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Instructions
Read the following instructions carefully.

• Attempt only THREE questions.

• Each question carries 35 marks.

• Calculators and mathematical formulæ booklet will be provided. Calculator
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Attempt only THREE questions."

Question 1.

(a) Define the operation 4 on sets by A4B ..= (AàB)∪ (BàA).

(i) Construct a truth table showing when the statement “x ∈ A4B”
is true, depending on all the cases when “x ∈ A” and “x ∈ B” are
true/false.

(ii) Draw aVenn Diagram for two sets A and B, highlighting the region
corresponding to the set A4B.

(iii) Use truth tables to prove the following statements (you may refer

to your table from (i)).

A4B = (A∪B)à (A∩B)( )

(A4B)4 (B4C)=A4C( )

A∩ (B4C)= (A∩B)4 (A∩C)( )

(b) We can formally phrase the pigeonhole principle in terms of functions:

∀A,B ⊆N,∀f : A→B,(|A| > |B|⇒ ∃x1,x2 ∈A : f (x1)= f (x2)∧x1 6= x2).

Express the statement above in idiomatic English, and give its negation

as a formal statement.

(c) (i) Show that for any integer k , k2+k is always even.

(ii) Show that if x is an odd integer, then there exists an integer y such

that x2 = 8y +1.

(d) For x ,y ∈Z, let x ∼ y if x2−y2 is divisible by 4.

(i) Prove that ∼ is an equivalence relation.

(ii) Describe the equivalence classes of ∼.
How many distinct equivalence classes are there?

[16, 4, 8, 7 marks]
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Question 2.

(a) You may assume that every rational number can be written in the form

a/b where a,b ∈Z and hcf(a,b)= 1.

(i) Show using induction that every natural number n is either odd or

even, i.e., we can express n = 2k or n = 2k +1 for some k ∈N.
(ii) For any integer x , show that if x3 is even, then x is even.

(iii) Hence, show that
3p2 is irrational.

(iv) Deduce that the number
2+ 3p2
3− 3p2

is irrational.

(b) Show that the function f : R2*R2 defined by

f (x ,y)= (2x −3y ,x +2y)

is a bijection, and find an expression for f −1.

(c) Consider a “jumbled inequality” consisting of n Ê 2 blankswith inequality
signs ‘<’ and ‘>’ interspersed, such as

< > > < > < .

The goal is to fill in the blanks so that each consecutive pair of numbers

is properly related, e.g., 1 < 6 > 5 > 4 < 7 > 2 < 3 in the case

above.

Prove, by induction, that you can always fill in n blankswith the numbers

1,2, ... ,n, using each of those numbers exactly once.

[Hint for the inductive step: if the last sign is ‘<’, then you can just use the IH for the

first n spaces and add n+1 on the end.]

[15, 10, 10 marks]
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Question 3.

(a) (i) State and prove the handshaking lemma.

(ii) Show that δ(G) É n ·ρ(G), where ρ(G) denotes the density of the

graph G , and n = |V (G)|.
(b) Consider the graph G depicted in figure 1. It is made up of four K3’s

arranged in a cycle, such that the vertices of each K3 are completely

connected to the ones on either side.

(i) Explain why χ(G)Ê 6.
[Hint: look for a subgraph that you know requires 6 colours.]

(ii) By constructing a 6-colouring of G , explain why χ(G)= 6.

(iii) Draw the complement graph G . What is χ(G)?

(c) (i) Show that any tree has at least two leaves.

(ii) Prove that the number of edges in a tree on n vertices is n−1.

(iii) Show that a tree on n vertices whose degrees are all either 1 or 4

has precisely 2
3(n+1) leaves.

[Hint: use the handshaking lemma.]

(d) Suppose the graph G has no cycle of length smaller than 5. Show that

|V (G)| Ê δ(G)2+1.
[Hint: pick a vertex, look at its neighbours, and the neighbours of its neighbours.]

[10, 7, 10, 8 marks]

Figure 1: The graph G in 3(b)

12

3

4

5

Figure 2: The network D in 4(c)

MAT1084 Jan/Feb 2025 — LC Page 4 of 5



Question 4.

(a) Consider the two matrices A=
3 2 −1
2 3 −1
1 2 1

 and B=
 5 −4 1
−3 4 1
1 −4 5

 .

(i) Find AB, and deduce the matrix A−1.

(ii) Hence, solve the simultaneous equations
3x +2y −z = 4
2x +3y −z = 7
x +2y +z = 0.

(iii) Show that for any invertible matrix M, if λ is an eigenvalue of M,

then 1/λ is an eigenvalue of M−1.

[Hint: start with the definition of what an eigenvalue is: Mx = λx for some

x 6= 0, and introduce the matrix M−1.]

(iv) Thus, given that det(λI−B)= (λ−2)(λ−4)(λ−8), deduce that the
eigenvalues of A are 1, 2 and 4.

(v) Find an eigenvector for each eigenvalue of A.

(b) By constructing an appropriate diagram involving the basis vectors i and
j , find the matrix which reflects vectors in R2 in the line y =−x .

(c) Consider the network of linked webpages represented by the digraph D
in figure 2, together with the matrix

B= 0.85


0 0 0 1/3 0

1/4 0 0 0 1/2
1/4 1/2 0 1/3 1/2
1/4 0 1 0 0
1/4 1/2 0 1/3 0

+0.15


1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

 .

The vector x = (0.11,0.14,0.27,0.29,0.19) is an eigenvector for B, with

corresponding eigenvalue λ= 1.

Explain in detail what the matrix B is in the context of Brin & Page’s

PageRank algorithm, and interpret the vector x as a ranking for theweb-

pages.

[24, 4, 7 marks]
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Answers and Hints
Note: The answers here should not be considered “model answers”, especially

those involving proofs. The presentation here is terse, because the primary

purpose of these solutions is to serve as a marking scheme for whoever is

marking examination scripts.

1. (a) Note: This is just the symmetric difference of A and B.

(i)3 marks A4B

x ∈A x ∈B x ∈(AàB)∪ (BàA)
T T F F F

T F T T F

F T F T T

F F F F F

(ii)2 marks The blue shaded region corresponds to A4B:

A B

(iii) ( )3 marks A4B = (A∪B)à (A∩B)

We need to show that x ∈A4B ↔ x ∈ (A∪B)à (A∩B) is
a tautology.*

x ∈A x ∈B x ∈(A4B)↔ x ∈ (A∪B)à (A∩B)
T T F T T F T

T F T T T T F

F T T T T T F

F F F T F F F

*Optionally, the student can translate this, using the definitions of4, à, ∩ and ∪, into the

purely zeroth-order statement (a∧¬b)∨ (b∧¬a)↔ (a∨b)∧¬(a∧b), where a ↔ (x ∈A) and
b ↔ (x ∈B), but this is not necessary, and the truth table columns will be identical.
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( )4 marks (A4B)4 (B4C)=A4C

We need to show that x ∈ (A4B)4 (B 4C) ↔ A4C is a

tautology.

x ∈A x ∈B x ∈C x ∈(A4B)4 (B4C)↔ x ∈ (A4C)
T T T F F F T F

T T F F T T T T

T F T T F T T F

T F F T T F T T

F T T T T F T T

F T F T F T T F

F F T F T T T T

F F F F F F T F

( )4 marks A∩ (B4C)= (A∩B)4 (A∩C)

Weneed to show that x ∈A∩(B4C)↔ x ∈ (A∩B)4(A∩C)
is a tautology.

x ∈A x ∈B x ∈C x ∈A∩ (B4C)↔ x ∈ (A∩B)4 (A∩C)

T T T F F T T F T

T T F T T T T T F

T F T T T T F T T

T F F F F T F F F

F T T F F T F F F

F T F F T T F F F

F F T F T T F F F

F F F F F T F F F
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(b)

2, 2 marks

One way, in idiomatic English:

For any two subsets A and B of the natural numbers, and for any

function going from A to B, if A is larger than B, then f sends two

different points in A to the same point in B.†

The negation:

∃A,B ⊆N,∃f : A→B : |A| > |B|∧(∀x1,x2 ∈A, f (x1)= f (x2)⇒ x1 = x2).

(c) (i)3 marks This can be done by induction on k , or by case work (i.e., split-
ting into cases depending onwhether k is odd or even), but the

simplest it so argue directly, here is an outline of the proof: we

have that k2+k = k(k+1), and note that one of k or k+1 must

be even, and therefore their product must be also.

(ii)5 marks Straightforward direct proof. Here is an outline: since x is odd,

we can write it as 2k+1, thus x2 = (2k+1)2 = 4(k2+k)+1, and
since k2+k is even from part (i), we can say that k2+k = 2y for

some y ∈Z, thus we have that x2 = 8y +1.

(d)3 marks This is straightforward, we need to check reflexivity, symmetry and

transitivity. An outline: for reflexivity, x2−x2 = 0 which is divisible

by 4; for symmetry we have that y2−x2 =−(x2−y2), thus it is also
divisible by 4, finally for transitivity we note that x2 − z2 = (x2 −
y2)+ (y2−z2), thus if both are divisible by 4 so is the former.

(e)4 marks Notice that for fixed x , we want to find all y such that for some k ,
x2 −y2 = 4k , i.e., (x −y)(x +y) = 4k . x −y and x +y are both even

if x and y have the same parity,‡ and both odd otherwise. If x +y
and x −y are both even, then their product is divisible by 4, and if

they are both odd, then clearly the product is not divisible by 4 (it’s

not even even!).

Therefore we see that for any x ∈Z, we have the equivalence class
[x ] = {y ∈Z : y has the same parity as x }, meaning that the relation

∼ partitions Z into two distinct equivalence classes: the odd num-

bers and the even numbers.

†i.e., f is not injective.
‡i.e., if x and y are both odd or both even.
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2. (a) (i)3 marks For the base case, n = 1 can be expressed as 2 ·0+1.

Now for the inductive step, suppose n−1 can be expressed as

2k or 2k +1. In the first case, we have n = 2k +1, and in the

second case, n = 2(k +1), which completes the proof.

(ii)4 marks By contrapositive: we show that if x is not even, then x3 is not
even. By part (i), this is equivalent to: if x is odd, then x3 is

odd.

Therefore, suppose x is odd. Thenwemaywrite it as x = 2k+1
for some k . But then x3 = (2k + 1)3 = 1+ 6k + 12k2 + 8k3 =
2(4k3+6k2+3k)+1, which is also clearly odd.

(iii)4 marks By contradiction: suppose
3p2 is rational, so we may express

3p2 = a/b with hcf(a,b) = 1. But then a3 = 2b3, which means

that a3 is even, and so by part (ii) a is even, say a = 2k for some

k .

Then a3 = 2b3 =⇒ (2k)3 = 2b3 =⇒ 2(2k3)= b3, i.e., b3 is even,
which by (ii) implies that b is even.

Thus a and b are both divisible by 2. This contradicts that

hcf(a,b)= 1.

(iv)4 marks If the given number is rational, say equal to a/b with a,b ∈ Z,
thenwemaymake

3p2 subject of the equation to get that 3p2=
(3a−2b)/(a+b), contradicting that 3p2 is irrational.

(b) We need to show that f is (i) functional, (ii) total, (iii) injective and

(iv) surjective.

(i)1 mark Clearly f is functional, since it unambiguously assigns a unique

pair of coordinates to each input pair (x ,y) ∈R2.

(ii)1 mark It is also clear that f is total, since it assigns every point in the

domain R2 a corresponding pair of coordinates.
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(iii)4 marks To see that f is injective, suppose that f (x ,y)= f (a,b), i.e.,

(2x −3y ,x +2y)= (2a−3b,a+2b)

=⇒
{

2x −3y = 2a−3b (1)
x +2y = a+2b (2)

=⇒
{

2x −3y = 2a−3b (1)
2x +4y = 2a+4b 2 · (2)

and subtracting the first from the second equation gives us

that 7y = 7b, i.e., y = b, and then by (2)we clearly get that x = a.
Thus, if f (x ,y)= f (a,b), then (x ,y)= (a,b), so f is injective.

(iv)4 marks Finally, to see that f is surjective, take any point (x ,y) in the

codomain R2, and solve

f (a,b)= (x ,y)
=⇒ (2a−3b,a+2b)= (x ,y)

=⇒
{

2a−3b = x (1)
a+2b = y (2)

=⇒
{

2a−3b = x (1)
2a+4b = 2y 2 · (2)

subtracting gives 7b = 2y −x , so b = (2y −x)/7 and then using

(2), we get that a = y −2(2y −x)/7= (2x +3y)/7. Thus we see
that

f
(2x+3y

7 , 2y−x
7

)= (x ,y),

and since this works for all (x ,y) in the codomain, we see that

f is surjective.

We also immediately obtain a formula for f −1, namely,

f −1(x ,y)= (2x+3y
7 , 2y−x

7
)
.
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(c)

10 marks

For the base case with n = 1, there is nothing to show.§

Now, let n Ê 1, and suppose that we have a jumbled inequalitywith

n+1 gaps. We can insert the numbers 1,... ,n in the first n places

by the induction hypothesis. Now if the last symbol is <, we can

just add n+1 on the end.

Otherwise, if it is >, we can increment each of the already placed

numbers by 1, and naturally the ordering is still respected, so that

now there are the numbers 2,... ,n+1 placed in the first n spaces,

and finally we can place 1 at the end.

3. (a) (i)5 marks For all graphs G , ∑
v∈V (G)

deg(v)= 2|E (G)|.

Proof 1. The number deg(v) counts the number of edges inci-

dent to the vertex v . Since each edge in the graph is incident

to precisely two vertices, then each edge in |E (G)| contributes
2 to the sum.

Proof 2. We have∑
v∈V (G)

deg(v)= ∑
v∈V (G)

|N(v)|

= ∑
v∈V (G)

∑
e∈E(G)

1v∈e

= ∑
e∈E(G)

∑
v∈V (G)

1v∈e =
∑

e∈E(G)
2= 2|E (G)|.

(ii)5 marks First of all, observe that

(n−1)ρ(G)= (n−1)|E (G)|
n(n−1)/2 = 2|E (G)|

|V (G)| .

Now clearly ∑
v∈V (G)

δ(G)É ∑
v∈V (G)

deg(v)

=⇒ |V (G)|δ(G)É 2|E (G)|,
§Optionally, the student can present the base case with n = 2, there are only two cases:

_< _ and _> _, which are easily filled: 1< 2 and 2> 1.
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and dividing through by |V (G)| gives

δ(G)É 2|V (G)|
|E (G)| = (n−1)ρ(G)É n ·ρ(G),

as required.

(b) (i)3 marks If we take two adjacent K3’s in the cycle, we see that they

induce K6 as a subgraph. Thus χ(G)Êχ(K6)= 6.

(ii)2 marks Here’s a possible 6-colouring:

(iii)2 marks The complement G :

'

This graph is clearly bipartite, so χ(G)= 2.

(c) (i)3 marks Let P be a longest path in the tree. This necessarily has two

leaves at its end, since otherwise it is not a longest path.

(ii)3 marks By induction on n. Clearly when n = 1 we have 0= n−1 edges,

which establishes the base case. Now given a tree T on n
vertices, remove a leaf ` (guaranteed to exist by (i)) to getT−`,
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v
...

...

...

...

...

N(v) N ′(N(v))

Figure a: Schematic representation of a vertex v , its neighbourhood N(v) and

N ′(N(v)) in a graph with no cycles of length < 5: notice the vertices in N ′(N(v))
are potentially allowed to be connected.

which by the IH has (n−1)−1= n−2 edges. But adding ` back
increases the numberof edges by1, sowe have n−1 edges.

(iii)4 marks Suppose there are k vertices of degree 1. Then there are n−k
vertices of degree 4, and so the sum of degrees is k +4(n−k),
which by the handshaking lemma is 2|E (G)| = 2(n−1). Solving
the equation k+4(n−k)= 2(n−1) for k gives k = 2

3(n+1).

(d)7 marks Fix a vertex v ∈V (G), and consider the set of its neighbours, N(v).
No two vertices x ,y ∈N(v) are connected, otherwise we’d get the

cycle vxy of length 3 in the graph. There are at least δ(v) vertices
in N(v).

Each vertex x ∈N(v) has at least δ(G)−1 neigbours outside of {v }
and N(v) (we’ve said no two vertices in N(v) can be connected

to each other). Moreover, none of these can overlap, i.e., for any

x ,y ∈N(v), we have N ′(x)∩N ′(y)=; (where N ′(x) here is denot-
ing N(x)à {v }, because v is obviously included in the intersection

but we don’t want to count it again). Thus, each vertex x ∈ N(v)
gives rise to the existence of δ(G)−1 distinct vertices in the graph.

Therefore we have

1+|N(v)|+ |N ′(N(v))| = 1+δ+δ(δ−1)= δ(G)2+1

vertices in the graph, as required.
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4. (a) (i)4 marks The computation gives AB= 8I, so A−1 = 1
8B.

(ii)4 marks The given system is Ax = (4,7,0), so using A−1 from part (a),

we have x =A−1(4,7,0)= 1
8B(4,7,0)= (−1,2,−3).

i.e., x =−1,y = 2,z =−3.

(iii)4 marks If Mx = λx , then M−1Mx = M−1(λx), i.e., x = λM−1x , so that

M−1x = 1
λ
x . Thus 1

λ
is an eigenvalue for M−1.

(iv)3 marks The eigenvalues of B are 2,4 and 8. The inverse of B is 1
8A.

Thus 1
2 , 1

4 and
1
8 are eigenvalues of

1
8A, i.e., they satisfy (1

8A)x =
λx . But this means that Ax = 8λx , i.e., the eigenvalues of A
are 8λ for λ= 1

2 , 1
4 and 1

8 , which gives 1,2 and 4.

(v)9 marks Usual calculation, the eigenvector forλ= 1 is (2,−1,2), the one
for λ= 2 is (1,1,3), and the one for λ= 4 is (1,1,1).

(b)4 marks Let’s call this transformation T . Then:

x

y

i

j T7−→
x

y

T (i)

T (j)

Reading off the coordinates of T (i) and T (j), the desired matrix is

easily seen to be

T =
(
T (i) T (j)

)
=

(
0 −1
−1 0

)
.

(c)7 marks We can view the internet as a digraph in which each directed edge

indicates a link from one page to another. Brin & Page’s PageR-

ank algorithm takes the corresponding adjacency matrix A, makes

it stochastic by dividing each column by its outdegree, and then
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blends it with a small “teleportation” (uniform jump) term. This re-

sults in the matrix B = 0.85A + 0.15
(1

nJ), where J is the all-ones

matrix, ensuring there are no zeroes (so we can apply the Perron–

Frobenius theorem and ensure a unique stable-state).

The vector x = (0.11, 0.14, 0.27, 0.29, 0.19) is the principal eigen-

vector (eigenvalue 1) ofB. Interpreting these as probabilities, page

4, corresponding to 0.29 is ranked highest (about 29% of the time

a “random surfer” would end up there), and the one correspond-

ing to 0.11, page 1, is ranked lowest. Thus x acts as a steady-state

distribution, measuring each page’s importance in this simple ex-

ample.
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