

B.Sc. (Hons.) Year I

Sample Examination Paper I

CHE1217: Additional Techniques of Chemical Calculations

*n*th June 20XX

08:30–10:35

Instructions

Read the following instructions carefully.

- Attempt only **TWO** questions.
- Each question carries **50** marks. The maximum mark is **100**.
- A list of mathematical formulae is provided on page 2.
- Only the use of non-programmable calculators is allowed.

MATHEMATICAL FORMULÆ

ALGEBRA

Factors

$$\begin{aligned}a^3 + b^3 &= (a+b)(a^2 - ab + b^2) \\a^3 - b^3 &= (a-b)(a^2 + ab + b^2)\end{aligned}$$

Quadratics

If $ax^2 + bx + c$ has roots α and β ,

$$\begin{aligned}\Delta &= b^2 - 4ac \\ \alpha + \beta &= -\frac{b}{a} \quad \alpha\beta = \frac{c}{a}\end{aligned}$$

Finite Series

$$\begin{aligned}\sum_{k=1}^n 1 &= n \quad \sum_{k=1}^n k = \frac{n(n+1)}{2} \\ \sum_{k=1}^n k^2 &= \frac{k(k+1)(2k+1)}{6} \\ (1+x)^n &= \sum_{k=0}^n \binom{n}{k} x^k \\ &= 1 + nx + \frac{n(n-1)}{2!} x^2 + \dots + x^n\end{aligned}$$

GEOMETRY & TRIGONOMETRY

Distance Formula

If $A = (x_1, y_1)$ and $B = (x_2, y_2)$,

$$\begin{aligned}d(A, B) &= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ &= \sqrt{\Delta x^2 + \Delta y^2}\end{aligned}$$

Pythagorean Identity

$$\cos^2 \theta + \sin^2 \theta = 1$$

General Solutions

$$\begin{aligned}\cos \theta = \cos \alpha &\iff \theta = \pm \alpha + 2\pi\mathbb{Z} \\ \sin \theta = \sin \alpha &\iff \theta = (-1)^n \alpha + \pi n, \quad n \in \mathbb{Z} \\ \tan \theta = \tan \alpha &\iff \theta = \alpha + \pi\mathbb{Z}\end{aligned}$$

CALCULUS

Derivatives		Integrals	
$f(x)$	$f'(x)$	$f(x)$	$\int f(x) dx$
x^n	nx^{n-1}	$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\sin x$	$\cos x$	$\sin x$	$-\cos x$
$\cos x$	$-\sin x$	$\cos x$	$\sin x$
$\tan x$	$\sec^2 x$	$\tan x$	$\log(\sec x)$
$\cot x$	$-\operatorname{cosec}^2 x$	$\cot x$	$\log(\sin x)$
$\sec x$	$\sec x \tan x$	$\sec x$	$\log(\sec x + \tan x)$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$	$\operatorname{cosec} x$	$\log(\tan \frac{x}{2})$
e^x	e^x	e^x	e^x
$\log x$	$1/x$	$1/x$	$\log x$
uv	$u'v + uv'$	$\frac{1}{a^2+x^2}$	$\frac{1}{a} \tan^{-1}(\frac{x}{a})$
u/v	$(u'v - uv')/v^2$	$\frac{x}{\sqrt{a^2+x^2}}$	$\sin^{-1}(\frac{x}{a})$

Homogeneous Linear Second Order ODEs

If the roots of $ak^2 + bk + c$ are k_1 and k_2 , then the differential equation $ay'' + by' + cy = 0$ has general solution

$$y(x) = \begin{cases} c_1 e^{k_1 x} + c_2 e^{k_2 x} & \text{if } k_1 \neq k_2 \\ c_1 e^{kx} + c_2 x e^{kx} & \text{if } k = k_1 = k_2 \\ e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) & \text{if } k = \alpha \pm \beta i \in \mathbb{C} \end{cases}$$

Infinite Series

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} \dots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{\frac{n}{2}}}{n!} x^n = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots$$

$$\sin x = \sum_{n=1}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \quad x \in (-1, 1]$$

⚠ Attempt only **TWO** questions.

1. (a) A function $f(x, y)$ is said to be separable if it can be expressed as a product $X(x)Y(y)$, where X is a function of x alone, and Y is a function of y alone.

If $f(x, y)$ is separable, show that:

$$\begin{array}{ll} \text{(i)} \quad \frac{\partial f}{\partial x} = \frac{dX}{dx} Y(y), & \text{(ii)} \quad \frac{\partial f}{\partial y} = X(x) \frac{dY}{dy}, \\ \text{(iii)} \quad \frac{\partial^2 f}{\partial x \partial y} = \left(\frac{dX}{dx} \right) \left(\frac{dY}{dy} \right), & \text{(iv)} \quad \nabla^2 f = \frac{d^2 X}{dx^2} Y(y) + X(x) \frac{d^2 Y}{dy^2}. \end{array}$$

(b) The function $F(x, y, z)$ satisfies

$$\frac{\partial F}{\partial x} = 2x \sin y + z, \quad \frac{\partial F}{\partial y} = x^2 \cos y + \tan z, \quad \frac{\partial F}{\partial z} = x + y \sec^2 z.$$

Given that $F(0, 0, 0) = 1$, determine $F(x, y, z)$.

(c) Suppose $f(x, y)$ is separable, and that

$$\frac{\partial f}{\partial x} + (y+1) \cos x \frac{\partial f}{\partial y} = 0.$$

Determine the particular solution, given the conditions $f(0, 0) = 1$, and $f(0, 3) = \frac{1}{2}$.

(d) The Schrödinger equation for a particle of mass m moving in the two-dimensional xy -plane is

$$-\frac{\hbar^2}{2m} \nabla^2 \Psi = E \Psi,$$

where \hbar and E are constants, and $\Psi = \Psi(x, y)$ is the wave function.

Assuming the solutions is separable, and that $X(0) = Y(0) = X(a) = Y(b) = 0$, show that

$$\Psi(x, y) = C \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right),$$

where m, n are integers, and C is a real constant.

[12, 10, 12, 16 marks]

2. Consider the system of equations $\mathbf{Ax} = \mathbf{b}$, where $\mathbf{x} = (x, y, z)$,

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 5 & a \\ 2 & 3 & 0 \end{pmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 6 \\ b \end{pmatrix}.$$

(a) (i) For which values of a does \mathbf{A}^{-1} exist? Find \mathbf{A}^{-1} in terms of a for these values.

(ii) Solve the system when $a = -1$ and $b = 5$.

(iii) Solve the system when $a = -\frac{8}{7}$, and distinguish the different cases for b .

(b) For this part of the question, assume that \mathbf{A} has $a = -2$.

(i) Determine the eigenvalues of \mathbf{A} .

(ii) Express \mathbf{A} in the form \mathbf{PDP}^{-1} , where \mathbf{D} is a diagonal matrix.

(iii) Solve the recurrence $\mathbf{x}_n = \mathbf{Ax}_{n-1}$, given that $\mathbf{x}_0 = (1, 1, 1)$.

[25, 25 marks]

3. (a) An explosion is modelled by the following pair of differential equations. Molecule A and B have concentration $x(t)$ and $y(t)$ at time t , respectively.

$$\dot{x} = x + 3y$$

$$\dot{y} = x$$

Let $\alpha = \frac{1}{2}(1 + \sqrt{13})$.

(i) Express the equations as a matrix differential equation.

(ii) By diagonalising the appropriate matrix, solve the differential equations for $x(t)$ and $y(t)$.

[Hint: Use α in your working to keep things simple. Also, notice that $1 - \alpha = -\frac{3}{\alpha} = \frac{1}{2}(1 - \sqrt{13})$.]

(b) Determine the matrix \mathbf{R} which corresponds to a rotation in three dimensional space of ϑ (anticlockwise) around the y -axis. Prove that $\det(\mathbf{R}) = 1$, and interpret this geometrically.

[35, 15 marks]

Solutions

1. (a) Use the product rule from differentiation for all of these, and note that some partial derivatives will be zero.

(b) $F(x, y, z) = x^2 \sin y + y \tan z + xz + 1.$

(c) The general solution is $f(x, y) = \left(A \frac{e^{\sin x}}{y+1}\right)^C$, and the conditions gives us $A = 1$ and $C = \frac{1}{2}$, so the particular solution is $f(x, y) = \sqrt{\frac{e^{\sin x}}{y+1}}.$

(d) Standard theory.

By part (a), assuming $\Psi = XY$, the equation is just

$$\frac{d^2X}{dx^2}Y + X\frac{d^2Y}{dy^2} = -\frac{2mE}{\hbar^2}\Psi,$$

and dividing through by $\Psi = XY$, we get

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} = -\frac{2mE}{\hbar^2}.$$

Thus we have

$$\frac{1}{X}\frac{d^2X}{dx^2} = -C_1 \quad \text{and} \quad \frac{1}{Y}\frac{d^2Y}{dy^2} = -C_2$$

where $C_1 + C_2 = 2mE/\hbar^2$. In other words,

$$X'' + C_1 X = 0 \quad \text{and} \quad Y'' + C_2 Y = 0.$$

These are second order differential equations with constant coefficients, which can be solved using the methods from CHE1215 (working must be shown!), and they have solutions

$$X = A \sin(\sqrt{C_1}x) \quad \text{and} \quad Y = B \sin(\sqrt{C_2}y)$$

respectively (notice the boundary conditions $X(0) = Y(0) = 0$ give the forms above).

Moreover, since $X(a) = 0$, we have $\sin(\sqrt{C_1}a) = 0$, so we must have $\sqrt{C_1}a = m\pi$ for some m , i.e., $\sqrt{C_1} = m\pi/a$. Similarly, since $Y(b) = 0$, we get that $\sqrt{C_2} = n\pi/b$ for some integer n .

Thus, relabelling AB with C , we get

$$\Psi = XY = C \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right).$$

2. (a) (i) We have $\det(\mathbf{A}) = -7a - 8$, so \mathbf{A}^{-1} exists so long as $a \neq -\frac{8}{7}$.

$$\mathbf{A}^{-1} = \frac{1}{7a+8} \begin{pmatrix} 3a & -6 & 2(a+5) \\ -2a & 4 & a-4 \\ 4 & 7 & -9 \end{pmatrix}.$$

(ii) $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = (1, 1, 1)$, i.e., $x = y = z = 1$.

(iii) When $a = -\frac{8}{7}$, we get two cases: If $b = \frac{46}{9}$, then the system is consistent and we have the following infinite family of solutions: $x = \lambda$, $y = \frac{46}{27} - \frac{2}{3}\lambda$ and $z = \frac{119}{54} - \frac{7}{6}\lambda$ for any $\lambda \in \mathbb{R}$.

If $b \neq \frac{46}{9}$, then there are no solutions.

(b) (i) The characteristic polynomial is $\chi_{\mathbf{A}}(\lambda) = \lambda^3 - 6\lambda^2 + 11\lambda - 6 = (\lambda - 1)(\lambda - 2)(\lambda - 3)$, so the eigenvalues are 1, 2, 3.

(ii) Determining eigenvectors for each eigenvalue, we can take

$$\lambda = 1 \implies \mathbf{x} = (1, -1, -1)$$

$$\lambda = 2 \implies \mathbf{x} = (2, -2, -1)$$

$$\lambda = 3 \implies \mathbf{x} = (0, 1, 1)$$

and so if we let $\mathbf{P} = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix}$, then $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, where \mathbf{D}

is a diagonal matrix with 1, 2, 3 on the main diagonal.

(iii) $\mathbf{x}_n = \mathbf{A}^n \mathbf{x}_0$, so we just need to work out \mathbf{A}^n . Using the diagonal form,

$$\begin{aligned} \mathbf{A}^n &= (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) \cdots (\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) \\ &= \mathbf{P}\mathbf{D}(\mathbf{P}^{-1}\mathbf{P})\mathbf{D}(\mathbf{P}^{-1}\mathbf{P}) \cdots (\mathbf{P}^{-1}\mathbf{P})\mathbf{D}\mathbf{P}^{-1} \\ &= \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1} \end{aligned}$$

$$\begin{aligned} \implies \mathbf{A}^n \mathbf{x}_0 &= \begin{pmatrix} 1 & 2 & 0 \\ -1 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & 2^n & \\ & & 3^n \end{pmatrix} \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ \therefore \mathbf{x}_n &= \begin{pmatrix} 1 \\ 2 \times 3^n - 1 \\ 2 \times 3^n - 1 \end{pmatrix}. \end{aligned}$$

3. (a) (i) The given differential equations are equivalent to the matrix equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, where $\mathbf{x} = \mathbf{x}(t) = (x(t), y(t))$, and $\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}$.

(ii) The matrix has eigenvalues α and $1 - \alpha$, and corresponding eigenvectors $(\alpha, 1)$ and $(1 - \alpha, 1)$, so we can express \mathbf{A} as

$$\mathbf{A} = \mathbf{P} \begin{pmatrix} \alpha & \\ & 1 - \alpha \end{pmatrix} \mathbf{P}^{-1}, \quad \text{where } \mathbf{P} = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 & 1 \end{pmatrix}.$$

Thus, the equation we have is $\dot{\mathbf{x}} = \mathbf{PDP}^{-1}\mathbf{x}$, or equivalently, $\mathbf{P}^{-1}\dot{\mathbf{x}} = \mathbf{DP}^{-1}\mathbf{x}$. If we let $\mathbf{u} = \mathbf{P}^{-1}\mathbf{x}$, then this is $\dot{\mathbf{u}} = \mathbf{Du}$, i.e.,

$$\begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} \alpha u(t) \\ -\frac{3}{\alpha}v(t) \end{pmatrix}.$$

In general, the differential equation $f'(t) = af(t)$ is equivalent to $\frac{f'(t)}{f(t)} = a$, and integrating both sides with respect to t , we get $\log(f(t)) = at + \log c$, i.e., $f(t) = c e^{at}$. So the vector differential equation above becomes

$$\begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} Ae^{\alpha t} \\ Be^{-3t/\alpha} \end{pmatrix},$$

and thus we've determined the solution $\mathbf{u}(t)$ of $\dot{\mathbf{u}} = \mathbf{Du}$. Now to translate this into the desired solution $\mathbf{x}(t)$ of the original equation, we use the fact that $\mathbf{x} = \mathbf{Pu}$:

$$\mathbf{x}(t) = \mathbf{Pu}(t) = \begin{pmatrix} A\alpha e^{\alpha t} + B(1 - \alpha)e^{-3t/\alpha} \\ Ae^{\alpha t} + Be^{-3t/\alpha} \end{pmatrix},$$

i.e., the solution is

$$\begin{cases} x(t) = A\alpha e^{\alpha t} + B(1 - \alpha)e^{-3t/\alpha} \\ y(t) = Ae^{\alpha t} + Be^{-3t/\alpha}. \end{cases}$$

(b) Since the y -axis is the axis of revolution, then \mathbf{R} leaves \mathbf{j} fixed, i.e., $\mathbf{Rj} = (0, 1, 0)$.

For \mathbf{j} and \mathbf{k} , if we recall the standard matrix $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ for rotations in the 2D plane, we see that this is what occurs to \mathbf{i} and \mathbf{j} in xz -plane, while retaining their y coordinates, so $\mathbf{Ri} = (\cos\theta, 0, \sin\theta)$ and $\mathbf{Rk} = (-\sin\theta, 0, \cos\theta)$.

Thus

$$\mathbf{R} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}.$$

For the determinant, we expand along the middle row and column:

$$\det(\mathbf{R}) = \begin{vmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{vmatrix} = +1 \cdot \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} = \cos^2\theta + \sin^2\theta = 1,$$

which makes sense, since geometrically, what the determinant represents is the scale factor by which volume is multiplied when the transformation \mathbf{R} is carried out (which is 1, since volumes do not change when regions are simply being rotated).