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Formal Languages

» An alphabet X2, is any finite set (of “symbols”).

» A string from an alphabet X is a tuple (aq, ..., ay) of finite
length where each a; € X.
We just denote this as aq - - - ay,.

» The set of all strings from X is called the Kleene closure of
>, denoted by X%, i.e.,

o0
=%,
=0

where as usual '
W=Yx--xX,
——
7 times
»! are tuples of length 1, so £' ~ ¥ but ©! # %, and
Y0 = {¢}, where € is the empty string.
» A language L over ¥ is simply a subset L C »*.



Examples

» Take ¥ = {a,b,...,y,z}. Then X* is the set of all possible
“words”, and the English language F is a language over 3,
since £ C ¥*.

» Take ¥ = {0,1}. The set of binary palindromes is a
language over .

» Take ¥ = {0,S}. Then the set
{0, S0, SS0, SSS0, SSSSO, ... },

i.e., {S"0:n > 0}, is a language over X.

» Take ¥ = {A,V,~,=,<,V,3,{,},€} UV where V is a set
of “variables”. Then mathematics (ZFC) is a language over
3. The set of true theorems is also a language over X.



Semantics

Formal languages are purely syntactic objects, and their
members have no inherent semantics.

But to be interesting, we want languages to have semantics!
Such as the English language, or mathematics.

Some languages have dynamics, which are rules to manipulate
strings into other strings.

For example, the language of valid arithmetic expressions over
the alphabet {1,2,...,9,4+, —, x} admits strings such as
1+ 2 x 3. Somehow, we want rules to manipulate this string:

(1,+,2,%x,3) = (1,+,6) — (7)

The dynamics encode certain behaviours we expect, which come
from the semantics. This is what a compiler/calculator does.
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What is the \-calculus?

The set (language) of A-terms is defined by the following BNF.

eTpression = T variable)

application)

(

| Az - expression (abstraction)
| expression expression (
(

| (expression) grouping)
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VARIABLES

X

()

APPLICATIONS
fx
fzy
fz)y
f(zy)

Left associative: abc = (ab)c

Abstraction is greedy: Az - - - B@ee e

ABSTRACTIONS
Ax -y
Ax -(xyz
(Az-z)y

AT Ay - xy
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Normal Order Reduction

The dynamics of the A-calculus.

Examples (Az-z)y =y

(Az-y)z =y

Az - Ay -yx)(Aa-b)(Az-2) = Xa-b
Ax-(Ay-k)x)(Az-z2)(Az-22)) = k

Some caveats: variable capture, order of evaluation makes a
difference
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A relaxation of notation

We abbreviate Ax1 - ... - Axy, - M to Axq1...x, - M.
For example, Ax - \y - xy becomes Axy - xy.

This is only notational relaxation, everything is still unary!
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Raymond Smullyan (1919-2017)
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A bit more about Turing. ..

A Turing machine is a mathematical object (Q,T',b, 6, qo, F')
which represents a hypothetical “machine”.

10lofo]o] [0 ]o]
‘o)

Real computers are basically an attempt at creating a physical
model.

Ladder of abstraction:

Real computers — machine code — assembly language —
low-level languages — high-level languages — functional
programming = A
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Let’s start with logic. . .
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TRUE K

FALSE KI
Nor C
AND

Or

IFF

ATy - x

ATy -y

Afzy - fyx

Azy - xyF

Axy - xTy

Azy - zy(NOT y)



What else can we do?

Numbers:

ZERO AMfax-x=F
ONE Az fx

Two Max- f(fz)
THREE Mz f(f(fx))
Four VER ((( )

In general, the A-calculus representation of n takes a function f
and applies it to its second argument x, n times.



What else can we do?

Arithmetic:
Succ  Anfz- f(nfa)
ADD Anm -n SUCC m
MuL Anmf - n(mf)
Pow Anm - mn
ZEROQ Mn-n(KF)T
PRE An-n(Ag-ZEROQ(g ONE) I (MUL Succ g))(K ZERO) ZERO
SUB Anm -m PRE n
LEQ Anm - ZEROQ(SUB n m)

EQ Anm - AND (LEQ n m)(LEQ m n)



What else can we do?

Recursion / looping:

Af - Az - flax)) Az - frx))

THE Y COMBINATOR



Other Interesting Stuff

» All A combinators can be made up by composing just two
others: the Kestrel K (which we’ve seen), and the Starling
S, which is Azyz - (z2)(yz).

http://www.angelfire.com/tx4/cus/combinator/birds.html
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Other Interesting Stuff

» All A combinators can be made up by composing just two
others: the Kestrel K (which we’ve seen), and the Starling
S, which is Azyz - (z2)(yz).

http://www.angelfire.com/tx4/cus/combinator/birds.html

Alex Farrugia wrote a great article series on Quora
explaining the SK calculus.
https://bit.ly/2PxdQLi

» To Mock a Mockingbird is a must-have!
https://www.amazon. co.uk/Mock-Mockingbird-0Other-Logic-Puzzles/dp/
0192801422
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Thank you!

LukE COLLINS
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°
L)
Malta Mathematics Society
University of Malta



