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Abstract

We review Hardy–Littlewood’s proof of the ternary Goldbach conjecture for sufficiently
large odd numbers, which assumes the Generalised Riemann Hypothesis, then discuss
Vinogradov’s improvement of the minor arcs bound to prove the result unconditionally
(i.e., Vinogradov’s theorem), and finally explore some ideas from Helfgott’s 2014 proof of
the ternary Goldbach conjecture for all odd numbers larger than 7.
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Chapter 1

Introduction

Figure 1.1: Goldbach’s letter to Euler

On the 7th of June 1742, German math-
ematician Christian Goldbach conjectured
in a letter to Leonhard Euler that every
even number greater than two can be ex-
pressed as a sum of two primes. Proof of
this statement, which is well known today
as Goldbach’s conjecture, has evaded math-
ematicians to the present day, and remains
one of the oldest and best known unsolved
problems in mathematics.

The so-called ternary Goldbach conjecture
is a “weaker” analogue to the Goldbach
conjecture. It was proven to be true in a
preprint published on ArXiV by H. Helfgott
in 2014,[10] and states the following.

Theorem 1.1 (Ternary Goldbach Conjecture). Every odd integer greater than 7 can be
written as the sum of three primes.

It is weaker in the sense that, if the Goldbach conjecture is true, then the ternary Goldbach
conjecture is automatically true. Indeed, suppose the Goldbach conjecture is true, and N
is an odd number greater than 7. Then N − 3 is even, and we can express N − 3 = p1 + p2
using the Goldbach conjecture. Thus, N = p1+p2+3, and the ternary Goldbach conjecture
is true.

What follows is a brief timeline of the results established that lead towards the proof of
theorem 1.1. In 1923, the British mathematicians G. H. Hardy and J. E. Littlewood made
use of their so-called circle method to establish that, assuming the Generalised Riemann
Hypothesis, the ternary Goldbach conjecture is true for sufficiently large odd numbers.
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§1.1. Notation and Preliminaries Luke Collins

In other words, there exists some N large enough so that, for all odd numbers greater
than N , the statement is true. In 1937, Soviet mathematician I. M. Vinogradov was able
to remove the dependence on the Generalised Riemann Hypothesis and proved directly,
by studying exponential sums, that the ternary Goldbach conjecture was true, again for
sufficiently large N .[19] Vinogradov also did not give a bound for “sufficiently large”, but in
1956, a student of Vinogradov, K. Borozdkin, determined that 33

15
is large enough. Even

though this leaves a finite number of cases to check, it is far from feasible to do so (33
15

has 6 846 169 digits). In the 2014 preprint, Helfgott uses a tweaked version of the circle
method to improve this bound to something much more reasonable: odd numbers larger
1027; the remaining cases can easily be checked by computer (it takes around 5 hours on a
modern Linux desktop).[10]

In this project, we shall first go over Hardy–Littlewood’s proof (chapter 2), next we will see
a simplified version of Vinogradov’s proof which makes use of Vaughan’s identity to make
the argument unconditional (chapter 3), and finally we will discuss how Helfgott obtains a
log-free bound for the minor arcs, which is the main novelty of his 2014 proof (chapter 4).

1.1 Notation and Preliminaries

Let us introduce some notation and get some preliminary definitions out of the way, so
that in the next section, we may formulate the result more precisely.

Let P be a proposition. Then we denote by 1P the indicator function of P, i.e.,

1P
..=

{
1 if P is true

0 otherwise.

Moreover, if X is a set, we write 1X(x) for 1x∈X . Without a subscript, 1 denotes the
function 1(x) = 1 for all x.

We write f(x) = O(g(x)), or equivalently f(x) Î g(x), to denote the fact that for some
C > 0, we have |f(x)| 6 C g(x) for all x under consideration; usually for all x larger than a
fixed constant. If both f(x) Î g(x) and g(x) Î f(x), then we write f � g. For g(x) 6= 0, we
write f(x) = o(g(x)) as x→∞ if for all ε > 0, there exists N > 0 such that |f(x)| 6 ε g(x)
for all x > N . Finally, we write f(x) ∼ g(x) if f(x)−g(x) = o(g(x)). This is stronger than
the � relation; for instance, we have 2x � x but 2x � x as x→∞.

R/Z denotes some real interval of length 1 (such as [0, 1]), and we define the map e : R/Z→
C by e(θ) ..= e2πiθ. The “circle” in the circle method is the image of R/Z under this map.

For a ring R, we denote the group of units by R×. For instance, the group of integers
modulo q which have a multiplicative inverse is denoted (Z/qZ)×. This is just the set
{n ∈ {0, . . . , q − 1} : (n, q) = 1}, and we denote its cardinality by ϕ(n), where ϕ is known
as the (Euler) totient function.
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§1.1. Notation and Preliminaries Luke Collins

For α ∈ R, we denote the distance to the nearest integer by ‖α‖, i.e., ‖α‖ = minn∈Z |α−n|.

The von Mangoldt function, Λ: N→ R, is defined by

Λ(n) ..=

{
log p if n = pk for some prime p and integer k > 1

0 otherwise,

and the Chebychev Ψ function Ψ: R → R is defined by Ψ(x) ..=
∑

n6x Λ(n). These
functions play a significant role in analytic number theory, they often make it simpler to
phrase major results. For example, the prime number theorem (PNT) π(x) ∼ x

log x is
equivalent to the fact that Ψ(x) ∼ x, where π(n) = #{p 6 n : p is prime}.

We also make use of the Möbius function, denoted by µ(n), defined by

µ(n) ..=

{
(−1)k if n is square-free and has k distinct prime divisors

0 otherwise,

where by square-free, we mean that there is no d > 2 such that d2 | n. Note that µ(1) = 1.

Finally, we introduce Dirichlet convolution. For two functions f, g : N→ C, we define their
Dirichlet (or multiplicative) convolution f ∗ g : N→ C by

(f ∗ g)(n) ..=
∑
d|n

f(d) g(n/d) =
∑
ab=n

f(a) g(b).

Analogously to the usual additive convolutions, we have that Dirichlet convolution is com-
mutative, associative and distributive. To avoid confusion of Dirichlet convolution with
additive convolution, we will denote the latter by f ? g, i.e.,

(f ? g)(t) ..=

∫
R

f(τ) g(t− τ) dτ.

The Fourier transform of a function f is denoted by f̂ , i.e., f̂(ξ) =
∫
R
f(x) e(xξ) dx, and

the inverse Fourier transform is denoted f̌ , i.e., f̌(ξ) = f̂(−ξ). We can relate some of the
functions we have introduced using the language of Dirichlet convolutions.

Proposition 1.2 (Dirichlet convolution properties). Let 1=1 : N→ N denote the function
which is 1 at 1, and 0 everywhere else, i.e., 1=1(n) ..= 1n=1. Then we have the following.

(i) f = f ∗ 1=1 = 1=1 ∗ f ,

(ii) 1 ∗ µ = 1=1,

(iii) (Möbius inversion). For any f, g : N→ C, g = f ∗ 1 if and only if f = g ∗ µ,

(iv) 1 ∗ Λ = log.

The proofs are straightforward and are omitted for brevity.
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§1.2. Formulating the Ternary Goldbach Conjecture Luke Collins

1.2 Formulating the Ternary Goldbach Conjecture

Let 1P be the indicator for the set P of primes. Then observe that for odd N , the sum

t(N) ..=
∑

k1+k2+k3=N

1P (k1)1P (k2)1P (k3)

over ki ∈ N, counts the number of ways in which N can be expressed as the sum of three
primes. The statement of the ternary Goldbach conjecture is therefore equivalent to the
statement that t(N) > 0 for odd N > 7.

It turns out that calculations are made simpler if we instead consider a weighted version
of the above sum. Rather than working with t(N), we instead consider

r(N) ..=
∑

k1+k2+k3=N

Λ(k1) Λ(k2) Λ(k3),

which counts the number of ways N can be expressed as a sum of three prime powers
p1
a + p2

b + p3
c (not just primes), with a weight of log(p1) log(p2) log(p3) attached to each

such representation. Now, define

S(N,α) ..=
∑
k6N

Λ(k) e(kα).

Then
S(N,α)3 =

∑
n

rN (n) e(nα),

where rN (n) is defined similarly to r(n), with the added condition that each ki 6 N .
In particular, we have r(n) = rN (n) for n 6 N , and since S(N,α)3 is a trigonometric
polynomial, we may extract r(N) by taking the inverse Fourier transform, i.e.,

r(N) =

∫
R/Z

S(N,α)3 e(−Nα) dα. (1.1)

We will see that the integrand turns out to be large when α is close to rational points with
small denominators, and by estimating the contribution at these points, we manage to
prove the following; from which the ternary Goldbach conjecture follows for N sufficiently
large.

Theorem 1.3 (Vinogradov, 1937). Let N be an odd integer. Then

r(N) ∼ 1
2 S(N)N2, (1.2)

where S(N) ..=
∏
p|N
(
1− 1

(p−1)2
)∏

p-N
(
1 + 1

(p−1)3
)
.
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§1.2. Formulating the Ternary Goldbach Conjecture Luke Collins

How does it follow? Firstly, observe that since the nth prime is greater than n,

S(N) 6
∏
p

(
1 +

1

(p− 1)3

)
6
∏
n

(
1 +

1

n3

)
6
∏
n

exp
( 1

n3

)
= exp(ζ(3)) ≈ 3.32,

and that when N is odd,

S(N) =
∏
p|N

(p− 1)2 − 1

(p− 1)2

∏
p-N

(p− 1)3 + 1

(p− 1)3
>
∏
n>3

n− 2

n− 1

n

n− 1
=

1

2
,

so S(N) � 1 for odd N , and it follows from the theorem that r(N) > 0 for N large enough.
But this counts the representations of N as three prime powers, not just primes. Consider
the set P ′N of proper prime powers less than N , i.e., P ′N

..= {pk 6 N : p ∈ P, k > 2}.
Clearly each pk ∈ P ′N must have p 6 N 1/2, and the number of choices for k is O(logN), so
#P ′N Î π(N 1/2) logN Î N 1/2 by PNT. Thus the contribution to r(N) by representations
N = k1 + k2 + k3 with k1 ∈ P ′N is∑

k1+k2+k3=N
k1∈P ′N

Λ(k1) Λ(k2) Λ(k3) 6 log3N
∑

k1+k2+k3=N
k1∈P ′N

1

Î (log3N) (#P ′N )N

Î N
3/2 log3N,

and similarly for k2 ∈ P ′N , k3 ∈ P ′N . Thus by theorem 1.3,∑
p1+p2+p3=N
p1, p2, p3∈P

Λ(k1) Λ(k2) Λ(k3) = r(N)−O(N
3/2 log3N) Ï N2.

Therefore we have obtained a lower-bound for the number of ways of writing large odd
numbers as a sum of three primes.

8



Chapter 2

Hardy–Littlewood’s Proof

In this chapter, we introduce Dirichlet characters and see how they help us study primes
in progressions, then we discuss Hardy–Littlewood’s conditional proof of theorem 1.3 on
GRH. We mainly follow the arguments outlined in [16, pp. 18–22] for the proof, adding
details for more clarity where necessary.

2.1 Dirichlet Characters, PNT in Progressions

We will first start by introducing Dirichlet characters, and subsequently use them to for-
mulate the part of the proof which depends on GRH. I referred to [1] as well as [7] when
compiling this section.

Let q be a positive whole number. A Dirichlet character mod q is a multiplicative function
χ : (Z/qZ)× → C×, i.e., we have χ(ab) = χ(a)χ(b) for all a, b ∈ (Z/qZ)×. Moreover, we
extend Dirichlet characters to Z by periodicity mod q, i.e., χ(n+ q) = χ(n) for all n, and
by setting χ(n) ..= 0 for all n ∈ Z not coprime to q. The Dirichlet character defined by
χ(n) ..= 1 for all n ∈ (Z/qZ)× is denoted by χ0 and called the principal character . (We
still have χ0(n) = 0 if (n, q) 6= 1.)

From this definition one may deduce several facts. For instance, it is easily seen that
χ(1) = 1 and χ(0) = 0 for all Dirichlet characters (unless q = 1 and χ = χ0, in which
case χ0(n) = 1 for all n ∈ Z, this is called the trivial character). Additionally, by Euler’s
theorem, we see that χ(n) is always some ϕ(q)th of unity,1 i.e., χ(n) = e(m/ϕ(q)) for some
m. Thus, χ(n) is some point on the unit circle for (n, q) = 1. There are ϕ(q) distinct
Dirichlet characters mod q. Dirichlet characters form an orthonormal basis for the set of
functions (Z/qZ)× → C. In particular, they satisfy the orthogonality relation

1

ϕ(q)

∑
χ mod q

χ(n) χ̄(a) = 1n≡a mod q. (2.1)

1Euler’s theorem. For all a ∈ Z, aϕ(q) ≡ 1 mod q.
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§2.1. Dirichlet Characters, PNT in Progressions Luke Collins

For any Dirichlet character χ, the Dirichlet L-function is defined for <(s) > 1 by

L(s, χ) ..=

∞∑
n=0

χ(n)

ns
,

and can be extended to a meromorphic function on all of C by analytic continuation. The
Generalised Riemann Hypothesis (GRH) asserts that for any Dirichlet character χ and
s ∈ C with L(s, χ) = 0, if s is not a negative real number, then <(s) = 1/2. The Riemann
Hypothesis (RH) is equivalent to the GRH in the case where χ is the trivial character, in
which case, L(s, χ0) equals the so-called Riemann zeta function, ζ(s).

The Generalised Chebychev Ψ function is defined by

Ψ(x, χ) ..=
∑
n6x

Λ(n)χ(n).

This allows us to state Dirichlet’s theorem, which is an analogue to the prime number
theorem (Ψ(x) = Ψ(x, χ0) ∼ x with q = 1) for primes in arithmetic progressions. Dirichlet’s
theorem asserts that

Ψ(x, χ) =

{
x+ o(x) if χ = χ0

o(x) otherwise,

where the implicit constants depend on q. Unfortunately the error terms here are not good
enough for us to prove Vinogradov’s theorem. It is at this stage (and only this stage) that
we invoke GRH, to get a better bound to use in the proof.

Theorem 2.1 (PNT in arithmetic progressions, on GRH). Let χ be a Dirichlet character
mod q, and assume GRH for L(s, χ). Then

Ψ(x, χ) =

{
x+O(

√
x log2 x+ log x log q) if χ = χ0

O(
√
x log2 qx) otherwise.

For a derivation of this consequence of GRH, see, for example, the end of [1, §20].

Finally, consider Ψ(x; q, a), defined by

Ψ(x; q, a) ..=
∑
n6x

n≡a mod q

Λ(n),

a variant of the Ψ function that sums over n 6 x congruent to a mod q. It follows from
(2.1) that the relation between Ψ(x; q, a) and Ψ(x, χ) is

Ψ(x; q, a) =
1

ϕ(q)

∑
χ mod q

χ̄(a) Ψ(x, χ),

and so theorem 2.1 gives, on GRH, that

Ψ(x; q, a) =
x

ϕ(q)
+O(

√
x log2 qx). (2.2)

10



§2.2. Gauß and Ramanujan Sums Luke Collins

2.2 Gauß and Ramanujan Sums

In this section, we discuss a pair of sums which we will encounter in the proof of Vino-
gradov’s theorem, and establish properties about them which will prove useful. The proofs
of these properties are not given in [16], we provide them here.

Let χ be a Dirichlet character modulo q, and q be a positive integer. Then the Gauß sum
τ(χ) is the sum defined by

τ(χ) ..=
∑

b mod q

χ(b) e(b/q).

We will make use of the following two facts on Gauß sums.

Proposition 2.2. Let χ be a Dirichlet character modulo q. Then

(i) if χ = χ0, then τ(χ) = µ(q),

(ii) |τ(χ)| 6 √q.

Proof. We prove (i), and omit the proof of (ii) for brevity. See [1, §9] for a proof of (ii).

τ(χ0) =

q∑
b=1

χ0(b) e(b/q) =

q∑
b=1

(b,q)=1

e(b/q) =

q∑
d=1

µ(d)

q/d∑
a=1

e(ad/q) = µ(q)

since
∑

d|n µ(d) = 1 only if n = 1, and by summing roots of unity.

Next, we have the Ramanujan sum cq(n), defined by

cq(n) ..=
∑

b mod q
(b,q)=1

e(bn/q).

We will make use of the following.

Proposition 2.3. Let cq(n) be the Ramanujan sum defined above. Then

(i) cq(n) is multiplicative in q, i.e., cqr(n) = cq(n) cr(n),

(ii) for p prime,

cp(n) =

{
ϕ(p) if p | n
−1 otherwise.

Proof. For (i), observe that

1(q) ∗ cq(n) =
∑
d|q

cq/d(n) =
∑
d|q

∑
b mod q
(b,q)=d

e(bn/q) =
∑

b mod q

e(bn/q) = (1n≡0 mod q) q

11



§2.3. Bounds on S(N,α) Luke Collins

by summing roots of unity. Convolving with µ both sides, we get that

cq(n) =
∑
d|(q,n)

dµ(q/d) (2.3)

by proposition 1.2. We conclude that cq(n) is always an integer, and that it is multiplicative
in q, since it depends only on its divisors. Now for (ii), observe that if p | n, then by
(2.3), cp(n) =

∑
d|p dµ(p/d) = µ(p) + p µ(1) = p − 1 = ϕ(p), whereas if p - n, cp(n) =∑

d|1 dµ(p/d) = µ(p) = −1.

2.3 Bounds on S(N,α)

In this section, we will make use of theorem 2.1 to obtain a bound for the sum S(N,α).
Notice that since |e(nα)| = 1, we have the obvious bound

S(N,α) 6 Ψ(N) Î N (2.4)

by the PNT. Now in the introduction, we mentioned that the integrand in r(N) (1.1)
turns out to be large when α is close to rational points with small denominators. Since
this will be important in proving theorem 1.3, we will need better estimates for S(N,α)
which incorporate this information about α. Let us start by giving a bound for S(x, α) for
rational values of α.

Proposition 2.4. Let a/q be a rational number with a coprime to q. Then on GRH, we
have

S(x, a/q) =
µ(q)

ϕ(q)
x+O(

√
qx log2 qx). (2.5)

Proof. Notice that terms with (n, q) > 1 barely contribute to the sum, in particular,

S(x, a/q) =
∑
n6x

(n,q)=1

Λ(n) e(an/q) +O(log x log q), (2.6)

since q has Î log q prime factors, and pk | q implies that Λ(p)+ · · ·+Λ(pk) = log pk Î log x.
Now at this stage, we could split n into progressions mod q and invoke (2.2), but this
introduces an error of O(q

√
x log2 qx) which is not good enough to get (2.5). Instead, we

proceed as follows. For (an, q) = 1, by orthogonality of Dirichlet characters, we have

e(an/q) =
∑

b mod q

e(b/q)1b≡an mod q

=
1

ϕ(q)

∑
b mod q

∑
χ mod q

χ(b) χ̄(an) e(b/q) =
1

ϕ(q)

∑
χ mod q

τ(χ) χ̄(an).

12



§2.3. Bounds on S(N,α) Luke Collins

Using this in (2.6), we get

S(x, a/q) =
1

ϕ(q)

∑
χ mod q

τ(χ) χ̄(a) Ψ(x, χ̄) +O(log x log q).

By theorem 2.1 and proposition 2.2(ii), we see that for all non-principal characters, the
contribution to the above sum is Î

√
qx log2 qx, and for the principal character χ0, the

contribution is

1

ϕ(q)
τ(χ0)(x+O(

√
x log2 qx)) =

µ(q)

ϕ(q)
(x+O(

√
x log2 qx)),

by proposition 2.2(i).

Next, we use summation by parts on the result of proposition 2.4 to obtain a bound for α
“close to” a rational a/q.

Corollary 2.5. Let α = a/q + β, where a is coprime to q and |β| < 1/2. Then on GRH,
we have

S(N,α) =
µ(q)

ϕ(q)

∫ N

0
e(βx) dx+O((1 + |β|N)

√
qN log2 qN).

Proof. We have

S(N,α) =
∑
n6N

Λ(n) e(an/q) e(nβ)

=

∫ N

0
e(xβ) d(S(x, a/q))

=

∫ N

0
e(xβ) d

(
µ(q)

ϕ(q)
x+ ε(x, a/q)

)
by proposition 2.4, where ε(x, a/q) denotes the error term. The first term of the integral
gives the first term of the corollary. For the second term, integration by parts yields∫ N

0
e(xβ) d(ε(x, a/q)) = e(Nβ) ε(N, a/q)− 2πiβ

∫ N

0
e(xβ) ε(x, a/q) dx

Î O(
√
qN log2N)− 2πiβ N O(

√
qN log2 qN)

Î O((1 + |β|N)
√
qN log2 qN),

as required.

Next, let us make precise the notion of “close to rational points with small denominators”,
which we alluded to in the introduction.

13



§2.4. Conditional Proof of Vinogradov’s Theorem Luke Collins

Definition 2.6. We shall say that a rational number a/q with (a, q) = 1 approximates the
number α ∈ R if

|α− a/q| 6 1/qQ,

where Q > q is suitably large (we define “suitably large” in a bit, in terms of N).

Such rational approximations of real numbers are known as Diophantine approximations.
It turns out to be an easy consequence of the pigeonhole principle that we can always find
one for Q > q, see proposition A.1 in appendix A.

Now, notice that by corollary 2.5, if a/q approximates α, then

S(N,α) Î
N

ϕ(q)
+
(

1 +
N

qQ

)√
qN log2N

Î
N

ϕ(q)
+
(√

QN +
N 3/2

Q

)
log2N,

and by choosing Q = N 2/3, we get that

S(N,α) Î
N

ϕ(q)
+N

5/6+ε (2.7)

for any ε > 0.

2.4 Conditional Proof of Vinogradov’s Theorem

Motivated by (2.7), following Hardy–Littlewood, we shall say, for the remainder of the
chapter, that α is close to a rational number with small denominator if there exists a/q
which approximates α, with Q = N 2/3 and q 6 log10N (the latter condition is for “small
denominators”, the power 10 is arbitrary). If α is such a number, we say α lies on a major
arc, and denote the set of such points by M. Otherwise, α lies on a minor arc, and the
set of such points is denoted m. In other words, we have

M =
⋃

q6log10N

⋃
16a6q
(a,q)=1

(
a/q − 1/qQ, a/q + 1/qQ

)
and m = (R/Z)rM.

This idea of partitioning the circle R/Z into M∪m is Hardy–Littlewood’s circle method.
The bulk of the contribution to r(N) (1.1) (i.e., the main term in (1.2)) will come from
integrating over the major arcs, and then we can bound the contribution on the minor arcs
close to zero. Note that both M and m are measurable, and we are therefore justified in
splitting the integral. Moreover, for N large enough, we have that M is a union of disjoint
intervals: indeed, if q, q′ 6 log10N , and a/q, b/q′ ∈M with a/q 6= b/q′, then∣∣a/q − b/q′

∣∣ > 1/qq′ > 1/log20N > 2/N2/3

14



§2.4. Conditional Proof of Vinogradov’s Theorem Luke Collins

for N sufficiently large, so a/q, b/q′ cannot lie in the same arc.

A historical note: the initial idea behind the circle method originates in the joint work of
G. H. Hardy and S. Ramanujan from 1916, when they were studying asymptotics of integer
partitions. Hardy and J. E. Littlewood later developed the method in a series of papers
on Waring’s problem.[5, 18]

Now, let us start by bounding the minor arc contribution to (1.1).

Proposition 2.7 (The minor arc contribution). On GRH,∣∣∣ ∫
m

S(N,α)3 e(−Nα) dα
∣∣∣ Î

N2

log8N
.

Proof. Since ϕ(q) Ï q/ log log q Ï q/ log q (see [6, ch. 18, thm. 328]), for q > log10N , we
have ϕ(q) > log9N , therefore by (2.7), we have S(N,α) Î N/log9N, so∣∣∣ ∫

m

S(N,α)3 e(−Nα) dα
∣∣∣ 6 ∫

m

|S(N,α)|3 dα

Î
N

log9N

∫ 1

0
|S(N,α)|2 dα =

N

log9N

∑
n6N

Λ(n)2 Î
N2

log8N
,

since
∑

n6N Λ(n)2 Î N logN .

Notice that although we get some saving using Parseval’s identity, the step of extracting
the N/ log9N term is quite costly, yet we are still able to prove the result. This attests
to the fact that (2.7) is an excellent bound, resting on the strength of GRH. Next, we
determine the major arc contribution, which we expect to dominate the contribution of
O(N2/ log8N) from the minor arcs. The proof here is much more detailed than the one
given in [16].

Proposition 2.8 (The major arc contribution). On GRH,∫
M

S(N,α)3 e(−Nα) dα ∼ 1
2 S(N)N2.

Proof. We have |α− a/q| 6 1/qQ with q 6 log10N , so the major arc contribution equals∑
q6log10N

∑
16a6q
(a,q)=1

∫ 1/qQ

−1/qQ
S(N, a/q + β)3 e(−N(a/q + β)) dβ, (2.8)

since intervals for different rational numbers are disjoint. Now, observe that∫ N

0
e(βx) dx =

e(Nβ)− 1

2πiβ
Î

1

‖β‖
,

15



§2.4. Conditional Proof of Vinogradov’s Theorem Luke Collins

and also
∫ N
0 e(βx) dx 6

∫ N
0 |e(βx)| dx = N , so we have

∫ N
0 e(βx) dx Î min{N, 1/‖β‖}. Thus

by corollary 2.5, S(N, a/q + β)3 equals

µ(q)3

ϕ(q)3

(∫ N

0
e(βx) dx

)3
+O

( 1

ϕ(q)2
min

{
N2,

1

‖β‖2
}

(1 + ‖β‖N)
√
qN log2N

)
+O

( 1

ϕ(q)
min

{
N,

1

‖β‖

}
(1 + ‖β‖N)2qN log4N

)
+O((1 + ‖β‖N)3(qN)

3/2 log6N).

Now notice that min{N2, 1
‖β‖2 }(1 + ‖β‖N) Î N2 and min{N, 1

‖β‖}(1 + ‖β‖N) Î N , and

also ‖β‖ 6 1/qQ = 1/qN2/3. Therefore, since q 6 log10N Î N ε for all ε > 0, the error terms
become

O(N2
√
N1+εN ε) +O(N (1 +N

1/3)N1+ε) +O((1 +N
1/3)3N

3/2+ε) = O(N
5/2+ε).

Thus, we can write (2.8) as∑
q6log10N

∑
16a6q
(a,q)=1

∫ 1/qQ

−1/qQ

(µ(q)3

ϕ(q)3

(∫ N

0
e(βx) dx

)3
+O(N

5/2+ε)
)
e(−N(a/q + β)) dβ

=
∑

q6log10N

µ(q)3

ϕ(q)3

( ∑
16a6q
(a,q)=1

e(−Na/q)

)(∫ 1/qQ

−1/qQ

(∫ N

0
e(βx) dx

)3

e(−Nβ) dβ

)
+O(N

11/6+ε),

(2.9)

since
∫ 1/qQ
−1/qQO(N 5/2+ε) dβ Î N 5/2+εN−2/3 Î N 11/6+ε. Let us simplify the integral first. We

make the substitutions x = Ny and Nβ = ξ, and the integral becomes

N2

∫ N/qQ

−N/qQ

(∫ 1

0
e(yξ) dy

)3
e(−ξ) dξ

=N2

(∫ ∞
−∞

(∫ 1

0
e(yξ) dy

)3
e(−ξ) dξ +O

( 1

(N/qQ)2

))
, (2.10)

since the integrand is Î 1/ξ3. Notice that the integral is simply

­

(1̂[0,1])3(1),

which, by the convolution theorem, equals (1[0,1] ?1[0,1] ?1[0,1])(1). We have 1[0,1] ?1[0,1] =
4[0,2], where 4[0,2] denotes a symmetric triangle of height 1 on the interval [0, 2], i.e.,
4[0,2](x) = (1− |1− x|)1[0,2](x). The second convolution evaluated at 1 is

(1[0,1] ?4[0,2])(1) =

∫ ∞
−∞
4[0,2](τ)1[0,1](1− τ) dτ =

∫ 1

0
τ dτ =

1

2
,

16



§2.4. Conditional Proof of Vinogradov’s Theorem Luke Collins

and so (2.10) equals N2/2 + O((qQ)2) = N2/2 + O(N 4/3+ε), which means we can write our
major arc contribution in (2.9) as

N2

2

∑
q6log10N

µ(q)3

ϕ(q)3

( ∑
16a6q
(a,q)=1

e(−Na/q)

)
+O(N

11/6+ε).

Now we can recognise the inner sum as cq(−N). We are interested in it for square-free q,
since otherwise the factor of µ(q)3 annihilates the summand. Since both cq(n) and ϕ are
multiplicative, we have that cq(−N) 6 ϕ(q) by proposition 2.3. Thus we can extend the
outer sum to infinity, with error term at most

∑
q>log10N

µ(q)3/ϕ(q)2 Î 1/log10N, and so our
major arc contribution is asymptotic to

N2

2

∞∑
q=1

µ(q)3

ϕ(q)3
cq(−N) =

N2

2

∏
p

(
1− cp(−N)

ϕ(p)3

)
=
N2

2

∏
p|N

(
1− 1

(p− 1)2

)∏
p-N

(
1 +

1

(p− 1)3

)
,

which completes the proof.

Therefore we conclude that

r(N) =

∫
M

S(N,α)3 e(−Nα) dα+

∫
m

S(N,α)3 e(−Nα) dα

= 1
2 S(N)N2 +O(N2/ log8N),

which establishes theorem 1.3 on GRH.

Remark 2.9. Notice that in our proof of the major arc estimate, we made use of corol-
lary 2.5, which depends on GRH (because of the dependency on theorem 2.1). However
instead of theorem 2.1, we can adapt the argument to use the bound

Ψ(x, χ) Î x exp(−cB
√

log x)

for non-principal χ (where cB is a constant2), which is a consequence of Siegel’s theorem
and does not depend on GRH (see [1, §22] for a derivation). Indeed, in [1, §26], the bound∫

M

S(α,N)3 e(−Nα) dα = 1
2S(N)N2 +O(N2/ logB−1N)

is derived this way. Thus the real work in making the proof unconditional will be in the
treatment of the minor arcs.

2cB depends on B, where B is such that q 6 logB N , in this chapter we have B = 10.
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Chapter 3

Vinogradov’s Proof

The key to Vinogradov’s proof is in the careful treatment of exponential sums to bound
the contribution of the minor arcs. In particular, we will be making use of the following
bound.

Theorem 3.1 (Vinogradov’s Bound). Let α be a real number, let a/q be a rational number
such that |α− a/q| 6 1/q2 where (a, q) = 1, and suppose N > q. Then

S(N,α) Î

( N
√
q

+N
4/5 +

√
Nq
)

log4N.

In view of this theorem, we shall adjust slightly our definitions of major and minor arcs.
We shall say that the rational number a/q approximates α if |α − a/q| 6 1/q2. (In other
words, we are taking Q = q rather than Q = N 2/3 as in the last chapter.) We shall say that
α is close to a rational number if there exists a/q which approximates α, with q 6 logB N ,
where B > 0 will be specified later. If α is such a number, we say α lies on a major arc,
and denote the set of such points by M. Otherwise, α lies on a minor arc, and the set of
such points is denoted m = (R/Z)rM.

3.1 Vaughan’s Identity

In [19], Vinogradov introduces a technique for estimating sums of the form
∑

p6N f(p)
where f is periodic, e.g., f(p) = e(pα). Following [20, ch. ix], set P ..=

∏
p6
√
N p. Then

the sieve of Eratosthenes asserts that for 1 6 n 6 N , (n, P ) = 1 if and only if n = 1 or n
is a prime in the range

√
N 6 n 6 N . Thus

f(1) +
∑

√
N6p6N

f(p) =
∑
n6N

(n,P )=1

f(n) =
∑
d|P
d6N

µ(d)
∑
y6N/d

f(yd),

18



§3.1. Vaughan’s Identity Luke Collins

and we are led to bound sums of the form
∑

y6N/d f(yd). We would like to show that these
sums are small, but we cannot hope to get much cancellation when d is nearly as large
as N , so Vinogradov rearranges the terms arising from δN 6 d 6 N with d | P , but this
becomes rather complicated.

In [18, ch. 3], Vaughan simplifies Vinogradov’s method substantially. He starts by giving
the following identity.

Proposition 3.2 (Vaughan, [18]). For a function f , let f6A and f>A denote the functions
f6A(x) ..= f(x)1x6A, and f>A(x) ..= f(x)1x>A respectively. In this notation, we have

Λ = µ6X ∗ log−µ6X ∗ Λ6Y ∗ 1+ µ>X ∗ Λ>Y ∗ 1+ Λ6Y . (3.1)

In [18], Vaughan obtains this as a consequence of another combinatorial identity which he
proves directly. To make things simpler here, we have stated the result in terms of Dirichlet
convolutions instead, so that we may give an easy proof by using known properties of
convolutions.

Proof. The result is essentially a consequence of the fact that 1∗µ = 1=1 (proposition 1.2).
Indeed,

Λ = Λ>Y + Λ6Y

= Λ>Y ∗ (1 ∗ µ) + Λ6Y

= Λ>Y ∗ 1 ∗ (µ6X + µ>X) + Λ6Y

= (Λ− Λ6Y ) ∗ 1 ∗ µ6X + Λ>Y ∗ 1 ∗ µ>X + Λ6Y

= (Λ ∗ 1) ∗ µ6X − Λ6Y ∗ 1 ∗ µ6X + Λ>Y ∗ 1 ∗ µ>X + Λ6Y

= µ6X ∗ log−µ6X ∗ Λ6Y ∗ 1+ µ>X ∗ Λ>Y ∗ 1+ Λ6Y ,

as required.

The motivation behind this identity is to express Λ in terms of sums of the form
∑

x|N,x6X ax
ranging over small numbers (called type i sums), and sums of the form

∑
xy=N,x>X,y>Y axby

which range over large numbers (called type ii sums). Sums of type i can be dealt with by
bounding the magnitude of the inner sum, whereas type ii sums can be dealt with using
bilinear methods (usually Cauchy–Schwarz[18]), as we shall see in the proof of Vinogradov’s
bound.

Applying the identity to S(N,α), by proposition A.2 (appendix A), we get that

S(N,α) =
∑
n6N

( ∑
xy=n
x6X

µ(x) log y −
∑
xyz=n

x6X,y6Y

µ(x) Λ(y) +
∑
xyz=n

x>X,y>Y

µ(x) Λ(y) + Λ6Y (n)

)
e(αn)
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§3.2. Proving Vinogradov’s Bound Luke Collins

=
∑
x6X

∑
y6N/x

µ(x) (log y) e(αxy)−
∑
x6XY

∑
y6N/x

( ∑
dz=x

d6X,z6Y

µ(d) Λ(z)
)
e(αxy)

+
∑
x>X

∑
Y <y6N/x

(∑
d|x
d6Z

µ(d)
)

Λ(y) e(αxy) + S(Y, α)

=.. Si,1 + Si,2 + Sii +O(Y ). (3.2)

3.2 Proving Vinogradov’s Bound

Before we can prove theorem 3.1, we need the following technical result. The result is
stated this way in [18], but we give a proof adapted from [1]. We gloss over the detail that
the numbers ra/q are “spread out” mod 1, a proof of this can be seen in [2].

Lemma 3.3. Suppose that A,B, α are real numbers with A,B > 1, and that |α−a/q| 6 1/q2

with (a, q) = 1. Then∑
x6A

min
{AB
x
,

1

‖αx‖

}
Î AB

(1

q
+

1

B
+

q

AB

)
log(2Aq).

Proof. Let S denote the sum. Writing x = qj + r, we have

S 6
∑

06j6A/q

∑
r6q

min
{ AB

qj + r
,

1

‖α(qj + r)‖

}
.

Now let β ..= α− a/q (notice |β| 6 1/q2). Then ‖α(qj + r)‖ = ‖ra/q + jqβ + rβ‖, and terms
with j = 0 and 1 6 r 6 q/2 have |rβ| 6 1/2q, which implies that their contribution to the
sum is

Î
∑
r6q/2

1

‖ra/q‖ − 1/2q
6

∑
d mod q
d6≡0

1

‖d/a‖ − 1/2q
6 2

∑
16d6q/2

1
d/q − 1/2q

Î q
∑
n6q−1

1

n
Î q log 2q.

Now the remaining terms contribute

Î
∑

06j6A/q

∑
r6q

min
{ AB

q(j + 1)
,

1

‖ra/q + jqβ + rβ‖

}
,

and for fixed j, the values of ra/q + jqβ + rβ are “spread out” modulo 1 for r = 1, . . . , q,
thus we get a contribution∑

06j6A/q

( AB

q(j + 1)
+
∑
k6q/2

q

k

)
Î
AB

q
log(2A) +

(A
q

+ 1
)
q log(2q),

which completes the proof.
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§3.2. Proving Vinogradov’s Bound Luke Collins

Now we can give the proof of Vinogradov’s bound. We follow [18] here again, but give
much more detail, referring to [7, ch. 2].

Proof of Theorem 3.1. Recall that by (3.2), we may write S(N,α) = Si,1+Si,2+Sii+O(Y ).
We start by bounding the two type i sums, Si,1 and Si,2. Writing log y =

∫ y
1
dt
t , Si,1 equals

∑
x6X

∑
y6N/x

µ(x)

∫ y

1

e(αxy)

t
dt =

∑
x6X

µ(x)

∫ N/x

1

∑
t6y6N/x

e(αxy)

t
dt,

and because ∣∣∣ ∑
t6y6N/x

e(αxy)
∣∣∣ =

∣∣∣e(αx(1 + bN/xc))− e(αxdte)
e(αx)− 1

∣∣∣
6

2

|e(αx/2)− e(−αx/2)|
=

1

| sin(παx)|
6

1

2‖αx‖
,

together with the trivial bound |
∑

t6y6N/x e(αxy)| 6 N/x, we get that

Si,1 Î logN
∑
x6X

min
{N
x
,

1

‖αx‖

}
.

Also,
∑

dz=x µ(d) Λ(z) Î log x, so similarly we get that Si,2 Î
∑

x6XY

∫ x
1

∑
t6y6N/x

e(αxy)
t dt,

and using the same bound for
∑
e(αxy), that Si,2 Î logN

∑
x6XY min{N/x, 1/‖αx‖}. Putting

X = N 2/5 = Y and applying lemma 3.3 with A = XY and B = N 1/5, we get

Si,1, Si,2 Î (logN)N
(1

q
+

1

N 1/5
+

q

N

)
logN = (log2N)

(N
q

+N
4/5 + q

)
.

Next we treat the type ii sum Sii, which gives the main term. Let k be the integer such
that 2kN 4/5 6 N 6 2k+1N 4/5, and set A = {2`N 2/5 : ` = 1, . . . , k}. Then we can split Sii

over intervals [M, 2M ] for M ∈ A:

Sii =
∑
M∈A

S(M)

where
S(M) =

∑
M<x62M

∑
X<y6N/x

(∑
d|x
d6X

µ(d)
)

Λ(y) e(αxy)

(taking Z = X). Now we apply Cauchy–Schwarz to extract the two inner sums

|S(M)|2 =
∣∣∣ ∑
M<x62M

(∑
d|x
d6X

µ(d)
)( ∑

X<y6N/x

Λ(y) e(αxy)
)∣∣∣2
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6
∑

M<x62M

∣∣∣ ∑
d|x
d6X

µ(d)
∣∣∣2 ∑
M<x62M

∣∣∣ ∑
X<y6N/x

Λ(y) e(αxy)
∣∣∣2

6
∑
x62M

∣∣∣∑
d|x

1
∣∣∣2 ∑
M<x62M

∣∣∣ ∑
X<y6N/x

Λ(y) e(αxy)
∣∣∣2

=
∑
x62M

d(x)2
∑

M<x62M

∣∣∣ ∑
X<y6N/x

Λ(y) e(αxy)
∣∣∣2.

∑
x6A d(x)2 Î A log3 2A (see proposition A.3 in appendix A), so we have

|S(M)|2 Î M log3M
∑

M<x62M

∑
X<y6N/x

Λ(y) e(αxy)
∑

X<z6N/x

Λ(z) e(αxz)

Î M log3M
∑

M<x62M

∑
X<y6N/x

∑
X<z6N/x

Λ(y) Λ(z) e(αx(y − z))

Î M log3M
∑

y6N/M

Λ(y)
∑

z6N/M

Λ(z)
∑

M<x62M

e(αx(y − z))

Î M log5N
∑

y6N/M

∑
z6N/M

min
{
M,

1

‖α(y − z)‖

}
,

then by lemma 3.3,

|S(M)|2 Î N log6N
(N
q

+M +
N

M
+ q
)
,

and so

Sii Î
∑
M∈A

log3N
( N
√
q

+
√
NM +

N√
M

+
√
Nq
)

Î

( N
√
q

+N
4/5 +

√
Nq
)

log4N,

as required.

3.3 Deducing Vinogradov’s theorem

In this section, we adapt the reasoning presented in the conclusion of [1, ch. 26].

Recall that in our conditional proof, the key to bounding the minor arcs was the bound
in (2.7), which required GRH. Our new bound, although worse than (2.7), is still strong
enough for us to prove theorem 1.3.

By Dirichlet’s theorem on Diophantine approximation (proposition A.1), we can approx-
imate α by a/q with |α − a/q| 6 1/qQ 6 1/q2, taking Q = N log−B N . We said that if
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q 6 logB N , then α ∈ M, otherwise, α ∈ m. Thus for α ∈ m, we have logB N < q 6
N log−B N , and so

S(N,α) Î N log−
B/2+4N

by Vinogradov’s bound (theorem 3.1). Proceeding similarly to the proof of proposition 2.7,
we obtain that ∫

m

S(N,α)3 e(−Nα) dα Î N2 log−
B/2+5N.

Now recall that in the last chapter, the major arcs consisted of reals which can be approx-
imated with denominator q 6 log10N , where the integer 10 was arbitrary. But if we put
B = 10 into the above, we get an error of N2, which is not good enough for the proof!
If we adjust the definition of minor arcs by taking any B > 10, then we can adapt the
proof of proposition 2.8 to still get the same result, but with an error of O(N2/ logB N)
(rather than O(N2/ log10N), which is what we got in the end). Thus the term 1

2N
2S(N)

dominates the minor arc contribution, and the proof is complete.
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Chapter 4

Helfgott’s Proof

In [10], Helfgott studies the sum

Sη(x, α) =
∑
n

Λ(n) e(αn) η(n/x), (4.1)

where η : R→ R is a smooth function which decays fast enough for convergence. (Usually
η(t) = 0 for t > 1, so x here is playing a similar role to our usual upper bound N .) Using
different weights η, Helfgott is able to get more control over explicit constants in his bounds
in order to establish that the contribution over the major arcs wins over that of the minor
arcs for N > 1027.

For our considerations, we are interested in Helfgott’s techniques for improving the bounds,
but not so much in explicit constants. The main bound which Helfgott achieves is the
following.

Theorem 4.1. Let Sη(x, α) be as in (4.1), with η(t) = 4 max{log 2 − | log 2t|, 0}. Let
2α = a/q + δ/x with a, q coprime integers, where |δ/x| 6 1/qQ, Q = (3/4)x2/3, and q 6 3

√
x/6.

Then

|Sη(x, α)| Î x log q√
ϕ(q)

. (4.2)

Comparing this with the bound in theorem 3.1, we notice that the improvement is essen-
tially in the removal of of four logarithm factors. Throughout this chapter we will use some
results from previous chapters, such as Vaughan’s identity and the lemmas in chapter 3,
but state them in a different way to be consistent with Helfgott’s notation in [11].

4.1 Main Ideas

The general strategy of Helfgott’s proof is similar to that of the unconditional proof pre-
sented in chapter 3, utilising the circle method and Vaughan’s identity to obtain the bound
in (4.2).
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In his proof, the major arcs M consist of those α ∈ R/Z which can be approximated (in
the usual sense of definition 2.6) with q 6 300 000 and Q a constant times x/300 000. The
major arc bounds which Helfgott obtains rely on verifying GRH up to a given imaginary
height T in the complex plane, i.e., showing that L(s, χ) has no zeros with <(s) 6= 1/2 and
|=(s)| < T . These bounds work only for |δ| < 4 · 300 000/q, where α = a/q + δ/x.

Thus for the minor arcs m, we want a bound on |Sη(x, α)| which decreases as q and δ
increase, where α = a/q + δ/x, and because of the restrictions on the major arc bounds, we
cannot allow any log x factors in front of terms such as x/

√
q, because for large x we would

have that this is worse than the trivial bound x (2.4). Helfgott remarks that a main bound
proportional to (log2 q/

√
q)x was not good enough either for computing purposes, such a

bound was obtained by Tao in 2014.[11, 17] We should also mention that there are better
asymptotic bounds than (4.2) in the literature. Indeed, in [14], Ramaré gives the bound

|S(x, an/q)| 6 13 000

√
q

ϕ(q)
x,

which is the best sort of bound one expects to obtain through Vinogradov’s method, but
the large explicit constant, in addition to the requirement q 6 x1/48, makes this bound un-
suitable for keeping the explicit constants small. Particularly because we care mainly about
q around 300 000, which is the cut-off point that Helfgott sets for major arc denominators.

The four log x factors are removed using ideas detailed in the following sections. Notice
that two of the four logarithm factors can be traced back to Vaughan’s identity itself
(indeed, summing over the left-hand side of (3.1) gives

∑
n6x Λ(n) = Ψ(n) ∼ x, but the

sum over the right-hand side is Î x log2 x). We closely follow chapters 1 and 3 of [11] in
this exposition.

4.2 Type I Sums

Just as before, we have two type i sums, namely

Si,1 =
∑
m6U

∑
n

µ(m) (log n) e(αmn) η(mn/x)

and
Si,2 =

∑
v6V

Λ(v)
∑
u6U

∑
n

µ(m) e(αvun) η(vun/x)

where α = a/q + δ/x, the difference here from chapter 3 is simply the smoothing η (we are
also using U and V in place of X and Y in Vaughan’s identity). As these are usually
treated the same, here we will study the simpler sum

Si =
∑
m6D

∑
n

µ(m) e(αmn) η(mn/x),
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where D is, as usual, a bound smaller than x. It suffices to study this sum because Si,1 is
basically of the same form (log is slowly varying so we can ignore it for small numbers), and
the inner sum of Si,2 is the same as Si with αv in place of α, which means that for q small
we can use Si to estimate Si,2. For q not small, we can treat Si,2 as

∑
n(Λ6V ∗ µ6U )(n)

and bound it trivially (by log n).

Now recall that in Vinogradov’s proof, we bound |
∑

n6N e(αn)| by min{N, 1/‖α‖}, and
invoke lemma 3.3. The proof of the lemma essentially involved splitting up the sum into
sums of length q and bounding ‖α‖ from below. Applying this directly to our sum we get
a bound of the form∣∣∣ ∑

y<m6y+q

µ(m)
∑
n6N

e(αmn)
∣∣∣ 6 ∑

y<m6y+q

∣∣∣ ∑
n6N

e(αmn)
∣∣∣

6 2 min
{
x/y, q

}
+ 2

∑
r6(q−1)/2

1/2
r/q

Î 2 min
{
x/y, q

}
+ q log q

for all y. There are two obvious improvements to be made here, firstly we can estimating
the inner sum more precisely. One can define a smoothing η and get that∣∣∣∑

n6N

e(αn) η(n/x)
∣∣∣ 6 min

{
x‖η‖1 +

‖η′‖1
2

,
‖η′‖1

2| sinπα|
,
‖η̂′′‖∞

4x sin2 πα

}
, (4.3)

where ‖ · ‖r denotes the Lr norm
( ∫
R
| · |r

)1/r
.[10] This gives an improvement for large m,

however the resulting term is still Î x/y, resulting in a contribution of (x log x)/q to Si

(so still not log-free). When m is small, the terms which cause mα to be close to zero are
those with q | m. If we exclude them, we can get a bound of the form∑

y<m6y+q
q-m

min
{
A,

B

| sinπαn|
,

C

| sinπαn|2
}

Î min
{
Cq2,

√
AC,Bqmax{2, log Cq/B}

}
,

where m is small in the sense that y+ q 6 Q/2, Q being the usual value so that |α− a/q| 6
1/qQ holds. There are still terms having m 6 min{D,Q/2} with q | m and those with
Q/2 < m 6 D left. For the former, we use the Poisson summation formula (Σf = Σf̂)
to estimate the inner sum. Summing over m without applying the triangle inequality (in
contrast to the above), we get the main term

xµ(q)

q
η̂(−δ)

∑
a6min{D,Q/2}/q

(a,q)=1

µ(a)

a
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where aq = m. Now comes the second improvement: cancellation over µ. It can be shown
that the sum over a is at most 1.[3] This does not give us back a factor of log x though.
Luckily, in [15], Ramaré provides the bound∣∣∣ ∑

a6x
(a,q)=1

µ(a)

a

∣∣∣ 6 4

5

q

ϕ(q)

1

log x/q

for q 6 x. This bound is obtained by non-elementary methods (using known properties of
the Riemann ζ function). Finally, for m > Q/2, we can obtain a bound of the form∑

y<m6y+q

min
{
A,

C

| sinπαn|2
}

Î A+ q
√
AC (4.4)

for any y, using ideas not dissimilar to the proof of lemma 3.3. The term A in the bound
is proportional to ‖η1‖x/y (from (4.3)), which then results in a multiple of (x log x)/q in
Si. Since m is large here, αm being close to zero no longer necessarily corresponds to
terms with m ≡ 0 mod q, so we cannot extract them as before. So here, Helfgott reapplies
Dirichlet’s approximation theorem (proposition A.1) to obtain another approximation for
α, this time taking Q = x/|δq|. If δ is very small (in other words, if the original a/q is a very
good approximation) then there will be no terms with Q/2 < m 6 D, since Q will exceed
2D. If this is not the case, let a′/q′ be another approximation of α taking some Q′ > Q in
proposition A.1. Then |a/q− a′/q′| > 1/qq′, which implies that q′ > ε

1+εQ, and so if we apply
(4.4) with this new approximation instead, this effectively gets rid of A, since for the first
sum over y < m 6 y + q′ with y > Q/2, the contribution is at most x/(Q/2), and all other
contributions of A add up to Î (x log q)/q′.

Summing everything up produces a bound with main terms

xmin{1, 1/δ2}
ϕ(q) log x/q

, D, and q log(max{D/q, q}),

and in most cases, the main term is the first one. Notice this has the shape x/(ϕ(q) log x)
for small q, and decreases rapidly as the error δ increases.

4.3 Type II Sums

The type ii sum we have is

Sii =
∑
m

∑
n>V

(1 ∗ µ>U )(m) Λ(n) e(αmn) η(mn/x).

We assume that the smoothing η is the multiplicative convolution of two functions η0 and
η1, i.e., η(t) = (η0 ~ η1)(t) ..=

∫∞
0 η0(τ) η1(t/τ)

dτ
τ . Analogously to the proof of theorem 3.1,
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we write the sum as∫ x/U

V

∑
m

(∑
d>U
d|m

µ(d)
)
η0

( m

x/W

)∑
n>V

Λ(n) e(αmn) η1(n/W)
dW

W

so that the we can apply Cauchy–Schwarz to the integrand. Indeed, the integrand is at
most

√
S1(U,W )S2(U,W ) where

S1(U,W ) ..=
∑

x/2W6m6x/W

∣∣∣∑
d>U
d|m

µ(d)
∣∣∣2, S2(U,W ) ..=

∑
x/2W6m6x/W

∣∣∣ ∑
max{V,W/2}6n6W

Λ(n) e(αmn)
∣∣∣2.

Now in the last chapter, we would bound S1(U,W ) by something like x/W log3(x/W) using
proposition A.3. What we would like here is a bound Î x/W . Indeed, this is possible, using
bounds on

∑
n6t µ(n)/n, and properties of the divisor sum function σ(n) = n

∏
p|n
(
1 + 1

p

)
.

To bound S2, we make use of the large sieve. The idea is the following. Suppose f : Z→ C

is a function supported on an interval I of length `. Parseval’s identity gives us that∫
R/Z |f̂(α)|2 dα =

∑
n |f(n)|2. If we take a “sample” of reasonably spaced out points in C,

say α1, . . . , αk where |αi − αj | > β for i 6= j, we have that∑
i6k

|f̂(αi)|2 6 (`+ 1/β)
∑
n

|f(n)|2,

which we can think of as a statistical equivalent of Parseval’s identity. Now suppose α1 = α,
α2 = 2α, and so on. If α = a/q, then the angles α1, . . . , αq are spaced out with a distance
of 1/q between any two, and αq+1 = α1. So by the above, we can split S2, which is a sum
over an interval of length x/2W , into q bits of length d(x/2Wq)e to get a bound of the form

logW

logW/2q

( x

ϕ(q)
+
qW

ϕ(q)

)
W (4.5)

after applying Montgomery’s inequality.1 Now if the error numerator |δ| is not close to
zero, then α1 and αq+1 are different, in particular αq+1 is at least q|δ|/x away from each αi.
Thus we can plug in these angles to the large sieve instead; namely α1, . . . , αm until there
is overlap (αm is the first within < 1/q of the others). Thus doing this d`/me 6 d`/(x/|δ|q)e
times, where ` = x/2W , we get a bound of d`/(x/|δ|q)e(W/2 + x/|δ|q)

∑
n |f(n)|2, which

results in about (Wx

Q
+ x
)

logW

provided ` > x/|δ|q. If not, there is no overlap, and we put all αi into the large sieve. The
total bound obtained this way is (W 2/4+xW/2|δ|q) logW . If ` is significantly than x/|δ|q,

1
∣∣∑

n αn

∣∣2µ(q)2
∏

p|q
ω(p)

p−ω(p)
6
∑

a6q,(a,q)=1 |
∑

n6N αne(an/q)|, see [13, pp. 27–29].
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then the αi “swarm” around rationals a/q. If we apply Montgomery’s inequality here, this
has the effect of spreading out these angles, while keeping them sufficiently separated. This
gives us a bound with the shape

logW

logW/|δ|q

( x

|δ|ϕ(q)
+
qW

ϕ(q)

)
W,

which saves a factor of |δ| when compared with (4.5).

Thus we have no log factors, apart from log x/UV which comes from evaluating the integral.
Thus we want to choose the parameters of Vaughan’s identity to be close to x to counteract
this, but at the same time we want to keep the term D = UV small, since it is one of the
main terms in the bound for the type i sums. Thus U and V are chosen so that

UV = x/
√
qmax(4, |δ|).

Combining everything, with various intricate arguments, Helfgott finally obtains the bound

|Sη(α, x)| 6
Rx,δ0q log δ0q + 0.5√

δ0ϕ(q)
x+

2.5x√
δ0q

+
2x

δ0q
Lx,δ0q,q + 3.36x

5/6,

where δ0 = max{2, |δ|4 },

Rx,t = 0.27125 log

(
1 +

log 4t

2 log 9x1/3

2.004t

)
+ 0.41415,

and
Lx,t,q =

q

ϕ(q)

(
13
4 log t+ 7.82

)
+ 13.66 log t+ 37.55.

The factor Rx,t is bounded, Helfgott states that for “difficult” values of x and δ0x it is still
less than one. We therefore have the main term in (4.2).
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Chapter 5

Conclusion

Let us end by giving a retrospective bird’s eye view of the proof, and compare the different
minor arc bounds we had in the different versions we saw. The general strategy is to ensure
that the quantity r(N), which counts the number of ways of representing N as the sum
of three prime powers, is positive (we saw in the introduction that proper prime powers
contribute little to r(N) overall). In particular, we achieve this by showing that

r(N) =

∫
M

S(N,α)3 e(−Nα) dα+

∫
m

S(N,α)3 e(−Nα) dα

is non-negative for large enough N , since the major arc contribution will be ∼ N2, and the
minor arc term will be O(N2 log−AN) for some A > 0.

The strategy for estimating the major arc integral is the following. Using either the PNT
in arithmetic progressions (on GRH) or Siegel’s theorem (unconditional), we can obtain
that S(N, a/q) ∼ (µ(q)/ϕ(q)) ·N . Then if M(a, q) denotes the arc centred at a/q, we have∫

M

S(N,α)3 e(−Nα) dα =
∑
q6Q

(a,q)=1

∫
M(a,q)

S(N,α)3 e(−Nα) dα

∼ N2
∑
q6Q

µ(q)

ϕ(q)3

∑
(a,q)=1

e(−Na/q) � N2.

Loosely speaking, Helfgott’s treatment of the major arcs is closer to the conditional proof
than the one using Siegel’s theorem, because the constants which come from Siegel’s the-
orem are not explicit. Indeed, to prove the bounds he obtains, he uses D. Platt’s finite
verification method to verify GRH up to a certain imaginary height.

For the minor arcs, the strategy is the following. In both Hardy–Littlewood and Vino-
gradov’s proof, we made use of Parseval’s identity to get that∫

m

S(N,α)3 e(−Nα) dα 6 sup
α∈m
|S(N,α)|

∑
n6N

Λ(n)2 Î sup
α∈m
|S(N,α)|N logN,
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so to win over the major arcs, we needed a bound at least as good as N/ log1+εN .
In the conditional proof, the good error terms in the conditional PNT in arithmetic
progressions (theorem 2.1) allowed us to deduce a bound on S(N,α) with main term
N/ϕ(q) Î N/ log9N (since we defined the minor arcs to have q > log10N). In the un-
conditional Vinogradov proof, we used Vaughan’s identity to carefully take advantage of
cancellation in exponential sums, obtaining a bound with main term (N log4N)/

√
q. Here

we had q > logB N with B unspecified, which makes the bound Î N log−
B/2+4N . Thus

taking any B > 10 gives us what we need.

Finally, Helfgott gives a bound of the form Î N log q/
√
ϕ(q) for S(N,α), but his approach

to bounding the minor arc contribution is different to the classical one, since the presence
of
∑

n6N Λ(n)2 introduces a logN factor so the bound is not log-free. In his proof, the

contribution over the minor arcs turns out to be proportional to ‖η+‖22‖η∗‖1, which are two
smoothing weights appearing in the minor arc integral

∫
m
|Sη+(N,α)|2Sη∗(N,α) e(−Nα) dα.

5.1 The Binary Goldbach Conjecture

Having developed this proof strategy, why not try to attack the binary Goldbach conjecture
in a similar way? If we let

r(N) =
∑

k1+k2=N

Λ(k1) Λ(k2) and S(N,α) =
∑
k6N

Λ(k) e(kα),

then just as in the ternary case, we get r(N) =
∫
R/Z S(N,α)2 e(−Nα) dα, so we would

want to define major and minor arcs so that

r(N) =

∫
M

S(N,α)2 e(−Nα) dα+

∫
m

S(N,α)2 e(−Nα) dα > 0.

(We similarly have that proper prime powers contribute a negligible amount). By analogous
arguments, we can establish that S(N, a/q) ∼ (µ(q)/ϕ(q))·N , and that for even N , S(N) =∑

q
µ(q)2

ϕ(q)2
∑

(a,q)=1 e(−Na/q) � 1. But this time, we get that∫
M

S(N,α)2 e(−Nα) dα � N,

but for the minor arc contribution, both pointwise and square-integral estimates are too
large; we have∫

R/Z
|S(N,α)|2 dα Î N logN and sup

α∈m
|S(N,α)|2 Î

N2

logAN

for any A > 0, which follow by Parseval and Vinogradov’s bound respectively. Therefore
it is simply not true that the minor arcs contribute less to r(N) than the major arcs do.
Thus, to prove the binary Goldbach conjecture, a fundamentally new idea is required.
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Appendix A

Auxiliary Results

Proposition A.1 (Dirichlet’s approximation theorem). Let α and Q be real numbers with
Q > 1. Then there exists a rational number a/q with (a, q) = 1 and 1 6 q 6 Q such that

|α− a/q| 6 1/qQ.

Proof. Let βt ..= αt− bαtc ∈ [0, 1) for t = 1, . . . , bQc. Partition [0, 1) into intervals

Br ..=

[
r − 1

bQc+ 1
,

r

bQc+ 1

)
where r = 1, . . . , bQc + 1. If there is a βt ∈ B1 or BbQc+1 then we are done. Indeed,
if βt ∈ B1, then |α − a/q| < 1/q(bQc+ 1) < 1/qQ where a = bαc and q = 1, and a similar
argument applies for BbQc+1. If not, then by the pigeonhole principle, there are βu, βv ∈ Br
for some u, v, r with u < v and 2 6 r 6 bQc. Set a ..= bαvc − bαuc and q ..= v − u. Then

|α− a/q| = 1/q |βv − βu| < 1/q(bQc+ 1) < 1/qQ,

as required.

Proposition A.2. Let N,X, Y be positive integers and f : N2 → C, g : N→ C. Then

(i)
∑
n6N

∑
xy=n
x6X

f(x, y) g(n) =
∑
x6X

∑
y6N/x

f(x, y) g(xy),

(ii)
∑
n6N

∑
xyz=n
x6X
y6Y

f(x, y) g(n) =
∑
x6XY

∑
y6N/x

∑
dz=x

d6X,z6Y

f(d, z) g(xy),

(iii)
∑
n6N

∑
xyz=n
x>X
y>Y

f(x, y) g(n) =
∑
x>X

∑
Y <y6N/x

∑
d|x
d6Z

f(d, y) g(xy) for any Z with XY Z > N .
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Proof. For (i), we have∑
n6N

∑
xy=n
x6X

f(x, y) g(n) =
∑
n6N

∑
x6X

1xy=n f(x, y) g(n)

=
∑
x6X

∑
n6N

1xy=n f(x, y) g(xy)

=
∑
x6X

∑
y6N/x

f(x, y) g(xy),

for (ii), let r = xy. Then∑
n6N

∑
xyz=n
x6X
y6Y

f(x, y) g(n) =
∑
n6N

∑
x6X

∑
y6Y

1xyz=n f(x, y) g(n)

=
∑
n6N

∑
x6X

∑
y6Y

( ∑
r6XY

1r=xy

)
1xyz=n f(x, y) g(rz)

=
∑
r6XY

∑
n6N

∑
x6X

∑
y6Y

1r=xy1xyz=n f(x, y) g(rz)

=
∑
r6XY

∑
z6N/r

∑
x6X

∑
y6Y

1r=xy1xyz=n f(x, y) g(rz)

=
∑
r6XY

∑
z6N/r

∑
xy=r
x6X
y6Y

f(x, y) g(rz),

and for (iii), suppose Z > N/XY . Then if xyz = n with x > X and y > Y , we have z 6 Z,
so ∑

n6N

∑
xyz=n
x>X
y>Y

f(x, y) g(n) =
∑
n6N

∑
x>X

∑
z6Z

1xyz=n1y>Y f(x, y) g(n)

=
∑
n6N

∑
x>X

∑
z6Z

(∑
r>X

1r=xz

)
1xyz=n1y>Y f(x, y) g(ry)

=
∑
r>X

∑
y6N/r

∑
z6Z

∑
x>X

1r=xz1xyz=n1y>Y f(x, y) g(ry)

=
∑
r>X

∑
Y <y6N/r

∑
z6Z

∑
x>X

1r=xz1xyz=n f(x, y) g(ry)

=
∑
r>X

∑
Y <y6N/r

∑
zx=r
z6Z

∑
x>X

1xyz=n f(x, y) g(ry)

=
∑
r>X

∑
Y <y6N/r

∑
zx=r
z6Z

f(x, y) g(ry).
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Proposition A.3. Let d(n) = #{m ∈ N : m | n}, i.e., the number of divisors of n. Then∑
x6n

d(x)2 Î n log3 n.

Proof. ∑
x6n

d2(x) =
∑
x6n

∑
a|x

∑
b|x

1 =
∑
a6n

∑
b6n

∑
k6n/ lcm{a,b}

1

6
∑
c6n

∑
k6n/c

∑
`6n/ck

∑
m6n/ck`

1

6
∑
c6n

∑
k6n/c

∑
`6n/ck

n/ck`

=
∑
c6n

∑
k6n/c

n/ck
∑
`6n/ck

1/̀

6
∑
c6n

∑
k6n/c

n/ck(log n+ 1)

6
∑
c6n

n/c(log n+ 1)2

6 n(log n+ 1)3.
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[14] Ramaré, O. On Bombieri’s asymptotic sieve. Journal of Number Theory 130, 5
(2010), 1155–1189.
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Riemann ζ function, 10
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