PARTIAL DIFFERENTIAL EQUATIONS

LUKE COLLINS

It’s important to know how to solve separable first-order ODEs and
second-order ODEs with constant coefficients (these are covered in
CHE1215).

1. SEPARABLE PDESs

A PDE involving a function f(z,y) is said to be separable if its solution
can be written in the form f(z) = X (2)Y (y), i.e., a function in x alone
multiplied by a function in y alone.

Example 1. For example, consider the PDE
of  of
1 - 2
(1) ox + oy
Assuming that its solution is of the form f(z,y) = X(2)Y (y), then
using the product rule,
af 0 0X aY dX

=0.

— =—(X(»)Y =—Y+X—=—Y,
Ox 8:5( (#)Y () ox * or  dr
where 2 8 = () since Y is a function of y alone. Similarly, we get that
0
of _dY
9y dy
Therefore, plugging this back into (1), we have
dX ay
—Y+—X=0
dx + dy ’
and dividing throughout by XY,
1dX 1dY
——+-=—=0.
X dx Y dy
Notice that the expression % —- depends solely on x, and similarly
; m depends solely on y. Thus, since x and y are independent from

each other, and these expressions should always add up to 0, this can
only happen if 1 = (' and 1 dY = —( for some fixed constant C.
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Thus, we've reduced the PDE in (1) to two separate ordinary first-order
differential equations,

1 dX
X dr
Integrating both sides, we get
log X = Cx + log A and logY = —-Cy +log B,

1dy
Y dy

and

thus
X = Ae® and Y = Be Y,

and therefore, since f(x,y) = XY, we get the general solution
f(a,y) = D),

where C, D are arbitrary constants.

Exercise 2. Determine general solutions for the following PDEs, assum-
ing that they are separable.

(1) 28+ % =0 (2) y5t — 228 =0
(3) 5+ % = f(z.y) (4) yoh — 254 = f(z,y)

2. THE SCHRODINGER EQUATION: THE ONE-DIMENSIONAL CASE

In CHE1215, we saw the solution of the Schrodinger equation in a
“one dimensional box”, i.e., the wave function ¥(x) we are solving for
assigns a probability to a particle which lives in an interval [0, a] of real
numbers:

r 1
[ ] 1
0 a

Let’s review the solution in the one-dimensional case. The Schrodinger
equation for a particle of mass m moving along the x axis is
h? >V
—————+ VU =FEV,
2m dx?
where V(z) is the potential energy of the particle at position z, F is
the (constant) total energy, and W is the wave function.

The way we model the box is by taking the potential energy function

if
V(.CE) _ 0 if0< .r <a
oo otherwise.
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The constant value of V' inside the box ensures that no force acts on
the particle in this region; setting V' = 0 means that the energy F is
the (positive) kinetic energy of the particle. The infinite value of V" at
the “walls” and outside the box ensures that the particle cannot leave
the box; in quantum mechanics this means that the wave function is
zero at the walls and outside the box.

For the particle within the box, we therefore have the boundary value
problem

h dU
_ Y Ry
2m dx? ’

with boundary conditions ¥(0) = ¥(a) = 0. If we let w? = 2mE/h?,
then this is

LU,

w —+ w \IJ = O,

which has auxiliary equation
E+w?=0 = k=tuwi,
and so we have the general solution
U(x) = Acos(wz) + Bsin(wz).
applying the boundary conditions, we see that
U(0) =0 = Acos(0) + Bsin(0) = A =0,
and
U(a) =0 = Bsin(wa) =0 — wa =nw

forn =0,+1,+£2,..., since the sine function is zero precisely at integer
multiples of 7. In other words, the solutions of the problem are

U, (z) = Bsin (W) n=12.3, ...
a
where the permitted solutions are labelled with the quantum number
n. The value n = 0 is excluded since the trivial solution Wo(x) = 0
has no physical meaning, and the negative values are excluded since
U_, =—V,(x) is simply ¥,, with a change of sign.

Each solution W, has corresponding energy value

K202 B2 (M)z n2h2
2m 8m2m? 8ma?

since Planck’s constant is h = h/27.
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Finally, since this is a probability function, we require that the “total
probability” is 1, i.e., ffooo U(x)?dx = 1. The integral is £B*, which

forces B = \/g )

Thus, the solution is

2
\I/n(a:):\/jsin(@>, n=123,...
a a

3. THE SCHRODINGER EQUATION: THE TWO-DIMENSIONAL CASE

Now here is the new part which we do not cover in CHE1215: a box
which is two dimensional. This time, the “box” is a rectangle in the
xy-plane, which we model with the potential energy function

oo otherwise.

0 if0<zr<aand0<y<b,
v<x,y>:{ !

This time, the Schrédinger equation is
h2
—— VU + VU = EV,
2m

where V2 denotes the Laplacian operator, defined by
[0 RV}

= 4+ .
ox?  0y?

This is the two-dimensional generalisation of the second derivative.

V20

For particles inside the box, we therefore have the boundary value
problem
h2
—— VXU = Ey,
2m

with the boundary conditions ¥(z,0) = ¥(z,b) = 0 for all  and
U(0,y) = ¥(a,y) for all y.
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assuming ¥ (z, y) is separable, i.e., we can express ¥(z,y) = X ()Y (y),
then the equation becomes

X PY  2mE

w2 T T TR
and dividing through by ¥ = XY, we get
1 d*’X  1d% 2mE

v,

Xd? "var T w
Thus we have
12X 1 1 d%Y
5 = — an ==
X da? ! Y dy? 2

where C} + Cy = 2mE/h*. In other words,
X” + OlX =0 and Y” + CQY = 0.
These are both separate instances of the one-dimensional box case,
which have general solutions
X = Asin(y/Cix) and Y = Bsin(y/Cay)
respectively (notice the boundary conditions X (0) = Y'(0) = 0 give the
forms above).

Moreover, since X (a) = 0, we have sin(y/Cia) = 0, so we must have
Cia = mm for some m, i.e., v/C; = mm/a. Similarly, since Y (b) = 0,
we get that /Cy = nr/b for some integer n.

Thus, relabelling AB with C, we get

U,n(z) = XY = Csin (mx) sin <n_b7ry)

a

Similarly to before, we want [ [, ¥(z,y)* dzdy = 1, which forces the
constant C = \/g \/% = ,/ﬁ. Thus the solutions are

U,n(x) = \/%sin (%x) sin (%y),

and the corresponding energy values are
2 2

h? rm n
8m\a b
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