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Covers

We assume graphs are undirected and have no multiple edges.

Definition (Cover)

A cover of a graph G is another graph C for which there exists a
covering map.

A covering map is a surjection f : V (C )→ V (G ) which is a local
isomorphism; i.e., f bijectively maps N(v) to N(f (v)).

Example

Take G = . Then C =

is a cover of G , where the corresponding covering map identifies
vertices of the same colour.
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Double Covers

A double cover is a cover whose corresponding covering map
satisfies |f −1(v)| = 2 for all v ∈ V (G ).

Example

If we take G = , then D1 =

and D2 = are both double covers of G .

In this case, the covering map f is called a 2–1 projection.
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Canonical Double Cover

An easy way to get a double cover of a given graph G on the
vertices V (G ) = {1, . . . , n} is to set

V (C ) = {1, . . . , n, 1′, . . . , n′}, E (C ) = {uv ′, u′v : uv ∈ E (G )}.
Indeed, if we define f (x) = f (x ′) = x for all x = 1, . . . , n, then
f −1(v) = {v , v ′} for all v ∈ V (G ), and by definition, uv ∈ E (C ) if
and only if f (u)f (v) ∈ E (C ).

We call this is is called the canonical double cover of G , CDC(G ).
(Equivalently, this is the direct product G × K2.)

Example (CDC(K3) = C6)

1 2

3
CDC−−−→

1 2

3

1’ 2’

3’

1

2’ 3

1’

23’
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Another example

Example (CDC(K2,3) = 2K2,3)

1 2

3 4 5

CDC−−−→

1 2

3 4 5

1’ 2’

3’ 4’ 5’

1 2

3’ 4’ 5’

1’ 2’

3 4 5
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Some Easy Observations about CDCs

▶ For any G , CDC(G ) is a bipartite graph.
▶ CDC(G + H) = CDC(G ) + CDC(H).
▶ If G has adjacency matrix A, then the adjacency matrix of

CDC(G ) is given by

1 · · · n 1′ · · · n′ 
1.
.
.
n

O A
1′.
.
.
n′

A O

Consequently, the eigenvalues of C = CDC(G ) are ± those of
G . Indeed, if AGx = λx , then

AC

(x
x
)
= λ

(x
x
)

and AC

(−x
x
)
= −λ

(−x
x
)
.
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Some Easy Observations about CDCs

▶ Let G be a connected graph. Then

CDC(G ) connected ⇐⇒ G is not bipartite.

Proof.
(⇒). If CDC(G ) is connected, then there exists a path from 1 to
1′. But this must alternate between the partite sets:
1→ v ′1 → v2 → · · · → vk → 1′ (where k is odd), which
corresponds to the odd cycle 1→ v2 → · · · → vk → 1 in G .

(⇐). Suppose G is bipartite with partite sets U and V . Let
U,V ,U ′,V ′ denote the corresponding partite sets and their copies
in C = CDC(G ). Then C = C [U ∪ V ′] + C [U ′ ∪ V ] = 2G .

Thus for bipartite G we see that CDC(G ) = 2G .
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Our Initial Example

Earlier we looked at the graph

G = , which has CDC(G ) = ,

where the colouring indicates the corresponding 2–1 projection.

But notice that if we recolour as follows:

H = ←−−−−−−−−−
double cover of

,

It’s actually the CDC of H! In other words, we found a pair of
non-isomorphic graphs G and H such that CDC(G ) = CDC(H).
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The Question

Our Main Question

Suppose G and H are non-isomorphic, and CDC(G ) ≃ CDC(H).
What can we say about G and H?

Before having seen this pair (due to B. Zelinka), it wouldn’t have
seemed unreasonable to think that CDC(G ) ≃ CDC(H) implies
G ≃ H, since the construction is so simple and preserves so much
of the “structure” from the underlying graph.

Indeed, if we have the labelled CDC, all we need to do is identify x
and x ′ with the covering map f : x , x ′ 7→ x from earlier.

But an unlabelled CDC might have multiple 2–1 projections to
different base graphs.
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Some History and Remarks

▶ The notion of a CDC seems to have been around since 1976 in
a paper of Derek Waller (the idea of a “double cover” exists
from even before for topological spaces). A popular question
previously studied was: given a graph G , how many graphs C
exist such that C is a double cover of G? But this turns out to
be quite different from our question.

▶ Empirically, it is rare for graphs to have the same CDC and
not be isomorphic.

|V (G )| Non-isomorphic pairs with same CDC
6 1
7 4
8 32
9 292

(The graph data is available at https://lc.mt/walks.)
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An Easy Observation

▶ If CDC(G ) ≃ CDC(H) and G is connected, is H necessarily
connected? Answer: No since

CDC( ) = + ,

and

CDC( + ) = CDC( ) + CDC( ) = +

▶ But if CDC(G ) ≃ CDC(H) and G has an isolated vertex, then
H must have an isolated vertex as well; i.e.

CDC(G ) ≃ CDC(H) ⇐⇒ CDC(G + ) ≃ CDC(H + ).
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An Equivalent Condition

Recall that G and H are isomorphic iff PAGP−1 = AH , where P is
the permutation matrix (δiπ(j)) and π : V (G )→ V (H) is the
corresponding isomorphism.

Definition (Two-fold Isomorphism)

Let G and H be two graphs. If there exist permutation matrices P
and Q such that PAGQ = AH , then we say that G and H are
two-fold isomorphic, and write G

TF≃ H.

In Lauri, Mizzi & Scapellato (2008), the following characterisation
is given.

Theorem
For graphs G and H, CDC(G ) ≃ CDC(H) ⇐⇒ G

TF≃ H.

We give a different proof to theirs, using adjacency matrices.
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Theorem
For graphs G and H, CDC(G ) ≃ CDC(H) ⇐⇒ G

TF≃ H.

Proof.
(⇐= ) If G and H are TF-isomorphic, then by definition there are
permutation matrices R , Q such that AG = RAHQ. Then(

O R
QT O

)
︸ ︷︷ ︸

:=P

(
O AH

AH O

)
︸ ︷︷ ︸

CDC(H)

(
O Q
RT O

)
︸ ︷︷ ︸

PT

=

(
O RAHQ

(RAHQ)T O

)

=

(
O AG

AG O

)
︸ ︷︷ ︸

CDC(G)

so CDC(H) ≃ CDC(G ).
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Proof (continued).

( =⇒ ) Suppose CDC(G ) ≃ CDC(H). We can assume that both G
and H have no isolated vertices, because if they do, we can pair
them off. Now since CDC(G ) ≃ CDC(H), there exists a
permutation matrix P such that

PT
(
O AG

AG O

)
P =

(
O AH

AH O

)
=⇒

(
PT

11 PT
21

PT
12 PT

22

)(
O AG

AG O

)(
P11 P12
P21 P22

)
=

(
O AH

AH O

)
Multiplying out and comparing entries, we get that

PT
21AGP12 + PT

11AGP22 = AH (1)

PT
21AGP11 = PT

12AGP22 = O (2)
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Proof (continued).

Now define Q = (P11 + P21)
T and R = P22 + P12. Using the

obtained equations (1) and (2), we can expand QAGR to get

QAGR = AH . (3)

But are Q and R permutation matrices? Suppose not. Being the
sum of two submatrices of P , this can only happen if a row (and
column) are zero, e.g. if

P =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .

Observe that the key to this proof is the contradiction arising from
the introduction of an isolated vertex.
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QAGR = AH . (3)

But are Q and R permutation matrices? Suppose not. Being the
sum of two submatrices of P , this can only happen if a row (and
column) are zero.

But by (3) above, AH will have a row of zeros. This corresponds to
an isolated vertex in H — a contradiction.

Observe that the key to this proof is the contradiction arising from
the introduction of an isolated vertex.
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Walks

Recall that a walk in G is a sequence of vertices

v1, v2, . . . , vk

such that vivi+1 is an edge for i = 1, . . . , k − 1. The length of a
walk is the number k of vertices.

Example
In the graph below, 1234 and 12324 are walks, but 1235 is not.

1
2

3
4 5
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Walk Matrix

Let 1 = (1, . . . , 1) denote the vector consisting entirely of ones.

Question: What is A1 for an adjacency matrix A?
0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
0 0 0 1 0




1
1
1
1
1

 =


deg v1
deg v2
deg v3
deg v4
deg v5



What about A21?
0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
0 0 0 1 0



deg v1
deg v2
deg v3
deg v4
deg v5

 =


deg v2 + deg v3

deg v1 + deg v3 + deg v4
deg v1 + deg v2 + deg v4
deg v2 + deg v3 + deg v5

deg v4


17 / 23



Walk Matrix

In general, Ak1 is the vector
# of walks of length k starting at v1
# of walks of length k starting at v2

...
# of walks of length k starting at vn

 .

Definition (Walk Matrix)

The matrix Wk(G ) is the n × k matrix whose columns are the first
k such vectors, i.e.

Wk(G ) =

 | | | |
1 A1 A21 · · · Ak−11
| | | |

 .
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Theorem
Let G , H be two graphs with CDC(G ) ≃ CDC(H), and let k be a
natural number. Then

WG (k) = WH(k)

for appropriate labelling of the vertices.

Proof.
For a graph Γ, let AΓ = A(Γ) and CΓ = A(CDC(Γ)). Since
CDC(G ) ≃ CDC(H), we can relabel the vertices of the graph H to
get H ′, so that CG = CH′ . Now for any 0 ⩽ ℓ ⩽ k , we have that

CG
ℓ1 =

(
AG

ℓ1
AG

ℓ1

)
and CH′ℓ1 =

(
AH′ℓ1
AH′ℓ1

)
,

but since CG = CH′ , it follows that AG
ℓ1 = AH′ℓ1 for all

0 ⩽ ℓ ⩽ k , so the columns of WG (k) and WH′(k) are equal.
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Corollary

If CDC(G ) ≃ CDC(H), then G and H have the same degree
sequence.

A nice theorem of Ryser:

Theorem (Ryser’s theorem)

The graphs G and H have the same degree sequence iff H can be
obtained from G by a sequence of Ryser switches.

This means that if G and H have the same CDC, we can obtain G
from H by a sequence of such switches. Indeed, on 8 vertices, each
of the 32 pairs of graphs require just one Ryser switch, with the
exception of Q3 and 2K4.
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Conclusion

In the paper we give other results about what CDCs force G and H
to have in common, such as their main eigenvalues and
eigenspaces. We also introduce the notion of walk colouring, this
helps to recover a base graph given a CDC.

There are some infinite families of graphs which have the same
CDC. Also for certain classes of regular graphs it’s best to consider
antipodal vertices.

The converse of the walks theorem is false. Indeed, the k-walk
matrix of a d-regular graph is | | | |

1 d d2 · · · dk−1

| | | |


so regular graphs also have the “same number of walks” property.
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Future Research

▶ Better understand the nature of these rare pairs having the
same CDC.

▶ Is there is a systematic way to list them exhaustively?

https://lc.mt/walks/same-cdc/
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Thank you!

Luke Collins
luke.collins.22@ucl.ac.uk

University College London
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