

Department of Mathematics **Faculty of Science**

B.Sc. (Hons.) Year I Sample Examination Paper II MAT1804: Mathematics for Computing metal metal nth January 20XX

13:00–15:05

Instructions

Read the following instructions carefully.

- Attempt only **THREE** questions.
- Each question carries **35** marks.
- Calculators and mathematical formulæ booklet will be provided. \Box

Attempt only THREE questions.

Question 1.

- (a) (i) State and prove the handshaking lemma.
	- (ii) Show that in any graph $G, \rho(G) \leq \frac{\Delta(G)}{\Delta(G)}$ $\frac{\square(\cup)}{|V(G)|-1|}.$
- (b) Let T be a tree on *n* vertices.
	- (i) Show that $|E(T)| = n-1$.
	- (ii) Suppose that all the vertices are either leaves or have degree d . Show that the number of leaves is

$$
\frac{2+(d-2)n}{d-1}.
$$

(c) Show that any two longest paths in a connected graph must have a vertex in common.

(d) Show that if G is bipartite, then $|E(G)| \le$ $|V(G)|^2$ 4 .

[Hint: $k(n-k)$ is maximised when $k=\frac{n}{2}$ $\frac{n}{2}$.]

[9, 12, 7, 7 marks]

Question 2.

(a) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$
f(x, y) = (3x + y, 5x + 2y).
$$

Show that f is bijective, and determine a formula for $f^{-1}.$

- (b) Show by induction that $\sum_{n=1}^{n}$ $\overline{k=2}$ 1 $k^2 - 1$ $=\frac{3n^2-n-2}{2}$ $\frac{n(n+1)}{4n(n+1)}$.
- (c) Let $f: \mathbb{R} \to \mathbb{R}^2$ be defined by $f(x) = (2x, \frac{1}{x})$ $\frac{1}{x}$). Sketch on an *xy*-plane:
	- (i) $f({1, 2, 3})$ (ii) $f({1, 3})$
	- (iii) $f([-1,1])$ (iv) $f^{-1}([1,3]^2)$

MAT1084 Jan/Feb 20XX — LC Page **2** of **[4](#page-3-0)**

(d) Let $f: X \to Y$ be a function, and let $A, B \subseteq X$.

(i) Show that $f(A \cup B) = f(A) \cup f(B)$.

- (ii) Give a counterexample to $f(A \cap B) = f(A) \cap f(B)$.
- (iii) Show that if f is injective, then $f^{-1}(f(A)) \subseteq A$.

[10, 8, 8, 9 marks]

Question 3.

(a) Consider the predicates

 $o(x) = x$ is an odd number"

 $s(x) = x$ is a square number"

 $p(x, n) = "x$ can be written as a sum of *n* primes".

Translate the following into idiomatic English.

- (i) $\forall n \in \mathbb{N}, o(n) \vee s(n)$ (ii) $\forall n \in \mathbb{N}, o(n) \rightarrow p(n,3)$ (iii) $\exists m \in \mathbb{N} : \forall n \in \mathbb{N}, p(n,m)$ (iv) $\forall n \in \mathbb{N}, \neg o(n) \land s(n) \rightarrow p(n,2)$
- (b) Give the negations of all the statements in part (a), in symbols and in idiomatic English.
- (c) Express the following theorem using symbols only.

Theorem (Erdős–Ko–Rado). *If a collection of subsets of the natural numbers smaller than* n *is such that the intersection of any two members of the collection is non-empty, and moreover, each set in the collection has cardinality k, where* $2k \le n$, then the number of sets in the collection is at most $\binom{n-1}{k-1}$ $\binom{n-1}{k-1}$.

- (d) Prove that for any two sets A and B, $(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B)$.
- (e) Construct a truth table for the proposition

$$
\varphi \wedge (\psi \vee \xi) \rightarrow (\psi \leftrightarrow \neg \xi) \vee \varphi.
$$

(f) Write out the elements of the following sets.

(i) $(1,8] \cap 2\mathbb{Z}$ (ii) $\{x \in \mathbb{R} : x^2 < 6x + 7\} \cap \mathbb{Z}$

[4, 4, 4, 10, 8, 5 marks]

MAT1084 Jan/Feb 20XX — LC Page **3** of **[4](#page-3-0)**

Question 4.

- (a) (i) Using induction, show that every $n \in \mathbb{N}$ is even or odd, i.e., $n = 2k$ or $n = 2k + 1$ for some $k \in \mathbb{N}$.
	- (ii) Hence, prove that every integer fourth power (n^4) is of the form $8k$ or $8k + 1$ for some $k \in \mathbb{N}$.
- (b) Show that n^2-9 is divisible by 8 if and only if n is odd.
- (c) Show that if $x^2 + y^2$ is even, then $x + y$ is even.
- (d) A real number *α* is said to be *transcendental* if there does not exist a polynomial f with integer coefficients such that $f(\alpha) = 0$. We know that *π* and e are both transcendental. p
	- (i) Prove that $\sqrt{2}$ and $\sqrt{3+2}$ 5 are not transcendental.
	- (ii) Prove that a transcendental number is irrational.
	- (iii) It is not known whether the numbers $\pi + e$ and $\pi \times e$ are rational or irrational. Prove that at least one of them is irrational.

[10, 8, 8, 9 marks]

Answers and Hints

- [1.](#page-1-0) (a) (i) Standard from notes.
	- (ii) Recall that *ρ*(G) is the *density* of the graph, i.e., the number of edges $|E(G)|$ divided by the number of all possible edges, $\int_0^{\vert V(G) \vert}$ $\binom{[G]}{2} = n(n-1)/2$ where $n = |V(G)|$. Thus

$$
\rho(G) = \frac{|E(G)|}{|V(G)|(|V(G)| - 1)/2} = \frac{1}{|V(G)| - 1} \cdot \frac{2|E(G)|}{|V(G)|}
$$

$$
= \frac{1}{|V(G)| - 1} \frac{\sum_{v \in V(G)} \deg(v)}{|V(G)|}
$$

$$
\leq \frac{1}{|V(G)| - 1} \frac{\sum_{v \in V(G)} \Delta(G)}{|V(G)|}
$$

$$
= \frac{\Delta(G)}{|V(G)| - 1},
$$

as required.

- (b) (i) By induction on n. Clearly when $n = 1$ we have $0 = n 1$ edges, which establishes the base case. Now given a tree T on n vertices, remove a leaf ℓ (we know there are always at least 2 leaves) to get $T - \ell$, which by the IH has $(n-1) - 1 = n-2$ edges. But adding ℓ back increases the number of edges by 1, so we have $n - 1$ edges. \Box
	- (ii) Suppose there are k vertices of degree 1 (i.e., leaves). Then there are $n-k$ vertices of degree d, and so the sum of degrees is $k + d(n - k)$, which by the handshaking lemma is 2|E(G)| = $2(n-1)$. Solving the equation $k + d(n-k) = 2(n-1)$ for k gives the desired result. \Box
- (c) By contradiction: suppose there are two longest paths, P and Q , which do not share any vertices. Since the graph is connected, then there is a path from some vertex u of P to some vertex v of Q made up of vertices outside both paths, depicted by the dashed line in the following diagram.

 \Box

Then by taking the two longer halves of P and Q , together with the path joining them, we get a path in G longer than P or Q , which contradicts that they were longest paths to begin with. \Box

(d) If G is bipartite, then all edges are between its partite sets, call them A and B. If $|A| = k$, then $|B| = n - k$, and so we can have at most $k(n - k)$ edges. This is largest when $k = n/2$ (which can be seen by differentiation).

 $\frac{n}{2}$) = $\frac{n^2}{4}$ Thus $|E(G)|$ surely cannot exceed $\frac{n}{2}(n-\frac{n}{2})$ \Box $\frac{7}{4}$.

- [2.](#page-1-1) (a) We need to show that f is (i) functional, (ii) total, (iii) injective and (iv) surjective.
	- (i) Clearly f is functional, since it unambiguously assigns a unique pair of coordinates to each input pair $(x, y) \in \mathbb{R}^2$.
	- (ii) It is also clear that f is total, since it assigns every point in the domain \mathbb{R}^2 a corresponding pair of coordinates.
	- (iii) To see that f is injective, suppose that $f(x,y) = f(a,b)$, i.e.,

$$
(3x + y, 5x + 2y) = (3a + b, 5a + 2)
$$

\n
$$
\implies \begin{cases}\n3x + y = 3a + b & (1) \\
5x + 2y = 5a + 2b & (2)\n\end{cases}
$$

\n
$$
\implies \begin{cases}\n6x + 2y = 6a + 2b & 2 \cdot (1) \\
5x + 2y = 5a + 2b & (2)\n\end{cases}
$$

and subtracting the two equations gives us that $x = a$, and then by (1) we clearly get that $y = b$. Thus, if $f(x, y) = f(a, b)$, then $(x,y) = (a,b)$, so that f is injective.

(iv) Finally, to see that f is surjective, take any point (x, y) in the codomain \mathbb{R}^2 , and solve

$$
f(a,b) = (x,y)
$$
\n
$$
\implies (3a+b,5a+2b) = (x,y)
$$
\n
$$
\implies \begin{cases}\n3a+b=x & (1) \\
5a+2b=y & (2) \\
5a+2b=2x & 2 \cdot (1) \\
5a+2b=y & (2)\n\end{cases}
$$

subtracting gives $a = 2x - y$, and then using (1), we get that $b = x - 3(2x - y) = 3y - 5x$. Thus we see that

$$
f(2x - y, 3y - 5x) = (x, y),
$$

and since this works for all (x, y) in the codomain, we see that f is surjective.

We also immediately obtain a formula for f^{-1} , namely,

 $f^{-1}(x, y) = (2x - y, 3y - 5x).$

(b) When $n = 2$, we have LHS = $\frac{1}{2^2}$ $\frac{1}{2^2-1} = \frac{1}{3}$ $\frac{1}{3}$ and RHS = $\frac{3 \cdot 2^2 - 2 - 2}{4 \cdot 2 \cdot (2 + 1)} = \frac{1}{3}$ $\frac{1}{3}$, so the base case is done.

Now for $n > 2$, we have

$$
\sum_{k=2}^{n} \frac{1}{k^2 - 1} = \sum_{k=2}^{n-1} \frac{1}{k^2 - 1} + \frac{1}{n^2 - 1}
$$

=
$$
\frac{3(n-1)^2 - (n-1) - 2}{4(n-1)n} + \frac{1}{n^2 - 1}
$$
 (by IH)
=
$$
\frac{3n^2 - n - 2}{4n(n+1)},
$$

as required.

MAT1084 Jan/Feb 20XX — LC Page **iii**

 \Box

[*Note: the sketch on the left is not necessary, it it there to help understand the sketch on the right*.]

(d) (i)
$$
y \in f(A \cup B)
$$

\n $\iff \exists x : (x \in A \cup B \land f(x) = y)$ (definition of $f(S)$)
\n $\iff \exists x : ((x \in A \lor x \in B) \land f(x) = y)$ (definition of \cup)
\n $\iff \exists x : (x \in A \land f(x) = y) \lor (x \in B \land f(x) = y)$ (distributivity)
\n $\iff y \in f(A) \lor y \in f(B)$ (definition of $f(S)$)
\n $\iff y \in f(A) \cup f(B)$, (definition of \cup)
\nas required.

- (ii) Let $X = \{1,2\}$ and $Y = \{1\}$, and define $f: X \rightarrow Y$ by $f(x) = 1$ for all $x \in X$. Then if we take $A = \{1\}$ and $B = \{2\}$, we see that $f(A \cap B) = f(\emptyset) = \emptyset$, whereas $f(A) \cap f(B) = \{1\} \cap \{1\} = \{1\}$, so $f(A \cap B) \neq f(A) \cap f(B).$
- (iii) If f is injective, then

$$
x \in f^{-1}(f(A))
$$

\n
$$
\Rightarrow f(x) \in f(A)
$$
 (definition of $f^{-1}(S)$)
\n
$$
\Rightarrow \exists x' : (x' \in A \land f(x') = f(x))
$$
 (definition of $f(S)$)
\n
$$
\Rightarrow \exists x' : (x' \in A \land x' = x)
$$
 (since f is injective)
\n
$$
\Rightarrow x \in A
$$
 (since $x' = x$),

which shows that $f^{-1}(f(A)) \subseteq A$.

 \Box

- [3.](#page-2-0) (a) (i) Every natural number is either odd or a square number.
	- (ii) Every odd natural number can be written as a sum of three primes.
	- (iii) There is a number m such that every natural number can be expressed as a sum of m primes.
	- (iv) Every even, square natural number can be expressed as a sum of two primes.
	- (b) (i) $\exists n \in \mathbb{N} \neg o(n) \land \neg s(n)$ There exists a natural numberwhich is neither odd nor a square.
		- (ii) $\exists n \in \mathbb{N} : o(n) \land \neg p(n,3)$ There is a natural number which is odd and cannot be written as a sum of three primes.
- (iii) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N} : \neg p(n, m)$ For every natural m , there is a natural number which cannot be written as a sum of m primes.
- (iv) $\exists n \in \mathbb{N}$: ¬o(n) \wedge s(n) \wedge ¬p(n, 2) There is an even, square natural number which cannot be written as the sum of two primes.
- (c) There is more than one way to do this. Here is a possible way:

$$
\forall \mathscr{C} \subseteq \mathscr{C}(\mathbb{N} \cap [0, n)), \left(\begin{matrix} (\forall A, B \in \mathscr{C}, A \cap B \neq \emptyset) \land (\forall A \in \mathscr{C}, |A| = k) \\ \land (2k \leq n) \rightarrow |\mathscr{C}| \leq {n-1 \choose k-1} \end{matrix} \right).
$$

(d) To show that $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$, we must prove both:

$$
(i) (A \setminus B) \cup (B \setminus A) \subseteq (A \cup B) \setminus (A \cap B)
$$

(ii)
$$
(A \cup B) \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)
$$

For (i), we have

$$
x \in (A \setminus B) \cup (B \setminus A)
$$
\n
$$
\implies x \in (A \setminus B) \vee x \in (B \setminus A)
$$
\n
$$
\implies (x \in A \land x \notin B) \vee (x \in B \land x \notin A),
$$
\n
$$
\implies ((x \in A \land x \notin B) \lor x \in B)
$$
\n
$$
\land ((x \in A \land x \notin B) \lor x \notin A),
$$
\n
$$
\implies ((x \in A \lor x \notin B) \land x \notin B) \land x \notin A)
$$
\n
$$
\implies ((x \in A \lor x \in B) \land (x \notin B \lor x \in B))
$$
\n
$$
\land ((x \in A \lor x \notin A) \land (x \notin B \lor x \notin A)),
$$
\n
$$
\implies ((x \in A \lor x \in B) \land true)
$$
\n
$$
\land (true \land (x \notin B \lor x \notin A)),
$$
\n
$$
\implies (x \in A \lor x \in B) \land (x \notin A \lor x \notin B),
$$
\n
$$
\implies (x \in A \lor x \in B) \land (x \notin A \lor x \notin B),
$$
\n
$$
\implies (x \in A \lor x \in B) \land (x \in A \land x \in B),
$$
\n
$$
\implies (x \in A \lor x \in B) \land \neg (x \in A \land x \in B),
$$
\n
$$
\implies x \in (A \cup B) \land x \notin (A \cap B),
$$
\n
$$
\implies x \in (A \cup B) \setminus (A \cap B),
$$
\n
$$
\implies (definition of \cup, \cap)
$$

and for (ii), notice that every step above is reversible (unlike the previous proof), so replacing each \Rightarrow with a \Leftrightarrow gives us a complete proof. \Box

- (e) Use <https://lc.mt/tt> to check this.
- (f) (i) $\{2, 4, 6, 8\}$
	- (ii) x^2 < 6x + 7 ⇔ $(x+1)(x-7)$ < 0 ⇔ −1 < x < 7 (draw a quick sketch of $y = (x + 1)(x - 7)$ to understand the last \Leftrightarrow).

Thus the answer is $\{0, 1, 2, 3, 4, 5, 6\}$

[4.](#page-3-1) (a) (i) For the base case, $n = 1$ can be expressed as $2 \cdot 0 + 1$.

Now for the inductive step, suppose n–1 can be expressed as 2k or $2k + 1$. In the first case, we have $n = 2k + 1$, and in the second case, $n = 2(k + 1)$, which completes the proof. \Box

- (ii) By (i), every *n* can be written as $2k$ or $2k + 1$ for some k. Then $(2k)^4 = 16k^4 = 8(2k^4)$, and $(2k+1)^4 = 16k^4 + 32k^3 + 24k^2 + 8k +$ $1 = 8(2k^4 + 4k^3 + 3k^2 + k) + 1.$
- (b) (\Rightarrow) . If *n* is odd, then we may express it as $2k + 1$ for some k, thus $n^2-9 = (2k+1)^2-9 = 4k(k+1)-8$. Now notice that $k(k+1)$ is even since it is the product of two consecutive whole numbers, say it equals 2 ℓ . Thus $n^2 - 9 = 8\ell - 8$, which is clearly divisible by 8.

 (\Leftarrow) . By contrapositive, if *n* is not odd, i.e., even, then we may express it as 2k for some k, thus $n^2 - 9 = 4k^2 - 10 + 1 = 2(2k^2 - 5) + 1$, which is odd, and therefore cannot be divisible by 8. \Box

- (c) Notice that $x^2 + y^2$ is even if and only if $x^2 + y^2 + 2xy = (x + y)^2$ is even, and $(x+y)^2$ is even if and only if $x+y$ is even.
- (d) (i) They are not transcendental since $\sqrt{2}$ is a root of the quadratic $x^2 - 2$ and $\sqrt{3 + \sqrt{5}}$ is a root of the quartic $(x^2 - 3)^2 - 5 = x^4 - 1$ $6x^2 - 4$, and both of these have integer coefficients.
	- (ii) Any rational number a/b is the root of the polynomial $ax b$ which has integer coefficients, so it cannot be transcendental.

Thus any transcendental number must be irrational.

(iii) e and π are both transcendental, which means that $(x - e)(x - e)$ π) = x^2 – $(e + \pi)x + e\pi$ cannot have coefficients which are all rational. Thus at least one of e +*π* and e*π* is irrational.