
PARTIAL DIFFERENTIAL EQUATIONS

LUKE COLLINS

It’s important to know how to solve separable first-order ODEs and
second-order ODEs with constant coefficients (these are covered in
CHE1215).

1. Separable PDEs

A PDE involving a function f(x, y) is said to be separable if its solution
can be written in the form f(x) = X(x)Y (y), i.e., a function in x alone
multiplied by a function in y alone.

Example 1. For example, consider the PDE

(1) ∂f

∂x
+
∂f

∂y
= 0.

Assuming that its solution is of the form f(x, y) = X(x)Y (y), then
using the product rule,

∂f

∂x
=

∂

∂x

(
X(x)Y (y)

)
=
∂X

∂x
Y +X

∂Y

∂x
=
dX

dx
Y,

where ∂Y
∂x

= 0 since Y is a function of y alone. Similarly, we get that
∂f

∂y
=
dY

dy
X.

Therefore, plugging this back into (1), we have
dX

dx
Y +

dY

dy
X = 0,

and dividing throughout by XY ,
1

X

dX

dx
+

1

Y

dY

dy
= 0.

Notice that the expression 1
X

dX
dx

depends solely on x, and similarly
1
Y

dY
dy

depends solely on y. Thus, since x and y are independent from
each other, and these expressions should always add up to 0, this can
only happen if 1

X
dX
dx

= C and 1
Y

dY
dy

= −C for some fixed constant C.
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Thus, we’ve reduced the PDE in (1) to two separate ordinary first-order
differential equations,

1

X

dX

dx
= C and 1

Y

dY

dy
= −C.

Integrating both sides, we get
logX = Cx+ logA and log Y = −Cy + logB,

thus
X = AeCx and Y = Be−Cy,

and therefore, since f(x, y) = XY , we get the general solution
f(x, y) = DeC(x−y),

where C,D are arbitrary constants.

Exercise 2. Determine general solutions for the following PDEs, assum-
ing that they are separable.

(1) 2∂f
∂x

+ ∂f
∂y

= 0 (2) y ∂f
∂x

− x2 ∂f
∂y

= 0

(3) ∂f
∂x

+ ∂f
∂t

= f(x, y) (4) y ∂2f
∂x2 − x∂2f

∂y2
= f(x, y)

2. The Schrödinger Equation: the one-dimensional case

In CHE1215, we saw the solution of the Schrödinger equation in a
“one dimensional box”, i.e., the wave function Ψ(x) we are solving for
assigns a probability to a particle which lives in an interval [0, a] of real
numbers:

x[
0

]
a

Let’s review the solution in the one-dimensional case. The Schrödinger
equation for a particle of mass m moving along the x axis is

− ~2

2m

d2Ψ

dx2
+ VΨ = EΨ,

where V (x) is the potential energy of the particle at position x, E is
the (constant) total energy, and Ψ is the wave function.

The way we model the box is by taking the potential energy function

V (x) =

{
0 if 0 < x < a

∞ otherwise.
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The constant value of V inside the box ensures that no force acts on
the particle in this region; setting V = 0 means that the energy E is
the (positive) kinetic energy of the particle. The infinite value of V at
the “walls” and outside the box ensures that the particle cannot leave
the box; in quantum mechanics this means that the wave function is
zero at the walls and outside the box.

For the particle within the box, we therefore have the boundary value
problem

− ~
2m

dΨ

dx2
= EΨ,

with boundary conditions Ψ(0) = Ψ(a) = 0. If we let ω2 = 2mE/~2,
then this is

d2Ψ

dx2
+ ω2Ψ = 0,

which has auxiliary equation

k2 + ω2 = 0 =⇒ k = ±ωi,

and so we have the general solution

Ψ(x) = A cos(ωx) +B sin(ωx).

applying the boundary conditions, we see that

Ψ(0) = 0 =⇒ A cos(0) +B sin(0) =⇒ A = 0,

and
Ψ(a) = 0 =⇒ B sin(ωa) = 0 =⇒ ωa = nπ

for n = 0,±1,±2, . . . , since the sine function is zero precisely at integer
multiples of π. In other words, the solutions of the problem are

Ψn(x) = B sin
(nπx

a

)
, n = 1, 2, 3, . . .

where the permitted solutions are labelled with the quantum number
n. The value n = 0 is excluded since the trivial solution Ψ0(x) = 0
has no physical meaning, and the negative values are excluded since
Ψ−n = −Ψn(x) is simply Ψn with a change of sign.

Each solution Ψn has corresponding energy value

En =
~2ω2

2m
=
h2

(
nπ
a

)2
8π2m2

=
n2h2

8ma2
,

since Planck’s constant is h = ~/2π.
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Finally, since this is a probability function, we require that the “total
probability” is 1, i.e.,

∫∞
−∞Ψ(x)2 dx = 1. The integral is a

2
B2, which

forces B =
√

2
a
.

Thus, the solution is

Ψn(x) =

√
2

a
sin

(nπx
a

)
, n = 1, 2, 3, . . .

3. The Schrödinger Equation: the two-dimensional case

Now here is the new part which we do not cover in CHE1215: a box
which is two dimensional. This time, the “box” is a rectangle in the
xy-plane, which we model with the potential energy function

V (x, y) =

{
0 if 0 < x < a and 0 < y < b,
∞ otherwise.

x

y

V = 0

a

b
V = ∞

This time, the Schrödinger equation is

− ~2

2m
∇2Ψ+ VΨ = EΨ,

where ∇2 denotes the Laplacian operator, defined by

∇2Ψ =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
.

This is the two-dimensional generalisation of the second derivative.

For particles inside the box, we therefore have the boundary value
problem

− ~2

2m
∇2Ψ = Eψ,

with the boundary conditions Ψ(x, 0) = Ψ(x, b) = 0 for all x and
Ψ(0, y) = Ψ(a, y) for all y.
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assuming Ψ(x, y) is separable, i.e., we can express Ψ(x, y) = X(x)Y (y),
then the equation becomes

d2X

dx2
Y +X

d2Y

dy2
= −2mE

~2
Ψ,

and dividing through by Ψ = XY , we get
1

X

d2X

dx2
+

1

Y

d2Y

dy2
= −2mE

~2
.

Thus we have
1

X

d2X

dx2
= −C1 and 1

Y

d2Y

dy2
= −C2

where C1 + C2 = 2mE/~2. In other words,
X ′′ + C1X = 0 and Y ′′ + C2Y = 0.

These are both separate instances of the one-dimensional box case,
which have general solutions

X = A sin(
√
C1x) and Y = B sin(

√
C2y)

respectively (notice the boundary conditions X(0) = Y (0) = 0 give the
forms above).

Moreover, since X(a) = 0, we have sin(
√
C1a) = 0, so we must have√

C1a = mπ for some m, i.e.,
√
C1 = mπ/a. Similarly, since Y (b) = 0,

we get that
√
C2 = nπ/b for some integer n.

Thus, relabelling AB with C, we get

Ψm,n(x) = XY = C sin
(mπ
a
x
)
sin

(nπ
b
y
)
.

Similarly to before, we want
∫∫
R2 Ψ(x, y)2 dx dy = 1, which forces the

constant C =
√

2
a

√
2
b
=

√
4
ab

. Thus the solutions are

Ψm,n(x) =

√
4

ab
sin

(mπ
a
x
)
sin

(nπ
b
y
)
,

and the corresponding energy values are

Em,n =
h2

8m

(m2

a2
+
n2

b2

)
.
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