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Faculty of Science

B.Sc. (Hons.) Year I

Sample Examination Paper II

CHE1215: Methods of Chemical Calculations nth June 20XX
08:30–11:35

Instructions
Read the following instructions carefully.

• Attempt only TEN questions.

• Each question carries 10 marks. The maximum mark is 100.

• A list of mathematical formulae is provided on page 2.

• Only the use of non-programmable calculators is allowed. Calculator
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MATHEMATICAL FORMULÆ

ALGEBRA

Factors

a3 +b3 = (a+b)(a2 −ab+b2)
a3 −b3 = (a−b)(a2 +ab+b2)

Quadratics

If ax2 +bx +c has roots α and β,

∆= b2 −4ac
α+β=−b

a αβ= c
a

Finite Series

n∑
k=1

1= n
n∑

k=1
k = n(n+1)

2
n∑

k=1
k2 = k(k +1)(2k +1)

6

(1+x)n =
n∑

k=0

(n
k

)
xn

= 1+nx + n(n−1)
2·1 x2 +·· ·+xn

GEOMETRY& TRIGONOMETRY

Distance Formula

If A= (x1,y1) and B = (x2,y2),

d(A,B)=
√

(x1 −x2)2 + (y1 −y2)2

=
√
∆x2 +∆y2

Pythagorean Identity

cos2θ+ sin2θ = 1

General Solutions

cosθ = cosα ⇐⇒ θ =±α+2πZ
sinθ = sinα ⇐⇒ θ = (−1)nα+πn, n ∈Z

tanθ = tanα ⇐⇒ θ =α+πZ

CALCULUS

Derivatives Integrals

f (x) f ′(x) f (x)
∫

f (x)dx

xn nxn−1 xn (n 6= −1) xn+1
n+1

sinx cosx sinx −cosx
cosx −sinx cosx sinx
tanx sec2 x tanx log(secx)
cotx −cosec2 x cotx log(sinx)
secx secx tanx secx log(secx + tanx)

cosecx −cosecx cotx cosecx log(tan x
2 )

ex ex ex ex

logx 1/x 1/x logx
uv u′v +uv ′ 1

a2+x2
1
a tan−1 ( x

a
)

u/v (u′v −uv ′)/v2 xp
a2+x2 sin−1 ( x

a
)

Homogeneous Linear Second Order ODEs

If the roots of ak2+bk+c are k1 and k2, then the differential equa-
tion ay ′′+by ′+cy = 0 has general solution

y(x)=


c1ek1x +c2ek2x if k1 6= k2
c1ekx +c2xekx if k = k1 = k2
eαx (c1 cosβx +c2 sinβx) if k =α±βi ∈C

Infinite Series

ex =
∞∑

n=0

xn

n! = 1+x + x2

2 + x3

3! + x4

4! · · ·

cosx =
∞∑

n=0
n even

(−1) n
2

n! xn = 1− x2

2 + x4

4! −·· ·

sinx =
∞∑

n=1
n odd

(−1) n−1
2

n! xn = x − x3

3! + x5

5! −·· ·

log(1+x)=
∞∑

n=1

(−1)n+1

n xn = x − x2

2 + x2

3 −·· · , x ∈ (−1,1]
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Attempt only TEN questions."

1. (a) The Schrödinger equation for a particle inside a one-dimensional

box is given by

− ħ2

2m
d2Ψ

dx2 =EΨ,

where ħ, m and E have their usual meaning and can be treated as

constants for this question. Show that this has general solution

Ψ(x)= c1 cos(ωx)+c2 sin(ωx),

where ω2 = 2mE/ħ2.

(b) The rate law of the reaction A−−−→ P following first order kinetics

with respect to [A] is given by

−d [A]
dt = k[A],

where [A] is the concentration of A at time t after the start of the
reaction, and k is the rate constant. Show that

[A]= [A]0 exp(−kt)

if [A]= [A]0 at time t = 0.

[5, 5 marks]

2. (a) Solve the equation (x +2)2(x +5)= 4.

(b) Sketch the graphs y = (x +2)2 and y = 4
x +5 on the same axes.

(c) Find the area bounded by the two curves in (b) between their points

of intersection.

[4, 3, 3 marks]

3. Solve the differential equation

2
p

x dy
dx = (y2+1)(x +1)(5x −2), where y ′(0)= 0.

Express your solution in the form y(x)= tan(
p

x(ax2+bx +c)).
[10 marks]
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4. Consider a ray of light passing from one medium to another.

Medium 1 Medium 2

normal

A

B

O

θ1
θ2

a b

`

x

Given that light passes through medium 1 with velocity v1, and through
medium 2with velocity v2, show that the total time taken to travel from

A to B through the variable point O is

T (x)=
p

a2+x2

v1
+

√
b2+ (`−x)2

v2
.

Fermat’s principle states that light travels the path which takes the least

time. Assuming this principle, deduce Snell’s law:

sinθ1
v1

= sinθ2
v2

.

[10 marks]
5. Consider the function

F (x ,y ,z)= x2 siny +y tanz +xy +1.

(a) Find the partial derivatives ∂F
∂x ,

∂F
∂y and ∂F

∂z .

(b) Find the Laplacian ∇2F = ∂2F
∂x2 + ∂2F

∂y2 + ∂2F
∂z2 .

(c) Find the total differential dF , hence show that near (1,0,π),

F (x ,y ,z)≈πx +y +z −π+1.

[3, 3, 4 marks]
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6. Consider the curve given by the equation

y = (x −1)3
p

ex

(a) Determine the coordinates of stationary points on the curve.

(b) Determine their nature.

(c) Sketch the curve, labelling any turning points and intercepts with

the x- and y-axes.

[3, 4, 3 marks]

7. (a) Find the derivatives of the following functions.

log
( 3p2x 4p4x3

p
x2−1

)
(i) ex tan(x2)(ii)

cos(x2)√
1+ sin(x2)

(iii)

(b) Verify that y(x)= e2x2
is a solution to the second order differential

equation xy ′′ = y ′+16x3y .

[6, 4 marks]

8. Find the following integrals.

(a)

∫ 4x −5
(x2−x +1)(2x +1)

dx (b)

∫ π

0
cos

(θ−π
6

)
dθ (c)

∫ 2
p

3

2

x +1
x(x2+4)

dx

[3, 3, 4 marks]

9. Consider the trigonometric function f (θ)= 2sin(2θ+ π
3 ).

(a) Sketch y = f (θ) for 0É θ É 2π.

(b) Solve the equation f (θ)+1= 0 for 0É θ É 2π.

(c) Indicate your solutions on your sketch from part (a), and also illus-

trate them on a sketch of the unit circle.

[4, 4, 2 marks]

10. Solve the differential equation

y ′′−4y ′−5y = 36e5x ,

given that when x = 0, y and y ′ are both 0. [10 marks]
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11. (a) The matrix R represents a rotation through an angle of 180◦, and
the matrix T represents a reflection in the line y =−x .

(i) Write down the matrices R and T.

(ii) What does the matrix RT represent?

(b) Consider the matrices

A=
0 4 1
1 5 2
1 2 1

 and B=
 1 −2 3

1 −1 1
−3 4 −4


Work out AB, hence solve the system of equations

x −2y +3z =−3
x − y + z = 0

−3x +4y −4z = 1.
[4, 6 marks]

12. (a) Express the complex number ζ = 3−p
3i in the form Re iθ. Hence

or otherwise, show that (ζ/2)12 is an integer.

(b) Consider the complex numbers z = 3+2i andw = 7−4i . Determine:

11z −w(i) zw(ii) w/z(iii)

w∗+z∗(iv) |w2|(v) arg(11z −w)(vi)

[4, 6 marks]

13. (a) The barometric formula p = p0e−Mgh/RT gives the pressure of a gas

of molar mass M at altitude h, where p0 is the pressure at sea level.
Express T in terms of the other variables.

(b) Express [H+] in terms of the pH, where pH=− log10([H+]).

(c) Given that loga = 2 and eb = 3, evaluate:

a+b(i) log a
9 +2b(ii) ab(iii) eb+log(log(a))(iv)

[3, 3, 4 marks]
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14. (a) Sketch the following graphs.

y = 3log
( 1
x +1

)
(i) y = x +1

2x +1(ii)

y = 5−|5−x |(iii)

(b) Solve the equation 143x−4 ·154−x = 6x ·354−x .

[6, 4 marks]

15. Let f (x)= x3−7x +6.

(a) On the same set of axes, sketch the graphs of:

(i) y = f (x),

(ii) y = f ′(x),

(iii) y = f ′′(x),

(iv) y = f ′′′(x).

labelling any intercepts and turning points.

(b) Show that

f (x)= f (0)+ f ′(0)x + f ′′(0)
2 x2+ f ′′′(0)

6 x3.

[7, 3 marks]
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