 5} with size 3,

#

{
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}

}
= 10.

a) Explain why for n ⩾ 0 and 0 ⩽ k ⩽ n,(
n

k

)
=

{
1 if k = 0 or n = k(

n−1
k−1

)
+
(
n−1
k

)
otherwise.

b) Hence, using a programming language of your choice, write a recursive
function binom(n,k) which computes the number

(
n
k

)
.

10For a finite set A, the notation #A denotes the size or cardinality of A, i.e., how many elements
it contains.
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c) Write a function called pascal(n) which prints on screen Pascal’s triangle
up to row n. Pascal’s triangle is a triangular array where the kth position
in the nth row is

(
n
k

)
.

The output should look like this:(
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
Pascal’s triangle up to row 4

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Desired output of pascal(4)

d) Your program will probably take a very long time to print out pascal(50).
Improve the implementation of binom(n,k) using caching, and try again
to output pascal(50).

e) Show using induction that(
n

k

)
=
n(n − 1)(n − 2) · · · (n − (k − 1))

k!
.

Hence write an iterative implementation of binom(n,k).

f) (The Binomial theorem). Prove that for any x ∈ R and n ∈ N,

(1 + x)n =

n∑
k=0

(
n

k

)
xk .

g) Write a function which takes as input an integer n, and prints on screen
the expansion of (1+x)n. For instance, when n = 10, the function should
output

x^10 + 10x^9 + 45x^8 + 120x^7 + 210x^6 + 252x^5

+ 210x^4 + 120x^3 + 45x^2 + 10x + 1

h) Prove the following relationship between Fibonacci numbers and binomial
coefficients:

Fn+1 =

n/2∑
k=0

(
n − k
k

)
.
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4. Relations and Functions

Relations are one of the most fundamental objects in mathematics and computing,
and a distinguished kind of relation is certainly the most important: the function.

Definition 4.1 (Input-output pair). Given two elements a ∈ A and b ∈ B from the
two sets A and B, the set {{a}, {a, b}} ∈ ℘℘(A ∪ B) is called an input-output pair ,
which we will denote by ⟪a, b⟫. In this case, we call a the input and b the output of
the pair, respectively.

It is a simple exercise in the definition of set equality to verify that input-output pairs
have the property that ⟪a, b⟫ = ⟪c, d⟫ if and only if a = c and b = d . In other words,
unlike sets, input-output pairs satisfy ⟪a, b⟫ ̸= ⟪b, a⟫ unless a = b.

The set of all input-output pairs with inputs in the set A and outputs in the set B will
be denoted by A⋇ B, that is,

A⋇ B ..= {x ∈ ℘℘(A ∪ B) : ∃a ∈ A,∃b ∈ B : x = ⟪a, b⟫}.

Example 4.2. If A = {1, 2, 3} and B = {a, b}, then

A⋇ B = {⟪1, a⟫, ⟪1, b⟫, ⟪2, a⟫, ⟪2, b⟫, ⟪3, a⟫, ⟪3, b⟫}.

Definition 4.3 (Relation). Let A,B be two sets. A (binary) relation from A to B is
any subset R of A⋇B. If ⟪a, b⟫ ∈ R, we say a and b are related by R and write aRb.

Sometimes we use special symbols instead of letters for relations. For example, ⩽ is a
relation from R to R, and x ⩽ y ⇐⇒ ⟪x, y⟫ ∈ ⩽, where ⩽ ⊆ R⋇ R.

Example 4.4. Consider the sets A = {1, . . . , 6} and B = {odd , even, prime}. We can
define the relation ∼ ⊆ A ⋇ B which relates the numbers in A to the words in B
which describe them. For example 1 ∼ odd and 2 ∼ prime, but 4 ≁ prime (that is,
⟪4, prime⟫ /∈ ∼). Visually, we can think of the relation as a subset of all possible
‘arrows’ from elements in the set A to those of the set B (as in figure 27).

1
2
3
4
5
6

odd

even

prime

Figure 27: The relation ∼ ⊆ A⋇ B

Definition 4.5 (Domain and codomain). If R is a relation from the set A to the set
B, then the set A is called the domain of R, which we denote by dom(R), and the set
B is called the codomain of R, which we denote by cod(R).
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Functions
A function is basically a special kind of relation.

Definition 4.6 (Function). A function is a relation f from a set A to a set B such
that

∀a ∈ A,∀b, b′ ∈ B, ⟪a, b⟫ ∈ f ∧ ⟪a, b′⟫ ∈ f =⇒ b = b′.

In words, a function from A to B is a set of input-output pairs such that for any
element a ∈ A in the domain, there is at most one input-output pair ⟪a, b⟫ ∈ f .
(Indeed, the condition is saying that if ⟪a, b⟫ and ⟪a, b′⟫ are both in f , then b and b′

must be the same, so that “two” input-output pairs are actually the same one.)

A B

...
...

Figure 28: A function cannot relate an element in A to more than one in B

If for a ∈ A there exists an input-output pair ⟪a, b⟫ ∈ f , then we write f (a) = b.
Moreover, we interpret the notation ‘f (a)’ alone to stand for the unique b ∈ B to
which a is related by f .

Example 4.7. If we have the sets A = {1, 2, 3, 4, 5}, B = {10, 20, 30, 40} and then
define f = {⟪1, 20⟫, ⟪2, 20⟫, ⟪3, 10⟫, ⟪5, 40⟫}, then f is a function from A to B (see
figure 29). Moreover, f (1) = 20, and f (3) is the value 10. In this case, f (4) does not
exist.

Remark 4.8. The notation f (a) only makes sense for functions. Indeed, the relation ∼
from example 4.4 is not functional, since some elements in A are related to more than
one b ∈ B (and therefore not at most one as in definition 4.6). So for example, since
both 2 ∼ even and 2 ∼ prime, we cannot make sense of f (2), since it could either be
referring to even or prime (where f is representing ∼).

A B

1

2

3

4

5

10

20

30

40

Figure 29: A depiction of the function f : A ⇀ B from example 4.7.
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Another example: recall that a square root of a number x ∈ R is some number y ∈ R
such that y2 = x . Recall also that for x > 0, there are always two possible square
roots of x , one positive, the other negative. By convention, we use the symbol

√
x to

denote the positive root of x . If we do not assume such a convention, and write for
example,

√
4 = ±2 instead, then if we write

√
4 alone, it is not clear which of +2 or

−2 this notation is referring to. This way, x 7→
√
x is a function.

To show that a function f has domain A and codomain B, we sometimes write f in
“full” as f : A ⇀ B (where the arrow is indicative of the phrase “from A to B”). A
function f : A ⇀ B is said to be total if for all a ∈ A, there exists some b ∈ B such
that f (a) = b. In other words, a function f is total if every a in the domain has a

A B

...
...

Figure 30: A total function cannot leave an
element in A unrelated to any element in B

−2
−1
0
1
2
3
4

0
1
2

R R

Figure 31: A visualisation of the square
root function f : R⇀ R where f (x) =

√
x .

pair in f (unlike in the example we just gave, where 4 ∈ A had no input-output pair
in f , see figures 29 and 30). To show that f is a total function with domain A and
codomain B, we denote it by writing f : A → B instead of f : A ⇀ B. If a function
is not total, i.e., if there is at least one a ∈ A with no existing input-output pair in f ,
then we say f is partial .

Definition 4.9 (Domain restriction). Let f : A ⇀ B be a function, and let A′ ⊆ A.
Then we define the function (f ↾ A′) : A′ → B, read f restricted to A′, by

f ↾ A′ ..= {⟪a, b⟫ ∈ f : a ∈ A′},

or equivalently,
(f ↾ A′)(a) ..= f (a)

for a ∈ A′.

Example 4.10. If f : A ⇀ B is the same as in example 4.7, and A′ = {1, 2, 3} ⊆ A,
then f ↾ A = {⟪1, 20⟫, ⟪2, 20⟫, ⟪3, 10⟫} (see figure 32). Similarly, f ↾ {1, 2, 3, 5} = f ,
but f ↾ {1, 2, 3, 5} is total, unlike f , which is partial.
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A′

A B

1
2
3
4
5

10
20
30
40

Figure 32: An example of domain restriction. The blue arrows comprise the function f ↾ A′,
where A′ ⊆ A.
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A. Solutions to Exercises
Exercise 1.21

1. (a), (d), (e), (h), (j), (l) are statements, the rest are not. Notice that (k) is an
instance of the liar’s paradox.

2. a) Knights do not always tell the truth, or equivalently, Knights sometimes lie

b) 1 ⩾ 2

c) My cat cannot fly

d) There are not finitely many primes, or equivalently, There are finitely many
primes

e) Wallace and Gromit didn’t go to the moon, or equivalently, Wallace didn’t
go to the moon or Gromit didn’t go to the moon (or both).

f) Imaginary numbers do exist!

3. ¬pa) p ∧ ¬qb)

p → qc) q → pd)

p → qe) p ↔ qf)

¬p ∧ ¬qg) ¬(p ∧ q)h)

¬p ∨ ¬qi) q → ¬pj)

p ∨ (r ∧ q)k) p → (r ∧ q)l)

¬p ∧ r ∧ qm) r → ¬p → qn)

¬(r ∨ q)→ po) r → ¬p ∧ ¬qp)

r ∧ q ∧ ¬p ∧ ¬sq) r ∨ q → p ∧ ¬sr)

r ∧ q ↔ p ∨ ss) (s → r ∨ p) ∧ (¬s → p ∧ q)t)

4. As mentioned in the question, there are many possible syntax trees for some
of these. Here we give one possible (wrong) one, the right one, and the corre-
sponding expressions with brackets.

a) ϕ ∧ ψ → ϕ

∧

→

ϕψ

ϕ

→

ϕ∧

ψϕ

✗ : ϕ ∧ (ψ → ϕ)

✓: (ϕ ∧ ψ)→ ϕ

✗ ✓
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b) ϕ↔ ¬ψ ∨ ξ
↔

¬

∨

ξψ

ϕ

↔

∨

ξ¬

ψ

ϕ

ϕ↔ (¬(ψ ∨ ξ)) ϕ↔ ((¬ψ) ∨ ξ)

✗ ✓

c) ϕ ∨ ψ ∧ ξ ∧ π → ¬ϕ

[Hint: remember that ∧ is left associative!]

∧

∧

→

¬

ϕ

π

ξ

∨

ψϕ

→

¬

ϕ

∨

∧

π∧

ξψ

ϕ

(ϕ ∨ ψ) ∧ (ξ ∧ (π → (¬ϕ))) (ϕ ∨ ((ψ ∧ ξ) ∧ π))→ (¬ϕ)

✗ ✓

d) ϕ→ ψ → ξ↔ ψ ∧ ϕ→ ξ

∧

→

ξϕ

→

↔

ψξ

→

ψϕ

↔

→

ξ∧

ϕψ

→

→

ξψ

ϕ

((ϕ→ ψ)→ (ξ↔ ψ)) ∧ (ϕ→ ξ) (ϕ→ (ψ → ξ))↔ ((ψ ∧ ϕ)→ ξ)

✗ ✓
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e) ¬ϕ ∨ ψ ↔ ϕ→ ξ

→

ξ¬

∨

↔

ϕψ

ϕ

↔

→

ξϕ

∨

ψ¬

ϕ

(¬(ϕ ∨ (ψ ↔ ϕ)))→ ξ ((¬ϕ) ∨ ψ)↔ (ϕ→ ξ)

✗ ✓

5. a) We consider separate cases. Suppose what B said is true, i.e., that A said
“I am a knave”. But what this translates to is “I am a liar”, which is none
other than the liar’s paradox which we’ve encountered before. Hence what
B said cannot be true, and hence B is a knave. This makes what C said
correct, and hence C is a knight.

b) The answer is the same as part (a), but the reasoning is a bit different.
The first thing to realise is that similar to part (a), B and C must be of
opposite types since they are contradicting each other. So of these two,
one is a knight and the other is a knave. Now, if A were a knight, then
there would be two knights present, and he would not have lied and said
there was only one. On the other hand, if A were a knave, then it would be
true that there is one knight present, but being a knave he could not have
made a true statement. Therefore A could not have said that there was
one knight among them. So B falsely reported A’s statement, and thus B
is a knave and C is a knight.

c) Suppose A were a knave. Then the statement “At least one of us is a knave”
would be false (since knaves make false statements); and hence they would
both be knights. Thus, if A were a knave he would also have to be a knight,
which is impossible. Therefore A is not a knave, he is a knight. Hence his
statement must be true, so at least one of them really is a knave. Since A
is a knight, then B must be the knave. So A is a knight and B is a knave.

d) This problem utilises an (inclusive) “or” statement. With the truth-table
in mind, suppose that A is a knave. If he is a knave, then his statement
is immediately true (since the first part of the or-statement is true) and
therefore he cannot have said it. Hence he must be a knight. Now since
he is a knight, we know that his statement must be true. So at least one
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of these is true: (1) A is a knave, (2) B is a knight. Since possibility (1)
cannot be, then (2) must be correct, and hence A and B are both knights.

e) The only valid conclusion here is that the author of this problem is not a
knight! The fact is that neither a knave nor a knight could have made such
a statement.

f) To begin with, A must be a knave, for if he were a knight, then what he says
must be true and therefore he himself must be a knave, which contradicts
the fact that knights are truthful. Thus his statement is false, meaning
that there is at least one knight among them. Now suppose B were a
knave, then A and B would both be knaves, so C would be a knight (we
have established that there is at least one knight among them). This would
mean that there is exactly one knight among them, hence B’s statement
would be true. We would thus have the impossibility of a knave making a
true statement. Therefore B must be a knight.

So we know that A is a knave, and B is a knight, hence his statement is
true and there is exactly one knight among them. Thus C must also be
a knave. Therefore the solution is that A and C are knaves, and B is a
knight.

6. a) The only days a lion can say “I lied yesterday” are Mondays and Thursdays.
The only day the Unicorn can say “I lied yesterday” are Thursdays and
Sundays. Therefore the only day they can both say it is on Thursday.

b) The lion’s first statement implies that it is a Monday or a Thursday. The
second statement implies that it is not Thursday. Hence it is Monday.

c) On no day of the week is this possible! Only on Mondays and Thursdays
could he make the first statement, only on Wednesdays and Sundays could
he make the second. So there is no day he could say both.

d) This is a very different situation! It illustrates the difference between making
two statements separately and making one which is the conjunction (∧) of
the two. Given the statement a ∧ b, it follows that both a and b are true
separately; buy if a ∧ b is false, it only follows that at least one is false.

Now the only day of the week it could be true that the lion lied yesterday
and will lie again tomorrow is Tuesday (this is the only day which occurs
between the lion’s lying days). So the day that the lion said that couldn’t
be Tuesday, for on Tuesdays the statement is true, but the lion doesn’t
make true statements on Tuesdays. Therefore it is not Tuesday. Therefore
the day must be either Monday or Wednesday.
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Exercise 1.29

1. a) ϕ ψ ( ϕ → ψ ) → ( ψ → ϕ )

T T T T T

T F F T T

F T T F F

F F T T T

b) This one is a tautology.
ϕ ψ ϕ ∧ ψ → ϕ ∨ ψ

T T T T T

T F F T T

F T F T T

F F F T F

c) This one is a contradiction.
ϕ ϕ ∧ ¬ ϕ

T F F

F F T

d) ϕ ψ ξ ϕ ∨ ( ψ ∧ ξ ) → ( ϕ ∨ ψ ) ∧ ξ

T T T T T T T T

T T F T F F T F

T F T T F T T T

T F F T F F T F

F T T T T T T T

F T F F F T T F

F F T F F T F F

F F F F F T F F
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e) ϕ ψ ξ ϕ ∨ ( ψ → ξ ) → ξ

T T T T T T

T T F T F F

T F T T T T

T F F T T F

F T T T T T

F T F F F T

F F T T T T

F F F T T F

f) ϕ ψ ¬ ϕ ∨ ¬ ψ → ϕ ∨ ψ

T T F F F T T

T F F T T T T

F T T T F T T

F F T T T F F

2. You can use the tool https://lc.mt/tt to generate truth tables and check your
answers. Here’s an explanation, together with a “real world” example for (h).
The law of syllogism is saying that if ϕ implies ψ and ψ implies ξ, then ϕ implies
ξ. For instance, if ϕ is “It rains”, ψ is “the grass gets wet” and ξ is “the grass
grows”, then the law of syllogism allows us to deduce, from “If it rains the grass
gets wet” and “If the grass gets wet, then it grows” that “If it rains, the grass
grows”.

3. a) ϕ ⋄ ψ
ϕ ψ ¬ ϕ ∧ ¬ ψ

T T F F F

T F F F T

F T T F F

F F T T T

b) These proofs can either be done via truth-tables, or by applying known
tautologies:

ϕ ⋄ ϕ ↔ ¬ϕ ∧ ¬ϕ ↔ ¬ϕ

(ϕ ⋄ ϕ) ⋄ (ψ ⋄ ψ) ↔ ¬(ϕ ⋄ ϕ) ∧ ¬(ψ ⋄ ψ)
↔ ¬(¬ϕ) ∧ ¬(¬ψ)
↔ ϕ ∧ ψ
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Make sure you understood which law was used for each ↔.

c) We have:

ϕ ∨ ψ ↔ ¬¬(ϕ ∨ ψ)
↔ ¬(¬ϕ ∨ ¬ψ)
↔ ¬(ϕ ⋄ ψ)
↔ (ϕ ⋄ ψ) ⋄ (ϕ ⋄ ψ),

ϕ→ ψ ↔ ¬ϕ ∨ ψ
↔ ¬(¬¬ϕ ∧ ¬ψ)
↔ ¬(¬ϕ ⋄ ψ)
↔ ¬((ϕ ⋄ ϕ) ⋄ ψ)
↔ ((ϕ ⋄ ϕ) ⋄ ψ) ⋄ ((ϕ ⋄ ϕ) ⋄ ψ),

4. a) ϕ⊕ ψ
ϕ ψ ¬ ( ϕ ↔ ψ )

T T F T

T F T F

F T T F

F F F T

b) We use known tautologies (although doing a truth-table and comparing
with 4(a) is fine too).

(ϕ⊕ ψ) ↔ ¬(ϕ ↔ ψ)

↔ ¬((ϕ→ ψ) ∧ (ψ → ϕ))

↔ ¬((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ))
↔ ¬(¬ϕ ∨ ψ) ∨ ¬(¬ψ ∨ ϕ)
↔ (¬¬ϕ ∧ ¬ψ) ∨ (¬¬ψ ∧ ¬ϕ)
↔ (ϕ ∧ ¬ψ) ∨ (ψ ∧ ¬ϕ)
↔ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)

c) The sum is A⊕ B, the carry is A ∧ B. The circuit behaves as desired:
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A B A⊕ B A ∧ B
T T F T

F T T F

T F T F

T T F F

Substituting T with 1 and F with 0, we get precisely the table for binary
addition.

d) S(A,B, Cin) ↔ (A⊕ B)⊕ Cin
C(A,B, Cin) ↔ (A ∧ B) ∨ ((A⊕ B) ∧ Cin)

The circuit behaves as desired:

S(A,B, Cin) C(A,B, Cin)

A B Cin (A ⊕ B) ⊕ Cin (A ∧ B) ∨ ((A ⊕ B) ∧ Cin)

T T T F T T T F F

T T F F F T T F F

T F T T F F T T T

T F F T T F F T F

F T T T F F T T T

F T F T T F F T F

F F T F T F F F F

F F F F F F F F F

Substituting T with 1 and F with 0, we get precisely the table for binary
addition of three variables.

e) X1 = S(A1, B1, 0)
X2 = S(A2, B2, C(A1, B1, 0))

X3 = S(A3, B3, C(A2, B2, C(A1, B1, 0)))

X4 = S(A4, B4, C(A3, B3, C(A2, B2, C(A1, B1, 0))))

Suppose the digits of 6 + 7 have binary representation X4X3X2X1. Using
the formulæ above with A4A3A2A1 = 0110 and B4B3B2B1 = 0111, we
have:

X1 = S(A1, B1, 0)

= S(0, 1, 0) = 1

X2 = S(A2, B2, C(A1, B1, 0))

= S(1, 1, C(0, 1, 0))
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= S(1, 1, 0) = 0

X3 = S(A3, B3, C(A2, B2, C(A1, B1, 0)))

= S(1, 1, C(1, 1, C(0, 1, 0)))

= S(1, 1, C(1, 1, 0))

= S(1, 1, 1) = 1

X4 = S(A4, B4, C(A3, B3, C(A2, B2, C(A1, B1, 0))))

= S(0, 0, C(1, 1, C(1, 1, C(0, 1, 0))))

= S(0, 0, C(1, 1, C(1, 1, 0)))

= S(0, 0, C(1, 1, 1))

= S(0, 0, 1) = 1

Therefore 6 + 7 = X4X3X2X1 = 1101, which represents 13 in binary.

Exercise 2.3
1. truea) false (⊆, not ∈)b) truec)

falsed) falsee) truef)

falseg) trueh) false (∈ not ⊆)i)

false (2 ∈ [−1, 2] but 2 /∈ [−2, 2))j) truek)

Exercise 2.5
1. {. . . ,−7,−3, 1, 5, 9, 13, . . . }a) {. . . ,−16,−9,−2, 5, 12, 19, . . . }b)

{0, 1, 4, 9, 16, 25, 36, . . . }c) {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}d)

{0, 1, 2, 3, 4}e) {−
√
5,
√
5}f)

{} = ∅g) {−2,−
√
3,
√
3, 2}h)

{1, 12 ,
1
3 ,
1
4 ,
1
5 ,
1
6 , . . . }i)


. . . , (0,−1), (0, 0), (0, 1), (0, 2), . . .
. . . , (1,−1), (1, 0), (1, 1), (1, 2), . . .
. . . , (2,−1), (2, 0), (2, 1), (2, 2), . . .

...

j)

k) {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } = Z
Explanation: Suppose X, Y ∈ Z. If we can find two integers a1 and b1 such
that Xa1 + Y b1 = 1, then Xa + Y b takes on all values of Z for different
a, b ∈ Z.

Indeed, suppose we want Xa+Y b to be equal to some n ∈ Z of our choice.
Then we plug in a = a1n and b = b1n, since this gives X(a1n) + Y (b1n) =
Xa1n + Y b1n = n(Xa1 + Y b1) = n(1) = n.
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So all we need to do here is show that we can find a1, b1 ∈ Z such that
5a1 + 2b2 = 1 (which shouldn’t be hard).

l) {{0}, {1, 0}, {1}, {2, 0}, {2, 1}, {3, 0}, . . . }
Note that {0, 0} = {0}, since we don’t care about repetition in sets.

2. There are various different ways one can express the same set using set compre-
hension. Here only one way is given.

{n ∈ N : 10 ⩽ n ⩽ 16}a) {2n + 3 : n ∈ N and n ⩽ 5}b)

{2n : n ∈ N and n ⩾ 1}c) {m2 : m = 2n + 1 and n ∈ N}d)

{7n : n ∈ Z}e) {2n : n ∈ Z}f)

{4n + 3 : n ∈ Z}g) {{m ∈ N : m ⩽ n} : n ∈ Z}h)

{πn3 : n ∈ Z}i) {m ∈ N : m/4 /∈ N}j)

k) {109 (1− 10
−n) : n ∈ N}

Explanation: 10n is the number 1 followed by n zeros. Subtracting 1, we
get 10n − 1 which is then the number made up of n nines. Dividing this
number by 9 to get 19(10

n − 1), we obtain the number made up of n ones.
Now for this number to be in our set, we want a decimal point to appear
after the first digit. Thus we must divide by 10, n − 1 times, to get the
number 1

10n−1 ×
1
9(10

n − 1), which simplifies to 109 (1− 10
−n).

l) This one is quite hard, here is the solution:

{x : for all sets H, if 3 ∈ H and for every z ∈ H we have

{z} ∈ H, then x ∈ H}.

In logical symbols,

{x : ∀H((3 ∈ y ∧ ∀z(z ∈ H → {z} ∈ H))→ x ∈ H)}.

Let’s break it down. Let’s say a set H is “3-hungry” if it contains 3, and if
for each z ∈ H, we have {z} ∈ H too. Since a 3-hungry set contains 3,
it will therefore contain {3}, and consequently also {{3}}, and so on. So
any 3-hungry set will be a superset of the set we want to express (let’s call
it T ). Now define

S = {x : x is in every 3-hungry set}.

Clearly T is 3-hungry by definition, so S ⊆ T . But also every element of T
is contained in every 3-hungry set, so T ⊆ S. Thus S = T , and notice that
S is the same set which we have defined above (with less scary notation).
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Exercise 2.18
1. {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14}a) {2, 4, 6, 8}b)

{2, 3, 4, 6, 8, 9, 10, 12, 14}c) {1, 4, 5, 7, 8}d)

{2, 6}e) {10, 12, 14}f)

{1, 3, 5, 7}g) {2, 3, 6}h)

{3, 9}i) {2, 3, 4, 6, 8, 9}j)

{1, 3, 4, 5, 7, 8, 9, 10, 12, 14}k) {∅, {2}, {3}, {6}, {2, 3}, {2, 6},
{3, 6}, {2, 3, 6}}

l)

2. {1, 2, 3, 4, 6, 7, 12}a) {1, 2}b)

{1, 2, 3, 6, 12}c) ∅d)

{1, 2, 4, 7}e) {1, 2}f)

{1, 2}g)

3. A

A

a) B ∖ A

B ∖ AA

b) F = (A∖ B) ∩ C

A B

C

F

c)

in the set not in the set

(A ∪ B)∖ C

C

(A ∪ B)∖ C

d) A ∪ (B ∩ C)

B

C

A ∪ (B ∩ C)

e) F = (A∪B)∩(A∪C)

B

C

F

f)

F = A ∩ (B ∪ C)

A B

C

F

g) F = (A∩B)∪(A∩C)

A B

C

F

h) Clearly from the Venn
Diagrams, we get that
they are the same.

i)

Clearly from the Venn Diagrams, we get that they are the same.j)
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Throughout questions 4–6, you may use the tool https://lc.mt/tt to generate truth
tables and check your answers. Make sure you know how to translate a statements
about sets into the appropriate proposition, as in worked example 2.15 for instance.

Exercise 2.29
1. a) A proposition is decidedly either true or false, and doesn’t have any variables.

On the other hand, the truth-value of a predicate may depend on variables
which occur within it. We may apply the quantifiers ∀, ∃ to predicates which
specify the values which the variables in the predicate may take on. If all
the variables of a predicate are quantified, then it becomes a proposition
(since all variables are accounted for). In this case, we say there are no free
variables.

For example, consider the predicate ϕ(x, y) defined by “x or y is an even
number”. Then

∀x ∈ N, ϕ(x, y)↔
∧
x∈N

ϕ(x, y)

↔ ϕ(1, y) ∧ ϕ(2, y) ∧ · · ·

is a predicate but not a proposition, since even though we have quantified
x (we said x ∈ N), we still haven’t specified the values of y , thus y is a
free variable in the predicate. But if we consider

∀x ∈ N,∀y ∈ N, ϕ(x, y)

↔
∧
x∈N

∧
y∈N

ϕ(x, y)

↔ (ϕ(1, 1) ∧ ϕ(1, 2) ∧ ϕ(1, 3) ∧ · · · )
∧ (ϕ(2, 1) ∧ ϕ(2, 2) ∧ ϕ(2, 3) ∧ · · · )
∧ (ϕ(3, 1) ∧ ϕ(3, 2) ∧ ϕ(3, 3) ∧ · · · )

∧ · · ·

this is a predicate containing infinitely many ∧’s just as before, but we
know what all of them are, without any variables appearing. Thus it is also
a proposition—in fact, we can say that it is false. Since we have ∧’s, if
at least one of them is false, then the whole proposition is false. Indeed,
ϕ(1, 1) is false, so the whole proposition is false.

b) The first predicate says that the m may be different for different values of
n, the second says that m is fixed and works for all n. The first one is true,
the second one is false.

c) Note that ∀n ∈ {n ∈ N : n ⩽ 5}, ϕ(n) is a proposition, because it is
a predicate whose variables are all quantified. Thus we may write it out
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explicitly as

ϕ(1) ∧ ϕ(2) ∧ ϕ(3) ∧ ϕ(4) ∧ ϕ(5)
↔ (2 ⩽ 30) ∧ (6 ⩽ 30) ∧ (12 ⩽ 30) ∧ (20 ⩽ 30) ∧ (30 ⩽ 30),

thus we see that the proposition is true.

2. a) ∃ x > 1 : x2 ⩽ x

b) ∀x, y > 0, x + y ⩾ 2√xy

c) ∃ a ∈ N : ∀b ∈ N, a2 ̸= b

d) ∃ n ∈ N : ∀a, b, c, d ∈ N, n ̸= a2 + b2 + c2 + d2

e) ∃a, b, c ∈ R : ∀x1, x2 ∈ R, 0 ̸= ax12 + bx1 + c ̸= ax22 + bx2 + c ̸= 0.

Note that ¬(a = b = c)↔ a ̸= b ̸= c ̸= a. Why do you think we need the
extra ̸= a at the end?

f) ∃ ϵ > 0 : ∀N ∈ N,∃n ⩾ N : a − ϵ ⩾ an ∨ an ⩾ a + ϵ

g) ∃ ϵ > 0 : ∀δ > 0, |x − x0| < δ ∧ |f (x)− f (x0)| ⩾ ϵ

h) ∀x ∈ A,∃ y ∈ B : ∀z ∈ C, x + y + z ̸= 3 3√xyz

Hints for Exercise 3.19
1. The proofs here should be similar to example theorem 3.5, except for (c) which

is easiest to do by contrapositive, as is the reverse direction of (d), similar to
lemma 3.9.

2. Straightforward direct proof.

3. This should be quite similar to examples 3.1(ii), either method should work. For
a direct proof, rewrite the LHS as 1

xy ((x − y)
2 + 4xy).

4. Use the contrapositive.

5. Straightforward direct proof.

6. Contradiction or contrapositive both work. For contradiction, show that if 3
√
x

is rational (i.e., not irrational), then you can express x as a rational number too.

7. Use the fact that every integer is either odd or even, and consider both cases for
k separately.

8. Direct proof: if x is odd, then x2 is (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1
for some k , and k(k + 1) is even by the previous problem, so we can write it as
2y and get 4(2y) + 1 = 8y + 1.
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9. a) Consider the three cases separately, square them and see that the squares
are of the form 3k or 3k + 1 (but never 3k + 2).

Also, 10 · · · 01 = 9 · · · 9+2 = 3(3 · · · 3)+2, which is 2 more than a multiple
of 3, so it cannot be a square.

b) Basically identical to lemma 3.9.

c) Identical to the proof that
√
2 is irrational.

d) By contrapositive or contradiction, you can show that if the given number
is rational, it implies that

√
3 is rational: 2+5

√
3

1+
√
3
= a
b =⇒

√
3 = 2b−a

a−5b .

e) It fails because we cannot have an analogue of lemma 3.9, i.e., it’s not
always true that if n2 is a multiple of 4, then n is (e.g., if n = 6, then
n2 = 36 is a multiple of 4, but n = 6 isn’t).

10. Among four consecutive integers, precisely one of them is a multiple of four, and
another one of them is even.

For a more rigorous argument, write a − 1, a, a + 1, a + 2. If a is even (say
a = 2k), then this product is 4k(k + 1)(2k + 1)(2k − 1). Moreover, one of k
and k + 1 must be even. Proceed similarly in the case that a is odd.

11. The ⇒ direction is by contradiction. If x < ϵ for any ϵ > 0, and x ̸= 0, then it
follows that x > 0. So in particular we can take ϵ = x , and we get that x < x ,
which is nonsense. The ⇐ direction is obvious.

12. By Pythagoras’ theorem, we have (m + 1)2 = m2 + a2, which becomes a2 =
2m + 1, so a2 is odd, which implies that a is odd (this part can be proven
identically to lemma 3.9).

13. a) Reason about the hcf from its definition. Bézout’s lemma is important
here.

b) Similar advice to (a).

c) Proceed by contradiction: suppose 5 | ab, and that 5 ∤ a and 5 ∤ b. This
implies that hcf(5, a) = hcf(5, b) = 1, and use (a) and (b) to show that
hcf(5, ab) = hcf(5, a) hcf(5, b) = 1, which contradicts that ab is divisible
by 5.

14. a) Observe that 4k2 − 25 = 2(2k2 − 13) + 1, i.e., it is an odd number, so it
cannot be divisible by 8.

b) If n is odd, we can write it as 2k + 1 for some k . Plug this in to (n +
5)(n − 5) and expand, the result should be clearly divisible by 8 (show this
by factorising 8 out of it, and recall that k(k + 1) is even).
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For the converse, show that if n is even (i.e., put n = 2k) we end up with
something not divisible by 8 (part (a) should help here).

c) By standard facts about quadratic equations, this happens if and only if the
discriminant ∆ = n2 for some n. If we work out ∆, we get 25− 8a. If this
equals n2, we get a = −(n + 5)(n − 5)/8.

d) Staring at 2x2 − 5x − 18(n + 5)(n − 5) =
1
8(16x

2 − 40x + (5 + n)(5− n))
for long enough, we see it factorises as 18(4x − 5 + n)(4x − 5− n).

15. If ab +
b
a =

a2+b2

ab = k , then a2 − kab + b2 = 0. This is a quadratic in a, with
discriminant ∆ = b2(k2 − 4). Clearly we want ∆ to be a square since a must be
an integer (hence a rational root). ∆ is a square if and only if k2−4 is a square.

Say k2− 4 = ℓ2. This rearranges to (k − ℓ)(k + ℓ) = 4. This can only happen if
k − ℓ = 1 and k + ℓ = 4, or k − ℓ = 4 and k + ℓ = 1, or else k − ℓ = k + ℓ = 2.
The first two cannot happen since k and ℓ are to be integers. The last one
implies that k = 2, in other words, that the quadratic only has rational solutions
for a if it is a2 − 2ab + b2 = 0. But this means (a − b)2 = 0, i.e., a = b, and
the question states that a/b ̸= 1.

16. We don’t know if x =
√
2
√
2

is rational or irrational. If it is rational, then
the proof is done. If it is not, then we know y =

√
2 is irrational, and that

xy =
(√
2
√
2)√2

=
√
2
√
2·
√
2
=
√
2
2
= 2, which is rational.

17. If a, b, c, d are in arithmetic progression with common difference δ, then a2−d2 =
(a+ d)(a− d) = (2a+3δ)(3δ) and b2− c2 = (b+ c)(b− d) = (2a+3δ)δ, and
dividing completes the proof.

18. Similar to examples 3.1(ii), but this time it involves (x2 − 2y)2.

19. Direct proof: if a number ends in 5, then we can write it as 10a + 5, where a
is the number without the 5 on the end. Then (10a + 5)2 = 100a(a + 1) + 25,
which is precisely a(a + 1) with a 25 added to the end.

20. a) A direct proof: If we expand (a2 + b2)(x2 + y2) − (ax + by)2, we get
b2x2 − 2abxy + a2y2, which equals (bx − ay)2 and is ⩾ 0.

b) Square rooting both sides (we can do this because both sides of the in-
equality are clearly positive), we get |ax + by | ⩽

√
a2 + b2

√
x2 + y2. We

can get rid of the | · | since if ax + by ⩾ 0, |ax + by | = ax + by , whereas
if ax + by < 0, the statement of the inequality with the | · | removed is
obviously true. Thus we have ax + by ⩽

√
a2 + b2

√
x2 + y2.

Plugging in x = y = 1 gives us the first desired inequality.

For the second part, we divide both sides of the previous inequality by
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√
a2 + b2 to get

a√
a2 + b2

+
b√

a2 + b2
⩽
√
2,

and letting a =
√
x and b =

√
y (we can do this because x and y are

positive), we get the second desired inequality.

It is sharp, since we get equality when we plug in x = y = 1.

Hints for Exercise 3.27
Most of the hint here are on how to deal with the inductive step, since the base case(s)
are almost always straightforward, but always remember that the base case(s) are an
essential part of the proof!

1. a) For the inductive step, notice that 12+ · · ·+n2 = 12+ · · ·+(n−1)2+n2 =
n−1
6 n(2(n − 1) + 1) + n

2 by IH, and simplify.

b) Similar.

c) Similar, this time we have x
n−x
x−1 + x

n.

d) Similar, in Σ-notation we have
∑n−1
k=1

k2+k+1
k2+k

+ n
2+n+1
n2+n

= (n−1)(n+1)
n , and

simplify.

e) Notice that in general,
∑3n
3 =

∑3(n−1)
3 +

∑3n
3(n−1)+1, so the inductive

step is
∑3(n−1)
k=3

1
4k2−1 +

∑3n
k=3(n−1)+1 =

3(n−1)−2
30(n−1)+5 +

1
4k2−1 +

1
4(3n−2)2−1 +

1
4(3n−1)2−1 +

1
4(3n)2−1 , and simplify.

2. a) One can simplify the statement itself by noticing that k!/(k−2)! = k(k+1).
The proof is similar to the problems from 1.

b) This one is a bit more complicated but not that much, making an obser-
vation similar to that in 1(e), we use the fact that a sum like

∑4n
2n can be

broken into
∑4(n−1)
2(n−1)−

∑2n−1
2(n−1)+

∑4n
4(n−1)+1.

c–e) Straightforward (remember
∏

is to × as
∑

is to +).

3. Straightforward, use de Morgan’s law on two sets as the base case, and the fact
that

⋂n
k=1 Ak =

(⋂n−1
k=1 Ak

)
∩ An; similarly for

⋃
.

4. a) To go to the n− 1 case, simply remove an element x from A, and apply IH
to A ∖ {x}. Then observe that ℘A is precisely ℘(A ∖ {x}), together with
an exact copy of these sets with x added to each one.

b) A similar idea to the above will work, this time being careful with the sizes.
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5. This is what mathematicians’ sense of humour is like. Obviously this is wrong
because sin(A+B) ̸= sinA+ sinB in general, and similarly the sine of the RHS
is not the sine of each term in the fraction.

The proof involves some trigonometric booklet formulæ in the inductive step.

6. a) Hint: 7n + 11 = 7(7n−1 + 11 − 11) + 11 = 7(7n−1 + 11) − 66, and apply
IH.

b) Similar.

c) Similar, a bit harder: 2n+2+32n−1 = 2(2(n−1)+2+32(n−1)−1−32(n−1)−1)+
32(32(n−1)−1) = 2(2(n−1)+2 + 32(n−1)−1) + 7(32n−3), and apply IH.

d) This one is harder, the same idea works but the proof requires multiple
applications of it.

e) Easier! Just notice that n2 + 5n − 2 = (n − 1)2 + 5(n − 1) − 2 + 2n + 4
and apply IH.

f) Similar idea works here.

g) Same idea as before works, keep at it.

7. Hint: αn + βn = (α+ β)(αn−1 + βn−1)− αβ(αn−2 + βn−2).

8. Quite easy, just note that (1+x)n = (1+x)(1+x)n−1
IH
> (1+x)(1+(n−1)x) =

1 + nx + (n − 1)x2 ⩾ 1 + nx .

9. a) Hint: 2n + 4 = 2(n − 1) + 4 + 2 ⩽ 2n+1 + 2 ⩽ 2n+1 + 2n+1 = 2n+2

b) Hint: (2n)! = 2n(2n − 1)(2(n − 1))! < 2n(2n − 1)(2n−1(n − 1)!)2 <
(2n)2(2n−1(n − 1)!)2 = (2nn!)2.

c) Same hint as question 7.

d) Hint: (2n)! = (2n)(2n − 1) · · · (n + 2)(n + 1)! > (n + 1)(n + 1) · · · (n +
1)(n + 1)! = (n + 1)n(n + 1)!.

10. After applying IH, we need to show that 2
√
n − 1+ 1√

n
< 2
√
n. This is equivalent

to 2
√
n − 2

√
n − 1 > 1√

n
, which is true since

2
√
n − 2

√
n − 1 =

2
√
n +
√
n − 1

>
2√

n +
√
n
=
1√
n
.

11. The inductive step is essentially as follows:

2n−1
(
1 +

n∏
k=1

ak

)
= 2an2

n−2
(
1 +

n−1∏
k=1

ak

)
− 2n−1(an − 1)
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IH
⩾ (an + an)

n−1∏
k=1

(1 + ak) ⩾
n∏
k=1

(1 + ak).

12. What we need to prove here is that if

(i) ϕ(0) is true, and

(ii) ∀n ∈ N, (∀m < n,ϕ(m))→ ϕ(n),

then ∀n ∈ N, ϕ(n). If we let ψ(n) ↔ (∀m ⩽ n, ϕ(m)), then notice that ψ(n)
implies ϕ(n), so if we show ∀n ∈ N, ψ(n), then the proof will be complete. The
base case ψ(0) is equivalent to ϕ(0), which is true by (i).

For the inductive step, the IH ψ(n − 1) combined with (ii) allows us to deduce
ψ(n). This completes the proof by ordinary (weak) induction.

13. This one is quite easy actually, since the standard (booklet) trigonometric iden-
tity cos(2A) = 2 cos2 A− 1 implies that 2 cosA = ±

√
2 + 2 cos(2A), and since

in our case, A ⩽ π
2 , then it is surely the positive root.

14. Hint: split the regular n-sided polygon into a triangle plus a polygon on n − 1
sides.

15. 5n = 5 · 5n−1 IH
= (4+1)(a2+ b2) = a2+ b2+4a2+4b2 = a2+4ab+4b2+ b2−

4ab + 4a2 = (a + 2b)2 + (a − 2b)2.

16. a) If we are considering 2(n+1) brackets, then suppose 2(k+1) is the position
of the closing bracket of the first bracket. Then the sequence splits into
two, and looks something like this:

( . . .︸ ︷︷ ︸
length 2k

)
↑

2(k + 1)

. . .︸ ︷︷ ︸
length 2(n − k)

There are CkCn−k possibilities to fill in the gaps, and summing over the
possible values of k gives the required relation.

b) If f (x) =
∑∞
n=0 Cnx

n, then(
f (x)

)2
= (C0 + C1x + C2x

2 + · · · )2

= C0C0 + (C1C0 + C0C1)x + (C2C0 + C1C1 + C0C2)x
2 + · · ·

= C1 + C2x + C3x
2 + · · ·

=⇒ C0 + x(f (x))
2 = C0 + C1x + C2x

2 + · · · = f (x),
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so 1 + xf (x)2 = f (x), which we can solve for f (x) to obtain the desired
function. Then, use the binomial theorem on the previous result to get that

f (x) =

∞∑
n=0

(
1/2

n + 1

)
(−4)n+1xn

2
,

and extract the coefficient of xn from this.

c) This is straightforward, → corresponds to ‘(’ and ↑ to ‘)’.

17. This is by induction on the number of sides of the polygon, with a triangle as
the base case. This is one of the few examples where the base case is the tricky
part!

Let’s first consider the case where the triangle has two of its sides parallel to the
x- and y -axes, respectively, such as the three triangles below.

The area of such triangles is precisely half the area of the rectangles obtained
when “doubling” them:

In general, if such a rectangle has base m units and height n units, then it has
i = (m − 1)(n − 1) and b = 2(m + n). Using the fact that it has area A = mn,
combining the equations allows us to express A = i + 1

2b − 1. Thus Pick’s
theorem holds for rectangles when their sides are parallel to the coordinate axes.

Now to go to the triangles, let m be the length of the side parallel to the x-axis,
and n be the length of the side parallel to the y -axis. Then, for the triangle,
b◺ = m+n+ℓ−1, where ℓ is the number of points on the slanted side (including
both corner points). When the triangle is “doubled”, we get a rectangle with
b▭ = 2m + 2n boundary points, and i▭ = 2i◺ + ℓ− 2 interior points. Thus,

A◺ =
1
2A▭ =

1
2

(
i▭ +

1
2b▭ − 1

)
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= 1
2(2i◺ + ℓ− 2 +m + n − 1)

= 1
2(2i◺ + b◺ − 2) = i◺ + 12b◺ − 1,

which proves Pick’s theorem for these kinds of triangles.

Finally, to go to more general triangles, notice that the area of any triangle can
be expressed as the difference of the area of a rectangle and three rectangles of
the previous kind by “enclosing” it as in the following example.

If the area of our desired triangle is A△, the area of the enclosing rectangle is
A▭, and the three triangles around our desired triangle have areas A1, A2 and
A3 respectively, then we have

A△ = A▭− A1 − A2 − A3,

where we know that Pick’s theorem can be applied to calculate each area on the
right-hand side of the equation.

Thus all you have to do is argue, similar to the way I did above above, that

b▭ = b1 + b2 + b3 − b△ and i▭ = i1 + i2 + i3 + i◺ + b1 + b2 + b3 − b▭ − 3,

and consequently use these equations to prove Pick’s theorem for any triangle.

Now for the inductive step, if the number of sides is > 3, then there are a pair of
vertices of the polygon which we can join by a line that lies completely within the
polygon, splitting it into two smaller polygons. We will prove this in a moment,
but assuming that it is true, then by the IH we can apply Pick’s theorem to these
two smaller polygons, obtaining

A = i1 +
1
2b1 − 1 + i2 +

1
2b2 − 1.

Obtain a relationship between i and b of the large polygon and the corresponding
numbers for the two smaller polygons, and deduce that A = i+ 12b−1, completing
the proof.

Finally, to see that this dividing line always exists, pick a vertex of the polygon
where the interior angle is smaller than 180◦. Call it B, so that its neighbouring
vertices are A and C, and the interior angle is AB̂C. Then there are two cases,
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either the line segment AC is completely in the polygon, in which case we are
done.

C

B

A

Q

R

S

T

If not, then the polygon might look like something above, where we cannot join
A to C while staying inside. In this case, draw the angle bisector of AB̂C, and
connect each vertex of the polygon to it by a perpendicular line.

C

B

A

Q

R

S

T

Then as we walk along the bisector, starting from B, the first perpendicular
we come across will correspond to a point which we can join to B so that
the line joining them lies completely inside the polygon. If not, it has to cross
another edge of the polygon, and one of the vertices of that edge would have a
perpendicular closer to B.

This finally completes the proof. Notice also that the point chosen (S in this
case) is not necessarily the point closest to B (which in fact is T in this case).

Hints for Exercise 3.32
Note that any induction proofs involving Fn requires two base cases since we go back
two steps in the inductive step.

1. a) Hint: Fn = Fn−1 + Fn−2
IH
< 2n−1 + 2n−2 < 2n−1 + 2n−1 = 2n.
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b) Hint: Fn = Fn−1 + Fn−2 ⩾
(
3
2

)n−3
+

(
3
2

)n−4
= 5
2

(
3
2

)n−4
> 9
4(
3
2

)n−4
=

(32
)n−2

c) Hint: FnFn+1 = Fn(Fn + Fn−1) = F 2n + FnFn−1
IH
= F 2n +

∑n−1
k=1(Fk)

2.

d) Hint:
∑n
k=1 Fk

IH
= Fn+1 + Fn − 1 = Fn+2 − 1.

e) Hint: Fn−1Fn+1 = Fn−1(Fn−1+Fn) = F 2n−1+Fn−1Fn
IH
= Fn−2Fn−(−1)n−1+

Fn−1Fn = Fn(Fn−2 + Fn−1) + (−1)n = F 2n + (−1)n

2. Let F (n) denote the number of sequences of the letters in {H,T} of length n,
having no two successive H’s. Clearly we have F (1) = 2 and F (2) = 3.

Now to build a sequence of length n with no successive H’s, you can start from
one of length n − 1 and add a T on the end, or else start from one of length
n − 2 and add an HT to the end. It follows that

F (n) = F (n − 1) + F (n − 2),

and since F (1) = 2 = F3 and F (2) = 3 = F4, it follows that F (n) = Fn+2.

Now we are interested in sequences which do contain at least one pair of succes-
sive H’s, this is simply the remaining ones, i.e., there are 2n − Fn+2 in number.

Hence, the probability is (2n − Fn+2)/2n.

3. a) Hint: https://en.wikipedia.org/wiki/Derangement#Counting_derangements

b) Straightforward.

c) Observe that N!/e = N!e−1 = N!
∑∞
n=0(−1)n/n! ≈ N!

∑N
n=0(−1)n/n!.

d) !15/15! ≈ 1/e.

Hints for Exercise 3.34
a) If k = 0, then there is only ∅, and if n = k , then the only subset is the whole

set.

Otherwise, observe that any subset of size k of {1, . . . , n} either contain n, or
not. If it doesn’t, then it’s just a subset of {1, . . . , n − 1}, there are precisely(
n−1
k

)
of those. If it does, then it corresponds precisely to a (k − 1)-subset of

{1, . . . , n− 1}, with n added to it. There are therefore precisely
(
n−1
k−1

)
of these.

Therefore,
(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
.

b) In Python, the program would look something like this.

def binom(n,k):

if k==0 or n==k:
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return 1

else:

return binom(n-1,k-1) + binom(n-1,k)

c) Again in Python, something like:

def pascal(N):

for n in range (0,N+1):

for k in range(0,n+1):

print(binom(n,k), end='\t')

print()

d) This should print pascal(50) in under a second.

cached_binoms = {}

def binom(n,k):

global cached_binoms

if k==0 or n==k:

return 1

elif (n,k) in cached_binoms:

return cached_binoms[(n,k)]

else:

ans = binom(n-1,k-1) + binom(n-1,k)

cached_binoms[(n,k)] = ans

return ans

e) Use the recurrence from (a). The implementation might look something like:

def binom(n,k):

ans = 1

for i in range(k):

ans *= n-i

for i in range(k):

ans //= i+1

return ans

f) By induction, straightforward, plus the recurrence from (a).

g) def expansion(n):

if n>1:

print(f'x^{n} + ',end='')

for k in range(n-1,1,-1):

print(f'{binom(n,k)}x^{k} + ',end='')

print(f'{n}x + ',end='')

print('1')
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h) Hint: Start with the sum, and use the binomial recurrence from (a), i.e.,
(
n−k
k

)
=(

n−1−k
k

)
+
(
n−1−k
k−1

)
.
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A⋇ B, 62
Ā, see complement laws
N, see natural numbers
Q, see rational numbers
R, see real numbers
Z, see integers
∩, see intersection
cod(f ), see codomain
∪, see union
dom(f ), see domain
∅, see empty set
∃, see existential quantifier
∀, see universal quantifier
hcf(a, b), see highest common factor
∧, see conjunction
↔, see biconditional
⟪a, b⟫, see input-output pair
¬, see negation
∨, see disjunction
℘, see power set
→, see implication
∖, see set difference
⊆, see subset
a | b, see divides
f (a), 63
f : A ⇀ B, 64
f : A→ B, 64
f ↾ A, see domain restriction
0th order logic, see propositional logic
1st order logic, see predicate logic

and, see conjunction

base case, 47
bi-implication, see biconditional
biconditional, 9
binary relation, 62

Catalan Numbers, 53
Cauchy–Schwarz inequality, 46
causation, 8

codomain, 62
complement laws, 29
conjunction, 6
connective, 6
contradiction, 18, 38
contrapositive, 38
converse, 8
coprime, 42

deductive proof, 38
direct proof, 38
disjunction, 7
divides, 40
domain, 62
domain restriction, 64
domino effect, 47
dummy variable, 34

empty set, 22
equivalence, 9
Euclid, 44
even, 40
exclusive or, 7
existential quantifier, 33

factor, see divides
first order logic, see predicate logic
function, 63
functional, 63

greatest common divisor, see highest
common factor

highest common factor, 42
Hippasos of Metapontion, 43

iff, see biconditional
IH, see inductive hypothesis
implication, 7
implies, see implication
inclusive or, 7
induction, 47
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inductive hypothesis, 47
inductive step, 47
input-output pair, 62
integers, 22
integral domain, 40
intersection, 26
intervals, 24

left associative, 13

material implication, see implication
multiple, see divides

natural numbers, 22
necessary condition, 8
negation, 6
not, see negation

odd, 40
only if, 8
or, see disjunction

partial function, 64
Pick’s theorem, 54
power set, 31
precedence, 12
predicate, 33
predicate logic, 5, 33
prime, 44
proposition, 5
propositional logic, 5
Pythagoras, 43

rational numbers, 22
real numbers, 22

relation, 62
relatively prime, see coprime
right associative, 13

set comprehension, 24
set difference, 26
set-builder notation, see set

comprehension
statement, 5
strong induction, 50
subset, 23
sufficient condition, 8
syntax tree, 12

tautology, 18
total function, 64
truth tables, 16

union, 26
universal quantifier, 33
universal set, 29

Venn diagram, 23
von Neumann ordinals, 37

well-defined, see functional
well-formed formula, 11
wff, see well-formed formula

xor, see exclusive or

Zermelo–Fraenkel Axioms, 36
zeroth order logic, see propositional

logic
ZFC, see Zermelo–Fraenkel Axioms
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