
Department of Chemistry

Faculty of Science

B.Sc. (Hons.) Year I

Semester 2 Examination Session

CHE1215: Methods of Chemical Calculations 8th June 2022

08:30–11:35

Instructions
Read the following instructions carefully.

• Attempt only TEN questions.

• Each question carries 10 marks. The maximum mark is 100.

• A list of mathematical formulae is provided on page 2.

• Only the use of non-programmable calculators is allowed. Calculator
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MATHEMATICAL FORMULÆ

ALGEBRA

Factors

a3 +b3 = (a+b)(a2 −ab+b2)
a3 −b3 = (a−b)(a2 +ab+b2)

Quadratics

If ax2 +bx +c has roots α and β,

∆= b2 −4ac
α+β=−b

a αβ= c
a

Finite Series

n∑
k=1

1= n
n∑

k=1
k = n(n+1)

2
n∑

k=1
k2 = k(k +1)(2k +1)

6

(1+x)n =
n∑

k=0

(n
k

)
xn

= 1+nx + n(n−1)
2·1 x2 +·· ·+xn

GEOMETRY& TRIGONOMETRY

Distance Formula

If A= (x1,y1) and B = (x2,y2),

d(A,B)=
√

(x1 −x2)2 + (y1 −y2)2

=
√
∆x2 +∆y2

Pythagorean Identity

cos2θ+ sin2θ = 1

General Solutions

cosθ = cosα ⇐⇒ θ =±α+2πZ
sinθ = sinα ⇐⇒ θ = (−1)nα+πn, n ∈Z

tanθ = tanα ⇐⇒ θ =α+πZ

CALCULUS

Derivatives Integrals

f (x) f ′(x) f (x)
∫

f (x)dx

xn nxn−1 xn (n 6= −1) xn+1
n+1

sinx cosx sinx −cosx
cosx −sinx cosx sinx
tanx sec2 x tanx log(secx)
cotx −cosec2 x cotx log(sinx)
secx secx tanx secx log(secx + tanx)

cosecx −cosecx cotx cosecx log(tan x
2 )

ex ex ex ex

logx 1/x 1/x logx
uv u′v +uv ′ 1

a2+x2
1
a tan−1 ( x

a
)

u/v (u′v −uv ′)/v2 xp
a2+x2 sin−1 ( x

a
)

Homogeneous Linear Second Order ODEs

If the roots of ak2+bk+c are k1 and k2, then the differential equa-
tion ay ′′+by ′+cy = 0 has general solution

y(x)=


c1ek1x +c2ek2x if k1 6= k2
c1ekx +c2xekx if k = k1 = k2
eαx (c1 cosβx +c2 sinβx) if k =α±βi ∈C

Infinite Series

ex =
∞∑

n=0

xn

n! = 1+x + x2

2 + x3

3! + x4

4! · · ·

cosx =
∞∑

n=0
n even

(−1) n
2

n! xn = 1− x2

2 + x4

4! −·· ·

sinx =
∞∑

n=1
n odd

(−1) n−1
2

n! xn = x − x3

3! + x5

5! −·· ·

log(1+x)=
∞∑

n=1

(−1)n+1

n xn = x − x2

2 + x2

3 −·· · , x ∈ (−1,1]
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Attempt only TEN questions."

1. The function f is defined by

f (x ,y ,z)= x2y3+2xy2z2+5x4z .

(a) Find the partial derivatives ∂f
∂x ,

∂f
∂y and ∂f

∂z .

(b) Find ∂2f
∂x2 and ∂2f

∂x∂y .

(c) Find the total differential df .

(d) Use the total differential to show that, for inputs close to the point

(1,1,1), we have the approximation

f (x ,y ,z)≈ 24x +7y +9z −32.

[3, 2, 2, 3 marks]

2. (a) Find the derivatives of the following functions.

x2 cos2x(i)
√

1+ex2
(ii) log

( 3p2+x
x2p1+x

)
(iii)

(b) Verify that the function y = sin(ex ) is a solution to the differential

equation
d2y
dx2 − dy

dx +e2xy = 0.

[7, 3 marks]

3. Consider the curve given by the equation

y = 3+4x
1+x2 .

(a) Determine the coordinates of stationary points on the curve.

(b) Determine their nature.

(c) Sketch the curve, labelling any turning points and intercepts with

the x- and y-axes.

[3, 4, 3 marks]
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4. (a) Consider the complex numbers

z1 = 2+ i and z2 = 3+2i .

Determine:

5z1−2z2(i) z1z2(ii) z1/z2(iii)

z∗
1(iv) |z2|(v) arg(z2−z1)(vi)

(b) Express w = 3+p
3 i in the form Re iθ. Hence, calculate w10, writing

your answer in both forms: Re iθ and a+bi .

[6, 4 marks]

5. Determine the following integrals.∫ 1

0
x
p

x dx(a)

∫
sin(3θ+ π

6 )dθ(b)∫ x
(x2+1)(x +1)

dx(c)

∫ 2

0

3x +1
(x2+3x +4)(x +3)

dx(d)

[2, 1, 3, 4 marks]

6. (a) Find the area bounded by the curves y = x2+1 and y = 3−x2.

(b) Solve the equation 4x3+6= 13x .

[Hint: use the rational roots theorem.]

[5, 5 marks]

7. Let f (x)= (2x −1)(2x2+5x −3).

(a) Sketch the graph y = f (x), labelling any x- and y-intercept(s).

(b) On the same set of axes, sketch the line y = x +3, and label their

points of intersection.

(c) Find the total area of the region bounded by the curve and the line.

[3, 3, 4 marks]
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8. (a) Sketch the function y = cos(3x − π
6 ) for 0É x Éπ.

(b) Solve the equation cos(3x − π
6 )= 1

2 for all x in the range 0É x Éπ.
(c) Indicate your solutions on your sketch from part (a), and also illus-

trate them on a sketch of the unit circle.

[4, 4, 2 marks]

9. Consider the matrices

A=
1 1 1
1 2 2
1 2 3

 and B=
 2 −1 0
−1 2 −1
0 −1 1

 .

(a) Find the matrix product AB, and deduce the relationship between

A and B.

(b) Hence or otherwise, solve the simultaneous equations
x + y + z = 2
x +2y +2z = 3
x +2y +3z = 6.

(c) The matrix P represents a reflection in the x-axis, and the matrix

Q represents a rotation by 90◦ (anticlockwise).

(i) Write down the matrices P and Q.

(ii) Find the matrix which represents doing P followed by Q.

(iii) Is there a simpler way to describe what this matrix is doing,

geometrically?

[3, 3, 4 marks]

10. Solve the differential equation (x +1)(x +2) dy
dx = cos2 y , given that y = 0

when x = 0. Give your solution in the form

y(x)= tan−1
(
log

(a(1+x)
2+x

))
,

where a is a constant to be determined.

[10 marks]
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11. Solve the differential equation

d2y
dx2 −3dy

dx +2y = 4x2,

given that when x = 0, y and
dy
dx are both 1.

[10 marks]

12. (a) The rate law of the reaction A−−−→ P following first order kinetics

with respect to [A] is given by

−d [A]
dt = k[A],

where [A] is the concentration of A at time t and k is the rate con-

stant. If at t = 0, [A]= [A]0, show that [A]= [A]0 exp(−kt).

(b) The Schrödinger equation for a particle inside a one-dimensional

box is given by

− ħ2

2m
d2ψ

dx2 =Eψ,

where ħ, m and E have their usual meaning and can be treated as

constants for this question. Show that this has general solution

ψ(x)= c1 cos
(√2mE

ħ2 x
)
+c2 sin

(√2mE
ħ2 x

)
.

[5, 5 marks]

13. (a) Sketch the following graphs, labelling any x- and y-intercepts.

y = 1+ 1
x +1(i) y = 2log

( 1
x −3

)
(ii) y = 1−e−x(iii)

(b) Solve the equation

103x ×362x−1×14x = 25x+1×35x ×15x+1.

[6, 4 marks]
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14. (a) Given that logx = 2, logy = 3 and logz = 4, evaluate the following.

logxy2z3(i) log x
z2y(ii) 4logy 3px(iii)

logx −
√

log
p

x(iv) logx z(v) xy(vi)

(b) The pH value of a fruit juice is 2.8. Determine the hydronium ion

concentration, [H3O+], using the definition pH=− log10[H3O+].

[6, 4 marks]

15. A crocodile is stalking a gazelle that is 20m upstream on the opposite

side of a river. In water, crocodiles travel at 4m/s, whereas on land,

they travel at 5m/s. Suppose the crocodile swims to a point that is x m
upstream on the opposite bank of the river, and runs on land the rest of

the way, as depicted below.

20m

x m

6m

(a) Show that the time taken for the crocodile to reach the gazelle is

given by T (x)= 1
4
p

36+x2+ 1
5(20−x).

(b) What is the time taken if the crocodile does not travel on land?

(c) What is the time taken if it swims the shortest distance possible?

(d) What should x be if it gets to the gazelle as fast as possible?

[4, 1, 1, 4 marks]
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Solutions

1. (a) ∂f
∂x = 2xy3+2y2z2+20x3z ∂f

∂y = 3x2y2+4xyz2

∂f
∂z = 4xy2z +5x4

(b) ∂2f
∂x2 = 2y3+60x2z ∂2f

∂x∂y = 6xy2+4yz2

(c) df = ∂f
∂x dx + ∂f

∂y dy + ∂f
∂z dz

= (2xy3+2y2z2+20x3z)dx+(3x2y2+4xyz2)dy+(4xy2z+5x4)dz

(d) Near (1,1,1),

f (x ,y ,z)≈ f (1,1,1)+df (1,1,1)
= 8+24dx +7dy +9dz
= 8+24(x −1)+7(y −1)+9(z −1)
= 24x +7y +9z −32

2. (a) (i) 2x(cos(2x)−x sin(2x)) (ii)
xex2√
1+ex2

(iii)
1

3(2+x) −
2
x − 1

2(1+x)

(b) y = sin(ex ) dy
dx = ex cos(ex ) d2y

dx2 = ex (cos(ex )−ex sin(ex ))
Plugging in to the LHS, thing should simplify to zero.

3. (a) The first derivative is
dy
dx = −2(2−3x−2x2)

(1+x2)2 . Solving
dy
dx = 0, we get

x =−2 and x = 1
2 . Finding the corresponding y-coordinates, we get

the coordinates (−2,−1) and
(1

2 ,4
)
.

(b) The second derivative is
d2y
dx2 = 4x3+9x2−12x−3

(1+x2)3 .

When x =−2, we have d2y
dx2 = 1

5 > 0, so (−2,−1) is a minimum t.p.

When x = 1
2 , we have

d2y
dx2 =−16

5 < 0, so
(1

2 ,4
)
is a maximum t.p.

(c) For intercepts: when x = 0, we get y = 3. When x = 0, y =−3
4 .

Also, as x →∞, y → 0+, as x →−∞, y → 0−.
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Final sketch:

x

y

y = 3+4x
1+x2

3

−3
4

(−2,−1)

( 1
2 ,4

)

4. (a) (i) 4+ i (ii) 4+7i (iii) 8
13 − 1

13 i (iv) 2− i (v)
p

13 (vi) π4

(b) w = 2
p

3e iπ/6, sow10 = (2
p

3e iπ/6)10 = 210·35·e10iπ/6 = 248832e−iπ/3.

Thus, w10 = 248832(cos π3 − i sin π
3 )= 124416−124416

p
3 i .

5. (a) Primitive: 2
5x5/2, integral: 2

5 .

(b) −1
3 cos

(
3θ+ π

6
)+c .

(c) Partial fractions: 1
2
( x+1

x2+1 − 1
x+1

)
,

Primitive: 1
2 tan−1 x + log

( 4px2+1p
x+1

)
+c .

(d) Partial fractions: 2x+3
x2+3x+4 − 2

x+3 ,

Primitive: log(x2+3x +4)−2log(x +3), integral: log
(63

50
)
.

6. (a)
∫ 1
−1[(3−x2)− (x2+1)]dx = 8

3 .

(b) Using the rational roots theorem, the equation can be factorised

as (x +2)(2x −3)(2x −1)= 0, so its solutions are x =−2, 1
2 and 3

2 .

7. (a) When y = 0, x =−3 or 1
2 (twice). When y = 0, x = 3. Sketch:

x

y
y = f (x)

y = x +3
3−3 1

2

(1,4)
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(b) They intersect at (−3,0), (0,3) and (1,4).

(c) The area is
∫ 0
−3[f (x)− (x +3)]dx +∫ 1

0 [(x +3)− f (x)]dx = 142
3 .

8. (a)

x

y

y = cos
(
3x − π

6
)

y = 1
22π

9
5π
9

8π
9

p
3

2

π
6

11π
18

5π
6

(b) x = π
6 , 11π

18 , 5π
6 .

(c)

x

y

π
6

x

y
11π
18

x

y 5π
6

9. (a) AB= I, A and B are mutual inverses.

(b) Ax = b =⇒ x =A−1b =Bb = (1,−2,3).

(c) (i) P=
(
1 0
0 −1

)
, Q=

(
0 −1
1 0

)

(ii) QP=
(
0 1
1 0

)
(iii) Reflection in the line y = x .
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10. a = 2.

11. Trial sol: λx2+µx +η, particular sol: y(x)= 2x2+6x +7+e2x −7ex .

12. (a) This is a separable first order ordinarydifferential equation. Indeed,

we can separate the variables:

−d [A]
dt = k[A]

=⇒ d [A]
[A] =−k dt

=⇒
∫ d [A]

[A] =−k
∫

dt

=⇒ log[A]=−kt + logc

=⇒ [A]= exp(−kt + logc)

∴ Gen. sol.: [A]= c exp(−kt).

Since we are given that when t = 0, [A]= [A]0, we have that

[A]0 = c exp(−k ·0) =⇒ [A]0 = c ,

and thus we have the particular solution

[A]= [A]0 exp(−kt),

as required.

(b) This is a homogeneous second order linear ordinary differential

equation with constant coefficients. The first step is to rearrange

it into the form
ħ2

2m
d2ψ

dx2 +Eψ= 0,

so we have the auxiliary equation

ħ2

2mk2+E = 0

=⇒ k2 =−2mE
ħ2

=⇒ k =±
√

2mE
ħ2 i ,
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and so the general solution is that of the case of complex roots, i.e.,

ψ(x)= c1 cos
(√2mE

ħ2 x
)
+c2 sin

(√2mE
ħ2 x

)
,

as required.

13. (a) (i)

y = 1

x =−1

x

y

y = 1+ 1
x+1

2

−2

(ii)

x = 3

x

y

y = 2log
( 1

x−3
)

4

(iii)

y = 1
x

y
y = 1−e−x

(b) x = 1

14. (a) (i) 20 (ii) −9 (iii) 44
3 (iv) 1 (v) 2 (vi) e2e3

.

(b) [H3O+]= 0.001585.

15. (a) Hint: Pythagoras’ theorem.

(b) T (20)= 5.22 seconds.

(c) T (0)= 5.5 seconds.

(d) T ′(x)= 0 =⇒ x = 8.
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