

B.Sc. (Hons.) Year I

Semester 2 Examination Session

CHE1217: Additional Techniques of Chemical Calculations

20th June 2022

08:30–10:35

Instructions

Read the following instructions carefully.

- Attempt only **TWO** questions.
- Each question carries **50** marks. The maximum mark is **100**.
- A list of mathematical formulae is provided on page 2.
- Only the use of non-programmable calculators is allowed.

MATHEMATICAL FORMULÆ

ALGEBRA

Factors

$$\begin{aligned}a^3 + b^3 &= (a+b)(a^2 - ab + b^2) \\a^3 - b^3 &= (a-b)(a^2 + ab + b^2)\end{aligned}$$

Quadratics

If $ax^2 + bx + c$ has roots α and β ,

$$\begin{aligned}\Delta &= b^2 - 4ac \\ \alpha + \beta &= -\frac{b}{a} \quad \alpha\beta = \frac{c}{a}\end{aligned}$$

Finite Series

$$\begin{aligned}\sum_{k=1}^n 1 &= n \quad \sum_{k=1}^n k = \frac{n(n+1)}{2} \\ \sum_{k=1}^n k^2 &= \frac{k(k+1)(2k+1)}{6} \\ (1+x)^n &= \sum_{k=0}^n \binom{n}{k} x^k \\ &= 1 + nx + \frac{n(n-1)}{2!} x^2 + \dots + x^n\end{aligned}$$

GEOMETRY & TRIGONOMETRY

Distance Formula

If $A = (x_1, y_1)$ and $B = (x_2, y_2)$,

$$\begin{aligned}d(A, B) &= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ &= \sqrt{\Delta x^2 + \Delta y^2}\end{aligned}$$

Pythagorean Identity

$$\cos^2 \theta + \sin^2 \theta = 1$$

General Solutions

$$\begin{aligned}\cos \theta = \cos \alpha &\iff \theta = \pm \alpha + 2\pi\mathbb{Z} \\ \sin \theta = \sin \alpha &\iff \theta = (-1)^n \alpha + \pi n, \quad n \in \mathbb{Z} \\ \tan \theta = \tan \alpha &\iff \theta = \alpha + \pi\mathbb{Z}\end{aligned}$$

CALCULUS

Derivatives		Integrals	
$f(x)$	$f'(x)$	$f(x)$	$\int f(x) dx$
x^n	nx^{n-1}	$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\sin x$	$\cos x$	$\sin x$	$-\cos x$
$\cos x$	$-\sin x$	$\cos x$	$\sin x$
$\tan x$	$\sec^2 x$	$\tan x$	$\log(\sec x)$
$\cot x$	$-\operatorname{cosec}^2 x$	$\cot x$	$\log(\sin x)$
$\sec x$	$\sec x \tan x$	$\sec x$	$\log(\sec x + \tan x)$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$	$\operatorname{cosec} x$	$\log(\tan \frac{x}{2})$
e^x	e^x	e^x	e^x
$\log x$	$1/x$	$1/x$	$\log x$
uv	$u'v + uv'$	$\frac{1}{a^2+x^2}$	$\frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)$
u/v	$(u'v - uv')/v^2$	$\frac{x}{\sqrt{a^2+x^2}}$	$\sin^{-1} \left(\frac{x}{a} \right)$

Homogeneous Linear Second Order ODEs

If the roots of $ak^2 + bk + c$ are k_1 and k_2 , then the differential equation $ay'' + by' + cy = 0$ has general solution

$$y(x) = \begin{cases} c_1 e^{k_1 x} + c_2 e^{k_2 x} & \text{if } k_1 \neq k_2 \\ c_1 e^{kx} + c_2 x e^{kx} & \text{if } k = k_1 = k_2 \\ e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) & \text{if } k = \alpha \pm \beta i \in \mathbb{C} \end{cases}$$

Infinite Series

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} \dots$$

$$\cos x = \sum_{n=0, \text{ even}}^{\infty} \frac{(-1)^{\frac{n}{2}}}{n!} x^n = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots$$

$$\sin x = \sum_{n=1, \text{ odd}}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \quad x \in (-1, 1]$$

⚠ Attempt only **TWO** questions.

1. Consider the matrix

$$\mathbf{A} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & 0 & -2 \\ -2 & 1 & a \end{pmatrix}.$$

(a) Find the inverse matrix \mathbf{A}^{-1} . State the value(s) of a for which your answer is valid.

(b) Consider the system of equations

$$\begin{cases} -3x + 2y + 2z = 1 \\ 2x - 2z = 4 \\ -2x + y + az = b. \end{cases}$$

For what values of a and b does this system have:

(i) a unique solution?

(ii) infinitely many solutions?

(iii) no solutions?

(c) (i) Solve the system in (b) when $a = b = 1$.
(ii) Solve the system in (b) when $a = \frac{3}{2}$ and $b = -\frac{1}{2}$.

(d) For this part of the question, assume that \mathbf{A} has $a = 1$.

(i) Find the eigenvalues of \mathbf{A} .

(ii) Hence, determine \mathbf{P} and \mathbf{D} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, where \mathbf{D} is a diagonal matrix. (You don't need to find \mathbf{P}^{-1}).

(iii) The functions $x(t)$, $y(t)$ and $z(t)$, are related by the differential equations

$$\begin{cases} x'(t) = -3x(t) + 2y(t) + 2z(t) \\ y'(t) = 2x(t) - 2y(t) \\ z'(t) = -2x(t) + y(t) + z(t). \end{cases}$$

Solve for $x(t)$, $y(t)$ and $z(t)$.

[12, 6, 7, 25 marks]

2. (a) The function f of three variables x, y and z satisfies

$$\frac{\partial f}{\partial x} = 2xz + 3y \quad \text{and} \quad \frac{\partial f}{\partial z} = x^2 - 15y^2z^2.$$

Show that

$$f(x, y, z) = x^2z + 3xy - 5y^2z^3 + c(y),$$

where c is some function in y alone.

(b) (i) Suppose $f(x, y)$ is separable, i.e., we may write express f as a product $f(x, y) = X(x)Y(y)$. Explain why

$$\frac{\partial f}{\partial x} = \frac{dX}{dx} Y(y) \quad \text{and} \quad \frac{\partial f}{\partial y} = X(x) \frac{dY}{dy}.$$

(ii) Suppose f is a function of two variables x and y , and that

$$\frac{\partial f}{\partial x} + x^2 \frac{\partial f}{\partial y} = 0.$$

Determine the general solution, assuming it is separable.

(c) (i) If $f(x, y)$ is separable, show that

$$\nabla^2 f = \frac{d^2 X}{dx^2} Y(y) + X(x) \frac{d^2 Y}{dy^2}.$$

(ii) The Schrödinger equation for a particle of mass m moving in the two-dimensional xy -plane is

$$-\frac{\hbar^2}{2m} \nabla^2 \Psi = E \Psi,$$

where \hbar and E are constants, ∇^2 is the Laplacian operator, and $\Psi = \Psi(x, y)$ is the wave function. Assuming the solutions is separable, and that $X(0) = Y(0) = X(a) = Y(b) = 0$, show that

$$\Psi(x, y) = C \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right),$$

where C is some constant.

[10, 15, 25 marks]

3. (a) The Fibonacci numbers F_n are defined by the recurrence relation

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} F_n + F_{n-1} \\ F_n \end{pmatrix},$$

where $\begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

The *golden ratio* φ is the number $\frac{1}{2}(1 + \sqrt{5})$.

(i) Show that

$$1 - \varphi = -\frac{1}{\varphi} = \frac{1}{2}(1 - \sqrt{5}) \quad \text{and} \quad 2\varphi - 1 = \sqrt{5}.$$

(ii) If $\mathbf{x}_n = \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}$, show that $\mathbf{x}_n = \mathbf{A}\mathbf{x}_{n-1}$ for an appropriate 2×2 matrix \mathbf{A} .

(iii) By diagonalising \mathbf{A} , solve the recurrence relation and deduce that

$$F_n = \frac{1}{\sqrt{5}} \left(\varphi^n - \left(-\frac{1}{\varphi} \right)^n \right).$$

[Hint: Use φ in your working to keep it simple.]

(iv) Show that

$$\frac{F_{n+1}}{F_n} = \frac{\varphi - \frac{1}{\varphi^n(-\varphi)^{n+1}}}{1 - \frac{1}{\varphi^n(-\varphi)^n}},$$

and deduce that $\frac{F_{n+1}}{F_n} \rightarrow \varphi$ as $n \rightarrow \infty$.

(b) Let \mathbf{R} be the matrix which rotates vectors in 3D by an anticlockwise rotation of θ around the z -axis.

(i) Find $\mathbf{R}\mathbf{i}$, $\mathbf{R}\mathbf{j}$ and $\mathbf{R}\mathbf{k}$, where \mathbf{i} , \mathbf{j} and \mathbf{k} are the unit vectors in the x -, y - and z -directions respectively.

(ii) Hence, show that

$$\mathbf{R} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(iii) Show that $\det(\mathbf{R}) = 1$. What does this mean, geometrically?

[35, 15 marks]

Solutions

1. (a) $\mathbf{A}^{-1} = \frac{1}{2(2a-3)} \begin{pmatrix} -2 & 2a-2 & 4 \\ 2a-4 & 3a-4 & 2 \\ -2 & 1 & 4 \end{pmatrix}$, valid for when $a \neq \frac{3}{2}$.

(b) The system is just $\mathbf{Ax} = \mathbf{b}$, where $\mathbf{x} = (x, y, z)$ and $\mathbf{b} = (1, 4, b)$.

- (i) We get a unique solution when \mathbf{A} is invertible, i.e., when $a \neq \frac{3}{2}$. In this case, b can be anything.
- (ii) Infinitely many solutions occur when \mathbf{A} is not invertible, i.e., when $a = \frac{3}{2}$. Doing Gaussian elimination on the augmented matrix $(\mathbf{A} | \mathbf{b})$ with $a = \frac{3}{2}$, one possible sequence of steps gives

$$\left(\begin{array}{ccc|c} -3 & 2 & 2 & 1 \\ 2 & 0 & -2 & 4 \\ -2 & 1 & \frac{3}{2} & b \end{array} \right) \xrightarrow{\begin{array}{l} R_2 + \frac{2}{3}R_1 \rightarrow R_2 \\ R_3 + \left(-\frac{2}{3}\right)R_1 \rightarrow R_3 \\ R_3 + \frac{1}{4}R_2 \rightarrow R_3 \end{array}} \left(\begin{array}{ccc|c} -3 & 2 & 2 & 1 \\ 0 & \frac{4}{3} & -\frac{2}{3} & \frac{14}{3} \\ 0 & 0 & 0 & b + \frac{1}{2} \end{array} \right)$$

The last row corresponds to the equation $0x + 0y + 0z = b + \frac{1}{2}$, which has solutions when $b = -\frac{1}{2}$. Thus, for infinitely many solutions, we need $a = \frac{3}{2}$ and $b = -\frac{1}{2}$.

- (iii) From the previous part, we see that if $a = \frac{3}{2}$ but $b \neq -\frac{1}{2}$, then the system is inconsistent, and we get no solutions.
- (c) (i) When $a = b = 1$, the matrix \mathbf{A} is invertible, so the solution is just $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = (-1, 2, -3)$, i.e., $x = -1$, $y = 2$, and $z = -3$.
- (ii) This is the case of infinitely many solutions. With reference to part (b)(ii), we have two restrictions on the three variables x , y and z . Letting $z = \lambda \in \mathbb{R}$, then R_2 gives

$$\frac{4}{3}y - \frac{2}{3}\lambda = \frac{14}{3} \implies y = \frac{7 + \lambda}{2},$$

and then R_1 gives

$$-3x + 2\left(\frac{7 + \lambda}{2}\right) + 2\lambda = 1 \implies x = \frac{6 + \lambda}{3}.$$

Therefore, the system has the general solution $x = \frac{1}{3}(6 + \lambda)$, $y = \frac{1}{2}(7 + \lambda)$, and $z = \lambda$ for any $\lambda \in \mathbb{R}$.

(d) (i) We have the characteristic polynomial

$$\chi_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^3 + 2\lambda^2 - 2\lambda - 2 = (\lambda - 1)(\lambda + 1)(\lambda + 2),$$

so the eigenvalues are $\lambda = \pm 1, -2$.

(ii) We determine corresponding eigenvectors for each eigenvalue:

For $\lambda = 1$, $\mathbf{x} = (1, 2, 0)$,

For $\lambda = -1$, $\mathbf{x} = (1, 0, 1)$,

For $\lambda = -2$, $\mathbf{x} = (4, -1, 3)$.

Thus if we define $\mathbf{P} = \begin{pmatrix} 1 & 1 & 4 \\ 2 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix}$, we get

$$\mathbf{A} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \mathbf{P}^{-1}.$$

(iii) The given differential equations are equivalent to the matrix equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, where $\mathbf{x} = \mathbf{x}(t) = (x(t), y(t), z(t))$.

Using the diagonalised form, this is $\dot{\mathbf{x}} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}\mathbf{x}$, equivalently, $\mathbf{P}^{-1}\dot{\mathbf{x}} = \mathbf{D}\mathbf{P}^{-1}\mathbf{x}$. If we let $\mathbf{u} = \mathbf{P}^{-1}\mathbf{x}$, then this is $\dot{\mathbf{u}} = \mathbf{D}\mathbf{u}$, i.e.,

$$\begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} x(t) \\ -y(t) \\ -2z(t) \end{pmatrix}.$$

In general, the differential equation $f'(t) = af(t)$ is equivalent to $\frac{f'(t)}{f(t)} = a$, and integrating both sides with respect to t , we get $\log(f(t)) = at + \log c$, i.e., $f(t) = c e^{at}$. So the vector differential equation above becomes

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} Ae^t \\ Be^{-t} \\ Ce^{-2t} \end{pmatrix},$$

and thus we've determined the solution $\mathbf{u}(t)$ of $\dot{\mathbf{u}} = \mathbf{D}\mathbf{u}$. Now to translate this into the desired solution $\mathbf{x}(t)$ of the original equation, we use the fact that $\mathbf{x} = \mathbf{P}\mathbf{u}$:

$$\mathbf{x}(t) = \mathbf{P}\mathbf{u}(t) = \begin{pmatrix} Ae^t + Be^{-t} + 4Ce^{-2t} \\ 2Ae^t & -Ce^{-2t} \\ Be^{-t} + 3Ce^{-2t} \end{pmatrix},$$

i.e., the solution is

$$\begin{cases} x(t) = Ae^t + Be^{-t} + 4Ce^{-2t} \\ y(t) = 2Ae^t & -Ce^{-2t} \\ z(t) = Be^{-t} + 3Ce^{-2t}. \end{cases}$$

2. (a) Integrating both derivatives gives the result.

(b) (i) By the product rule,

$$\begin{aligned} \frac{\partial f}{\partial x} &= \frac{\partial}{\partial x}(X(x)Y(y)) \\ &= \frac{\partial X}{\partial x}Y(y) + X(x)\frac{\partial Y}{\partial y} = \frac{dX}{dx}Y(y), \end{aligned}$$

and similarly for $\frac{\partial f}{\partial y}$.

(ii) Assuming $f = XY$, differential equation is

$$\frac{dX}{dx}Y + x^2X\frac{dY}{dy} = 0,$$

which rearranges into

$$\frac{1}{x^2X}\frac{dX}{dx} + \frac{1}{Y}\frac{dY}{dy} = 0,$$

and so we must have

$$\frac{1}{x^2X}\frac{dX}{dx} = C \quad \text{and} \quad \frac{1}{Y}\frac{dY}{dy} = -C$$

for some constant C .

These are separable first order ODEs, which have solutions $X = Ae^{Cx^3/3}$ and $Y = Be^{-Cy}$ respectively. Thus we obtain the general solution $f = XY = AB e^{C(x^3/3 - y)}$, or, if we relabel the constants,

$$f(x, y) = Ae^{C\left(\frac{x^3}{3} - y\right)}.$$

(c) (i) Similar to (b)(i), using the product rule twice.
(ii) By part (i), assuming $\Psi = XY$, the equation is just

$$\frac{d^2X}{dx^2}Y + X\frac{d^2Y}{dy^2} = -\frac{2mE}{\hbar^2}\Psi,$$

and dividing through by $\Psi = XY$, we get

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} = -\frac{2mE}{\hbar^2}.$$

Thus we have

$$\frac{1}{X}\frac{d^2X}{dx^2} = -C_1 \quad \text{and} \quad \frac{1}{Y}\frac{d^2Y}{dy^2} = -C_2$$

where $C_1 + C_2 = 2mE/\hbar^2$. In other words,

$$X'' + C_1X = 0 \quad \text{and} \quad Y'' + C_2Y = 0.$$

These are second order differential equations with constant coefficients, and they have solutions

$$X = A\sin(\sqrt{C_1}x) \quad \text{and} \quad Y = B\sin(\sqrt{C_2}y)$$

respectively (notice the boundary conditions $X(0) = Y(0) = 0$ give the forms above).

Moreover, since $X(a) = 0$, we have $\sin(\sqrt{C_1}a) = 0$, so we must have $\sqrt{C_1}a = m\pi$ for some m , i.e., $\sqrt{C_1} = m\pi/a$. Similarly, since $Y(b) = 0$, we get that $\sqrt{C_2} = n\pi/b$ for some integer n .

Thus, relabelling AB with C , we get

$$\Psi = XY = C \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right).$$

3. (a) (i) Simple algebra.

(ii) We have

$$\mathbf{x}_n = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{x}_{n-1}.$$

(iii) The diagonalisation is

$$\mathbf{A} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & 1-\varphi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & 1-\varphi \end{pmatrix} \begin{pmatrix} 1 & \varphi-1 \\ -1 & \varphi \end{pmatrix},$$

and since $\mathbf{x}_n = \mathbf{A}^n \mathbf{x}_0$, where $\mathbf{x}_0 = \begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, we get

$$\begin{aligned} \mathbf{x}_n &= \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & 1-\varphi \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi^n & 0 \\ 0 & (1-\varphi)^n \end{pmatrix} \begin{pmatrix} 1 & \varphi-1 \\ -1 & \varphi \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ &\Rightarrow \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi^{n+1} - (1-\varphi)^{n+1} \\ \varphi^n - (1-\varphi)^n \end{pmatrix}, \end{aligned}$$

and comparing the bottom entries gives the required formula.

(iv) This part is just a matter of simplifying the expression F_{n+1}/F_n using the formula. When $n \rightarrow \infty$, the terms in n go to zero, and we get that $F_{n+1}/F_n \rightarrow \varphi/1 = \varphi$.

(b) (i) For this question, a quick sketch or verbal argument suffices to obtain these coordinates.

$$\mathbf{Ri} = (\cos \theta, \sin \theta, 0)$$

$$\mathbf{Rj} = (-\sin \theta, \cos \theta, 0)$$

$$\mathbf{Rk} = (0, 0, 1).$$

(ii) The matrix is just the images of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ in its columns.

(iii) The proof involves the Pythagorean identity for simplification. It means that the volume of any regions which we apply R to remains unchanged (it will be multiplied by 1).