

Department of Mathematics Faculty of Science

B.Sc. (Hons.) Year I Sample Examination Paper II MAT1804: Mathematics for Computing *n*th January 20XX

13:00-15:05

Instructions

Read the following instructions carefully.

- Attempt only **THREE** questions.
- Each question carries **35** marks.
- Calculators and mathematical formulæ booklet will be provided.

Attempt only THREE questions.

Question 1.

- (a) (i) State and prove the handshaking lemma.
 - (ii) Show that in any graph G, $\rho(G) \leq \frac{\Delta(G)}{|V(G)| 1}$.
- (b) Let T be a tree on n vertices.
 - (i) Show that |E(T)| = n 1.
 - (ii) Suppose that all the vertices are either leaves or have degree *d*. Show that the number of leaves is

$$\frac{2+(d-2)n}{d-1}.$$

(c) Show that any two longest paths in a connected graph must have a vertex in common.

(d) Show that if G is bipartite, then $|E(G)| \leq \frac{|V(G)|^2}{4}$.

[Hint: k(n-k) is maximised when $k = \frac{n}{2}$.]

[9, 12, 7, 7 marks]

Question 2.

(a) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x, y) = (3x + y, 5x + 2y).$$

Show that f is bijective, and determine a formula for f^{-1} .

- (b) Show by induction that $\sum_{k=2}^{n} \frac{1}{k^2 1} = \frac{3n^2 n 2}{4n(n+1)}$.
- (c) Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by $f(x) = (2x, \frac{1}{x})$. Sketch on an *xy*-plane:
 - (i) $f(\{1,2,3\})$ (ii) f([1,3])
 - (iii) f([-1,1]) (iv) $f^{-1}([1,3]^2)$

MAT1084 Jan/Feb 20XX – LC

Page 2 of 4

(d) Let $f: X \rightarrow Y$ be a function, and let $A, B \subseteq X$.

- (i) Show that $f(A \cup B) = f(A) \cup f(B)$.
- (ii) Give a counterexample to $f(A \cap B) = f(A) \cap f(B)$.
- (iii) Show that if *f* is injective, then $f^{-1}(f(A)) \subseteq A$.

[10, 8, 8, 9 marks]

Question 3.

(a) Consider the predicates

o(x) = "x is an odd number"

s(x) = "x is a square number"

p(x, n) = "x can be written as a sum of *n* primes".

Translate the following into idiomatic English.

- (i) $\forall n \in \mathbb{N}, o(n) \lor s(n)$ (ii) $\forall n \in \mathbb{N}, o(n) \to p(n, 3)$ (iii) $\exists m \in \mathbb{N} : \forall n \in \mathbb{N}, p(n, m)$ (iv) $\forall n \in \mathbb{N}, \neg o(n) \land s(n) \to p(n, 2)$
- (b) Give the negations of all the statements in part (a), in symbols and in idiomatic English.
- (c) Express the following theorem using symbols only.

Theorem (Erdős–Ko–Rado). If a collection of subsets of the natural numbers smaller than *n* is such that the intersection of any two members of the collection is non-empty, and moreover, each set in the collection has cardinality *k*, where $2k \le n$, then the number of sets in the collection is at most $\binom{n-1}{k-1}$.

- (d) Prove that for any two sets A and B, $(A B) \cup (B A) = (A \cup B) (A \cap B)$.
- (e) Construct a truth table for the proposition

$$\varphi \land (\psi \lor \xi) \to (\psi \leftrightarrow \neg \xi) \lor \varphi.$$

- (f) Write out the elements of the following sets.
 - (i) $(1,8] \cap 2\mathbb{Z}$ (ii) $\{x \in \mathbb{R} : x^2 < 6x + 7\} \cap \mathbb{Z}$

[4, 4, 4, 10, 8, 5 marks]

MAT1084 Jan/Feb 20XX - LC

Page 3 of 4

Question 4.

- (a) (i) Using induction, show that every $n \in \mathbb{N}$ is even or odd, i.e., n = 2k or n = 2k + 1 for some $k \in \mathbb{N}$.
 - (ii) Hence, prove that every integer fourth power (n^4) is of the form 8k or 8k + 1 for some $k \in \mathbb{N}$.
- (b) Show that $n^2 9$ is divisible by 8 if and only if *n* is odd.
- (c) Show that if $x^2 + y^2$ is even, then x + y is even.
- (d) A real number α is said to be *transcendental* if there does not exist a polynomial *f* with integer coefficients such that $f(\alpha) = 0$. We know that π and *e* are both transcendental.
 - (i) Prove that $\sqrt{2}$ and $\sqrt{3+\sqrt{5}}$ are not transcendental.
 - (ii) Prove that a transcendental number is irrational.
 - (iii) It is not known whether the numbers $\pi + e$ and $\pi \times e$ are rational or irrational. Prove that at least one of them is irrational.

[10, 8, 8, 9 marks]

Answers and Hints

- 1. (a) (i) Standard from notes.
 - (ii) Recall that $\rho(G)$ is the *density* of the graph, i.e., the number of edges |E(G)| divided by the number of all possible edges, $\binom{|V(G)|}{2} = n(n-1)/2$ where n = |V(G)|. Thus

$$\begin{split} \rho(G) &= \frac{|E(G)|}{|V(G)|(|V(G)|-1)/2} = \frac{1}{|V(G)|-1} \cdot \frac{2|E(G)|}{|V(G)|} \\ &= \frac{1}{|V(G)|-1} \frac{\sum_{v \in V(G)} \deg(v)}{|V(G)|} \\ &\leq \frac{1}{|V(G)|-1} \frac{\sum_{v \in V(G)} \Delta(G)}{|V(G)|} \\ &= \frac{\Delta(G)}{|V(G)|-1}, \end{split}$$

as required.

- (b) (i) By induction on *n*. Clearly when n = 1 we have 0 = n-1 edges, which establishes the base case. Now given a tree *T* on *n* vertices, remove a leaf ℓ (we know there are always at least 2 leaves) to get *T* ℓ, which by the IH has (n-1)-1 = n-2 edges. But adding ℓ back increases the number of edges by 1, so we have n-1 edges.
 - (ii) Suppose there are k vertices of degree 1 (i.e., leaves). Then there are n-k vertices of degree d, and so the sum of degrees is k + d(n-k), which by the handshaking lemma is 2|E(G)| = 2(n-1). Solving the equation k + d(n-k) = 2(n-1) for k gives the desired result.
- (c) By contradiction: suppose there are two longest paths, P and Q, which do not share any vertices. Since the graph is connected, then there is a path from some vertex u of P to some vertex v of Q made up of vertices outside both paths, depicted by the dashed line in the following diagram.

Then by taking the two longer halves of P and Q, together with the path joining them, we get a path in G longer than P or Q, which contradicts that they were longest paths to begin with.

(d) If G is bipartite, then all edges are between its partite sets, call them A and B. If |A| = k, then |B| = n − k, and so we can have at most k(n − k) edges. This is largest when k = n/2 (which can be seen by differentiation).

Thus |E(G)| surely cannot exceed $\frac{n}{2}(n-\frac{n}{2}) = \frac{n^2}{4}$.

- 2. (a) We need to show that *f* is (i) functional, (ii) total, (iii) injective and (iv) surjective.
 - (i) Clearly *f* is functional, since it unambiguously assigns a unique pair of coordinates to each input pair $(x, y) \in \mathbb{R}^2$.
 - (ii) It is also clear that f is total, since it assigns every point in the domain \mathbb{R}^2 a corresponding pair of coordinates.
 - (iii) To see that f is injective, suppose that f(x, y) = f(a, b), i.e.,

$$\Rightarrow \begin{cases} (3x+y,5x+2y) = (3a+b,5a+2) \\ 3x+y=3a+b & (1) \\ 5x+2y=5a+2b & (2) \end{cases}$$
$$\Rightarrow \begin{cases} 6x+2y=6a+2b & 2\cdot(1) \\ 5x+2y=5a+2b & (2) \end{cases}$$

and subtracting the two equations gives us that x = a, and then by (1) we clearly get that y = b. Thus, if f(x, y) = f(a, b), then

Page ii

(x, y) = (a, b), so that f is injective.

(iv) Finally, to see that f is surjective, take any point (x, y) in the codomain \mathbb{R}^2 , and solve

$$f(a,b) = (x,y)$$

$$\implies (3a+b,5a+2b) = (x,y)$$

$$\implies \begin{cases} 3a+b=x \quad (1)\\ 5a+2b=y \quad (2) \end{cases}$$

$$\implies \begin{cases} 6a+2b=2x \quad 2 \cdot (1)\\ 5a+2b=y \quad (2) \end{cases}$$

subtracting gives a = 2x - y, and then using (1), we get that b = x - 3(2x - y) = 3y - 5x. Thus we see that

$$f(2x-y, 3y-5x) = (x, y),$$

and since this works for all (x, y) in the codomain, we see that f is surjective.

We also immediately obtain a formula for f^{-1} , namely,

 $f^{-1}(x,y) = (2x - y, 3y - 5x).$

(b) When n = 2, we have LHS $= \frac{1}{2^2 - 1} = \frac{1}{3}$ and RHS $= \frac{3 \cdot 2^2 - 2 - 2}{4 \cdot 2 \cdot (2 + 1)} = \frac{1}{3}$, so the base case is done.

Now for n > 2, we have

$$\sum_{k=2}^{n} \frac{1}{k^2 - 1} = \sum_{k=2}^{n-1} \frac{1}{k^2 - 1} + \frac{1}{n^2 - 1}$$
$$= \frac{3(n-1)^2 - (n-1) - 2}{4(n-1)n} + \frac{1}{n^2 - 1}$$
(by IH)
$$= \frac{3n^2 - n - 2}{4n(n+1)},$$

as required.

MAT1084 Jan/Feb 20XX – LC

Page iii

[Note: the sketch on the left is not necessary, it it there to help understand the sketch on the right.]

(d) (i)
$$y \in f(A \cup B)$$

 $\iff \exists x : (x \in A \cup B \land f(x) = y)$ (definition of $f(S)$)
 $\iff \exists x : ((x \in A \lor x \in B) \land f(x) = y)$ (definition of \cup)
 $\iff \exists x : (x \in A \land f(x) = y) \lor (x \in B \land f(x) = y)$ (distributivity)
 $\iff y \in f(A) \lor y \in f(B)$ (definition of $f(S)$)
 $\iff y \in f(A) \cup f(B)$, (definition of \cup)
as required. \Box

- (ii) Let $X = \{1, 2\}$ and $Y = \{1\}$, and define $f: X \to Y$ by f(x) = 1for all $x \in X$. Then if we take $A = \{1\}$ and $B = \{2\}$, we see that $f(A \cap B) = f(\emptyset) = \emptyset$, whereas $f(A) \cap f(B) = \{1\} \cap \{1\} = \{1\}$, so $f(A \cap B) \neq f(A) \cap f(B)$.
- (iii) If *f* is injective, then

$$x \in f^{-1}(f(A))$$

$$\Rightarrow f(x) \in f(A) \qquad (definition of f^{-1}(S))$$

$$\Rightarrow \exists x' : (x' \in A \land f(x') = f(x)) \qquad (definition of f(S))$$

$$\Rightarrow \exists x' : (x' \in A \land x' = x) \qquad (since f is injective)$$

$$\Rightarrow x \in A \qquad (since x' = x),$$

which shows that $f^{-1}(f(A)) \subseteq A$.

- 3. (a) (i) Every natural number is either odd or a square number.
 - (ii) Every odd natural number can be written as a sum of three primes.
 - (iii) There is a number *m* such that every natural number can be expressed as a sum of *m* primes.
 - (iv) Every even, square natural number can be expressed as a sum of two primes.
 - (b) (i) $\exists n \in \mathbb{N} \neg o(n) \land \neg s(n)$ There exists a natural number which is neither odd nor a square.
 - (ii) $\exists n \in \mathbb{N} : o(n) \land \neg p(n, 3)$ There is a natural number which is odd and cannot be written as a sum of three primes.

- (iii) ∀m∈N,∃n∈N:¬p(n,m)
 For every natural m, there is a natural number which cannot be written as a sum of m primes.
- (iv) $\exists n \in \mathbb{N} : \neg o(n) \land s(n) \land \neg p(n, 2)$ There is an even, square natural number which cannot be written as the sum of two primes.
- (c) There is more than one way to do this. Here is a possible way:

$$\forall \mathscr{C} \subseteq \mathscr{P}(\mathbb{N} \cap [0, n)), \begin{pmatrix} (\forall A, B \in \mathscr{C}, A \cap B \neq \emptyset) \land (\forall A \in \mathscr{C}, |A| = k) \\ \land (2k \leq n) \to |\mathscr{C}| \leq {n-1 \choose k-1} \end{pmatrix}.$$

(d) To show that $(A \ B) \cup (B \ A) = (A \cup B) \ (A \cap B)$, we must prove both:

(i)
$$(A \sim B) \cup (B \sim A) \subseteq (A \cup B) \sim (A \cap B)$$

(ii)
$$(A \cup B) \smallsetminus (A \cap B) \subseteq (A \smallsetminus B) \cup (B \smallsetminus A)$$

For (i), we have

$$\begin{aligned} x \in (A \setminus B) \cup (B \setminus A) \\ \implies x \in (A \setminus B) \lor x \in (B \setminus A) & (definition of \cup) \\ \implies (x \in A \land x \notin B) \lor (x \in B \land x \notin A), & (definition of \setminus) \\ \implies ((x \in A \land x \notin B) \lor x \in B) & (distributivity of \land ((x \in A \land x \notin B) \lor x \notin A), & \lor over \land) \\ \implies ((x \in A \lor x \in B) \land (x \notin B \lor x \in B)) & (distributivity of \land ((x \in A \lor x \notin A) \land (x \notin B \lor x \notin A)), & \lor over \land) \\ \implies ((x \in A \lor x \notin A) \land (x \notin B \lor x \notin A)), & \lor over \land) \\ \implies ((x \in A \lor x \in B) \land true) & (\phi \lor rue) \\ \land (true \land (x \notin B \lor x \notin A)), & (\phi \land true \leftrightarrow \phi) \\ \implies (x \in A \lor x \in B) \land (x \notin A \lor x \notin B), & (\phi \land true \leftrightarrow \phi) \\ \implies (x \in A \lor x \in B) \land (x \notin A \lor x \notin B), & (definition of \cup, \cap) \\ \implies x \in (A \cup B) \land x \notin (A \cap B), & (definition of \lor, \cap) \end{aligned}$$

and for (ii), notice that every step above is reversible (unlike the previous proof), so replacing each \Rightarrow with a \Leftrightarrow gives us a complete proof.

Page vi

- (e) Use https://lc.mt/tt to check this.
- (f) (i) $\{2, 4, 6, 8\}$
 - (ii) $x^2 < 6x + 7 \iff (x+1)(x-7) < 0 \iff -1 < x < 7$ (draw a quick sketch of y = (x+1)(x-7) to understand the last \Leftrightarrow).

Thus the answer is {0, 1, 2, 3, 4, 5, 6}

4. (a) (i) For the base case, n = 1 can be expressed as $2 \cdot 0 + 1$.

Now for the inductive step, suppose n-1 can be expressed as 2k or 2k + 1. In the first case, we have n = 2k + 1, and in the second case, n = 2(k + 1), which completes the proof.

- (ii) By (i), every *n* can be written as 2k or 2k + 1 for some *k*. Then $(2k)^4 = 16k^4 = 8(2k^4)$, and $(2k+1)^4 = 16k^4 + 32k^3 + 24k^2 + 8k + 1 = 8(2k^4 + 4k^3 + 3k^2 + k) + 1$.
- (b) (⇒). If n is odd, then we may express it as 2k + 1 for some k, thus n²-9 = (2k+1)²-9 = 4k(k+1)-8. Now notice that k(k+1) is even since it is the product of two consecutive whole numbers, say it equals 2ℓ. Thus n²-9 = 8ℓ-8, which is clearly divisible by 8.

(\Leftarrow). By contrapositive, if *n* is not odd, i.e., even, then we may express it as 2k for some *k*, thus $n^2 - 9 = 4k^2 - 10 + 1 = 2(2k^2 - 5) + 1$, which is odd, and therefore cannot be divisible by 8.

- (c) Notice that $x^2 + y^2$ is even if and only if $x^2 + y^2 + 2xy = (x + y)^2$ is even, and $(x + y)^2$ is even if and only if x + y is even.
- (d) (i) They are not transcendental since $\sqrt{2}$ is a root of the quadratic $x^2 2$ and $\sqrt{3} + \sqrt{5}$ is a root of the quartic $(x^2 3)^2 5 = x^4 6x^2 4$, and both of these have integer coefficients.
 - (ii) Any rational number a/b is the root of the polynomial ax b which has integer coefficients, so it cannot be transcendental.

Thus any transcendental number must be irrational.

(iii) e and π are both transcendental, which means that $(x - e)(x - \pi) = x^2 - (e + \pi)x + e\pi$ cannot have coefficients which are all rational. Thus at least one of $e + \pi$ and $e\pi$ is irrational.