L-Universita Department of Chemistry
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CHE1215: Methods of Chemical Calculations nth June 20XX
08:30-11:35

Instructions
Read the following instructions carefully.

o Attempt only TEN questions.
e Each question carries 10 marks. The maximum mark is 100.
e Alist of mathematical formulae is provided on page 2.

e Only the use of non-programmable calculators is allowed. =
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MATHEMATICAL FORMULA

ALGEBRA
Factors
a3+ b3 =(a+b)(a®—ab+b?)
a3 - b3 =(a-b)(a®+ab+b?)
Quadratics
If ax? + bx + ¢ has roots a and S,
A =b?—4dac
a+p= —[3’ af=%
Finite Series
n 1
Z len Z P n(n+1)
k=1 k=1 2
Z”: 2= k(k+1)(2k+1)
k=1 6
n (n
(1+x)"=)" ( )x”
k=0 \k
=1+nx+ "(g._ll)x2+~--+x"
GEOMETRY & TRIGONOMETRY

Distance Formula
If A=(x1,y1) and B = (x2,2),

d(A,B) =/ (x1 —x2)2 + (y1 - y2)?
=1/ Ax2+ Ay?
Pythagorean Identity
cos?0 +sin’0 =1
General Solutions

cosf=cosa < O0=+a+2nZ
sin@=sina < 6 =(-1)"a+nn, nez

tanf =tana < O0=a+nZ
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CALCULUS
Derivatives Integrals
f(x) f'(x) f(x) S f(x)dx
n n-1 n X1
X nx x"(n#-1) el
sinx cosx sinx —CoSX
cosx —sinx cosx sinx
tanx sec? x tanx log(secx)
cotx —cosec? x cotx log(sinx)
secx secxtanx secx log(secx +tanx)
cosecx | —cosecxcotx cosecx log(tan %)
eX eX ex ex
log x 1/x 1/x logx
! ! 1 1 -1(x
uv u'v+uv = ztan~!(%)
/ ! 2 X -1l
uly (Jv-uw)/v == sin~! (%)

Homogeneous Linear Second Order ODEs
If the roots of ak2 + bk + ¢ are ki and ko, then the differential equa-
tion ay” + by’ + cy = 0 has general solution

y(x)=

Infinite Series

c1ek1X 4 cpekex if ki # ko
cref + coxek~ if k=ki=ko
e™(crcosBx+cpsinPfx) ifk=axBieC
00 4N 2 X3 X4
Z—I_1+x+—+—|+—I
= n! 2 31 4
$ DL 2
= n - 2 4l
neven

n-1
S
oon 31 5l
n odd
%o (-1 n+l 2 2
Z( ) XM=x- T X xe(-1,1]
=1oon 2 3
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/\ Attempt only TEN questions.

1. Arectangle is drawn inside a semicircle of radius 10 cm such that one if
its sides, of length x cm, is along the diameter.

(@) Show that the area of the rectangle is
A(x) =3V 400-x2,

(b) Find the dimensions of the rectangle with the largest possible area.
(c) What is the green area in that case?
[4, 4, 2 marks]

2. (a) The rate law of the reaction A — P following first order kinetics
with respect to [A] is given by the equation —% = k[A], where [A]
is the concentration of A at time t, and k is a constant. If [A] = [A]o
when t =0, show that

[A] = [Aloe™ .

(b) The Schrodinger equation for a particle inside a one-dimensional
box is given by
h? d?
—%@[\U(X)] = EW(X)
Show that this has solutions of the form
2mE )

W(X):Csin( 2 X

given that W(0) =0.
[5, 5 marks]
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3. (a) Show that y = xsin(2logx) is a solution to Xzi/% +5y = x%.
(b) Find the first, second and third derivatives of the function
V2xV/3x
f(X) = IOg — |
vVix+1
[4, 6 marks]

4. Consider the matrices

1 2 11
A:(1 1) and B:(1 1).

(a) Foreach of them, state whether or not they have an inverse, and if
so, find it.

(b) Work out (A +B)? and A +2AB + B2. Are they equal? Why?
[Recall the familiar rule (a+ b)? = a? + 2ab + b? for numbers.]

(c) Solve the simultaneous equations
x+2y=5
x+ y=1

using matrices.

(d) The matrix C represents an anticlockwise rotation by 30°. Write
down the matrix C°1.

[3, 2, 2, 3 marks]
5. (a) Sketch the function y =tan(2x+ %) forO<x <.
(b) Solve the equation 3tan?(2x+ F) =1 for0<x <.

(c) By superimposing a pair of appropriate lines on your sketch from
part (a), illustrate your solutions to part (b) on the sketch.

[4, 4, 2 marks]

6. Solve the differential equation y” -5y’ +6y = 2e*, given that when x =0,
y and y’ are both 1.
[10 marks]
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7. Consider the complex numbers

/3 and  z=+3w.

(@) Write down w and z in the form a + bi.

w=2e

(b) Determine:

(i) wz (i) 2z*/w (iii) arg(z+w)
(iv) |z+ w] (v) z+% (vi) z

(c) Write down 27 in the form a + bi.
[2, 6, 2 marks]

8. Solve the differential equation

d
coszx—y =y+1,
dx

given that y =4 when x =0. [10 marks]

9. Find the following integrals.

flex
13 vx 1 2x -3
X+ X —
(C) fz PRI ) f(x+1)(x2+4) o
[2, 1, 3, 4 marks]

(a) (b) f sec? (30 +32) do

10. Consider the curve given by

1+x

1+x2°

(a) Determine the coordinates of stationary points on the curve.

y:

(b) Determine their nature.

(c) Sketch the curve, labelling any turning points and intercepts with

the x- and y-intercepts.
[3, 4, 3 marks]
11. (a) Solve the cubic equation 3x3 +2x2 +8x = 3.
(b) Find the area bounded by y =x?—1and y =2+ x —x2.

[5, 5 marks]
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12. (a) Given thatloga=2,logb=>5 and logc =8, evaluate:

(i) loga®b (i) log,b
(iii) logb+ /logy/c (iv) Iogﬁ

(b) The Hyrdonium ion concentration [H30*] of an ammonia solution
is around 0.00007. What is the pH value, to the nearest integer?

[Recall that by definition of pH, [H30%] =107PH ]
(c) If log(log(logx)) =3, what is x?
[4, 3, 3 marks]

13. The function f is given by
f(x,y)=x2y?—xy—2x+3y +1.
(@) Find the partial derivatives % and %.

(b) Verify that the Hessian

Of Of ( 2 f )2
Hf = -

0x2dy? |\ 0xdy
is Hr = —(2xy —1)(6xy — 1).

(c) Find the total differential df. Hence, show that for points close to
(1,2), we have the approximation

f(x,y)=4x+6y-9.
[2, 4, 4 marks]

14. (a) Sketch the following graphs, labelling any x- and y-intercepts.
(i) y=1-2e>* (i) y=1+2log(2x) (iii)) y=3+v5—-4x

(b) Solve the equation \/\/ Vx+1+2+3=4.

[7, 3 marks]

15. The product of two positive numbers is the same as their average. What
is the least possible value for the logarithm of the sum of their squares?
[10 marks]
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