L-Universita Department of Mathematics
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Semester | Examination Session 2024/25

MAT1804: Mathematics for Computing 4th February 2025
8:30-10:35

Instructions
Read the following instructions carefully.

e Attempt only THREE questions.
e Each question carries 35 marks.

e Calculators and mathematical formulae booklet will be provided.
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/\ Attempt only THREE questions.

Question 1.
(@) Define the operation A on sets by AA B:= (A~ B)u (B~ A).

(i) Construct a truth table showing when the statement “x € AA B”
is true, depending on all the cases when “x € A” and “x € B” are
true/false.

(ii) Draw a Venn Diagram for two sets A and B, highlighting the region
corresponding to the set AA B.

(iii) Use truth tables to prove the following statements (you may refer
to your table from (i)).

(N AAB=(AUB)~(AnB)
(h (AAB)A(BAC)=AAC
(M) An(BAC)=(AnB)A(ANC)

(b) We can formally phrase the pigeonhole principle in terms of functions:
VA BN, Vf: A—= B,(JAI>|Bl=3x1,x e A: f(x1) = f(x2) Ax1 # Xx2).

Express the statement above in idiomatic English, and give its negation
as a formal statement.

(©) (i) Show that for any integer k, k% + k is always even.

(i) Show that if x is an odd integer, then there exists an integer y such
that x> =8y + 1.

(d) Forx,yeZ, let x ~y if x>—y? is divisible by 4.
(i) Prove that ~ is an equivalence relation.

(ii) Describe the equivalence classes of ~.
How many distinct equivalence classes are there?

[16, 4, 8, 7 marks]
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Question 2.

(@) You may assume that every rational number can be written in the form
a/bwhere a,be Z and hcf(a, b) = 1.

(i) Show using induction that every natural number n is either odd or
even, i.e., we can express n=2k or n=2k + 1 for some k € N.

(ii) Forany integer x, show that if x3 is even, then x is even.

(ili) Hence, show that v/2 is irrational.
. 2+V2 . .
(iv) Deduce that the number ——— is irrational.

3-V2
(b) Show that the function f: RZ — R? defined by

f(x,y)=(2x-3y,x+2y)

is a bijection, and find an expression for 1.

(c) Considera “jumbled inequality” consisting of n = 2 blanks with inequality
signs ‘<’ and ‘>’ interspersed, such as

< > > < > <

The goal is to fill in the blanks so that each consecutive pair of numbers
is properly related, e.g., 1 <6 >5 >4 <7 > 2 < 3 inthe case
above.

Prove, by induction, that you can always fill in n blanks with the numbers
1,2,..., n, using each of those numbers exactly once.

[Hint for the inductive step: if the last sign is ‘<’ then you can just use the IH for the
first n spaces and add n+ 1 on the end.]

[15, 10, 10 marks]
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Question 3.
(@) (i) State and prove the handshaking lemma.

(ii) Show that 6(G) < n-p(G), where p(G) denotes the density of the
graph G, and n=|V(G)|.

(b) Consider the graph G depicted in figure 1. It is made up of four K3's
arranged in a cycle, such that the vertices of each K3 are completely
connected to the ones on either side.

(i) Explain why x(G) = 6.

[Hint: look for a subgraph that you know requires 6 colours.]
(ii) By constructing a 6-colouring of G, explain why y(G) =6.
(i) Draw the complement graph G. What is y(G)?
(c) (i) Show that any tree has at least two leaves.
(ii) Prove that the number of edges in a tree on n vertices is n—1.
)

(iii) Show that a tree on n vertices whose degrees are all either 1 or 4
has precisely %(n+ 1) leaves.
[Hint: use the handshaking lemma.]
(d) Suppose the graph G has no cycle of length smaller than 5. Show that
IV(G)|=6(G)*+1.

[Hint: pick a vertex, look at its neighbours, and the neighbours of its neighbours.]

[10, 7, 10, 8 marks]

(3

Figure 1: The graph G in 3(b) Figure 2: The network D in 4(c)
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Question 4.

3 2 -1 5 -4 1
(a) Consider the two matricesA=|2 3 -1| and B=|-3 4 1].
1 2 1 1 -4 5

(i) Find AB, and deduce the matrix AL,

(ii) Hence, solve the simultaneous equations
3x+2y—z=4
2x+3y—z=7

x+2y+z=0.

(iii) Show that for any invertible matrix M, if A is an eigenvalue of M,
then 1/ is an eigenvalue of M1,

[Hint: start with the definition of what an eigenvalue is: Mx = Ax for some
x # 0, and introduce the matrix M~1.]

(iv) Thus, given that det(Al-B) = (A1—-2)(A1—-4)(A-8), deduce that the
eigenvalues of A are 1, 2 and 4.

(v) Find an eigenvector for each eigenvalue of A.

(b) By constructing an appropriate diagram involving the basis vectors i and
Jj, find the matrix which reflects vectors in R? in the line y = —x.

(c) Consider the network of linked webpages represented by the digraph D
in figure 2, together with the matrix

0 0 0 1z 0 s 15 1f5 1/5 1/5

4 0 0 0 1f s 15 15 1/5 1/5
B=085|14 12 0 13 1p|+0.15|1/5 1/5 155 1/5 1/5(.

4. 0 1 0 O s 15 1f5 1/5 1/5

s 15 0 13 0 s 15 1f5 1/5 1/5

The vector x = (0.11,0.14,0.27,0.29,0.19) is an eigenvector for B, with
corresponding eigenvalue A = 1.

Explain in detail what the matrix B is in the context of Brin & Page’s
PageRank algorithm, and interpret the vector x as a ranking for the web-
pages.

[24, 4, 7 marks]
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Answers and Hints

Note: The answers here should not be considered “model answers”, especially
those involving proofs. The presentation here is terse, because the primary
purpose of these solutions is to serve as a marking scheme for whoever is

marking examination scripts.

1. (a) Note: This is just the symmetric difference of A and B.

(i) AAB
xeA xeB | xe(A~B)u(B~A)
T T F (F| F
T F T |T| F
F T F T T
FF F IF| F
(i) The blue shaded region corresponds to AA B:

(iii) (1) AAB=(AUB)~(ANB)

We need to show that xe AAB—xe(AuB)~(AnB)is
a tautology.”
xeA xeB | xe(AAB)—xe(AuB)~(AnB)

T T F [T T F T

T F T |T T T F

F T T [T T T F

F F F T F F F

*Optionally, the student can translate this, using the definitions of A, ~, n and U, into the
purely zeroth-order statement (aA—=b) v (bA-a) < (av b)A—-(aAb), where a— (x € A) and
b < (x € B), but this is not necessary, and the truth table columns will be identical.
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(h (AAB)A(BAC)=AAC
We need to show that xe (AAB)A(BAC)—~AACisa

tautology.
xeA xeB xeC|xe(AAB)A(BAC)—xe(AAC)
T T T F F F [T F
T T F F T T |T T
T F T T F T |T F
T F F T T F |T T
F T T T T F T T
F T F T F T T F
F F T F T T |T T
F F F F F F T F

(M An(BAC)=(AnB)A(AnC)
We need to show that x e An(BAC) « x € (AnB)A(ANC)

is a tautology.

x€A xeB xeC | xeAn(BAC)—xe(AnB)A(ANC)
T T 7 F F (T] T F T
T T F T T |T T T F
T F T T T |T F T T
T F F F OF T F F F
F T T F OF T F F F
F T F F T |T F F F
F F T F T |T F F F
F F F F FIT F F F
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(b)

(c)

(d)

One way, in idiomatic English:

For any two subsets A and B of the natural numbers, and for any
function going from A to B, if Ais larger than B, then f sends two
different points in A to the same point in B.1

The negation:

JA,B<N,3f: A— B: A > |BIAN(Vx1,x0 € A, f(x1) =f(x2) = x1 = Xx2).

(i) This can be done by induction on k, or by case work (i.e., split-
ting into cases depending on whether k is odd or even), but the
simplest it so argue directly, here is an outline of the proof: we
have that k? + k = k(k+1), and note that one of k or k+1 must
be even, and therefore their product must be also. O]

(ii) Straightforward direct proof. Here is an outline: since x is odd,
we can write it as 2k + 1, thus x? = (2k+1)?> = 4(k? + k) +1, and
since k2 + k is even from part (i), we can say that k2 + k = 2y for
some y € Z, thus we have that x2 =8y + 1. O

This is straightforward, we need to check reflexivity, symmetry and
transitivity. An outline: for reflexivity, x? — x2 = 0 which is divisible
by 4; for symmetry we have that y? — x? = —(x? - y?), thus it is also
divisible by 4, finally for transitivity we note that x?> — z% = (x? -

y?) +(y? = z°), thus if both are divisible by 4 so is the former. [

Notice that for fixed x, we want to find all y such that for some k,
x?—y? =4k, ie, (x—y)(x+y)=4k. x—y and x +y are both even
if x and y have the same parity,* and both odd otherwise. If x + y
and x — y are both even, then their product is divisible by 4, and if
they are both odd, then clearly the product is not divisible by 4 (it’s
not even even!).

Therefore we see that for any x € Z, we have the equivalence class
[x] ={y € Z: y has the same parity as x}, meaning that the relation
~ partitions Z into two distinct equivalence classes: the odd num-
bers and the even numbers.

ti.e., f is not injective.
ti.e., if x and y are both odd or both even.
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2.

(@)

(i)

(iii)

(iv)

(i)

(ii)

For the base case, n=1 can be expressed as 2-0 + 1.

Now for the inductive step, suppose n—1 can be expressed as
2k or 2k +1. In the first case, we have n =2k +1, and in the
second case, n=2(k + 1), which completes the proof. O

By contrapositive: we show that if x is not even, then x3 is not

even. By part (i), this is equivalent to: if x is odd, then x3 is
odd.

Therefore, suppose x is odd. Then we may write itas x = 2k+1
for some k. But then x> = (2k+1)3 = 1+ 6k + 12k + 8k> =
2(4k3 +6k? +3k) + 1, which is also clearly odd. O

By contradiction: suppose V2 is rational, so we may express
V2 = a/b with hcf(a, b) = 1. But then a® = 2b3, which means
that a3 is even, and so by part (i) a is even, say a = 2k for some
k.

Then a® =2b3 = (2k)3 =2b3 = 2(2k3) = b3, i.e., b3 is even,
which by (i) implies that b is even.

Thus a and b are both divisible by 2. This contradicts that
hef(a, b) = 1. O

If the given number is rational, say equal to a/b with a,b € Z,

then we may make v/2 subject of the equation to get that v/2 =
(3a—2b)/(a+ b), contradicting that v/2 is irrational.

(b) We need to show that f is (i) functional, (ii) total, (iii) injective and
(iv) surjective.

Clearly f is functional, since it unambiguously assigns a unique
pair of coordinates to each input pair (x, y) € R?.

It is also clear that f is total, since it assigns every point in the
domain R? a corresponding pair of coordinates.
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(iii)

To see that f is injective, suppose that f(x,y) = f(a, b), i.e.,
(2x -3y, x+2y)=(2a—-3b,a+2b)
2x-3y=2a-3b (1)
fr——
x+2y=a+2b (2)
2x—-3y=2a-3b (1
—
2x+4y=2a+4b 2-(2)

and subtracting the first from the second equation gives us
that 7y =7b, i.e., y = b, and then by (2) we clearly get that x = a.
Thus, if f(x,y)=1f(a,b), then (x,y) =(a, b), so f is injective.

Finally, to see that f is surjective, take any point (x,y) in the
codomain R2, and solve

f(a,b)=(x,y)
— (2a—3b,a+2b) =(x,y)
2a-3b=x (1)
- { at2b=y  (2)
2a-3b=x (1)
- {23+4b:2y 2.(2)

subtracting gives 7b =2y — x, so b =(2y —x)/7 and then using
(2), we get that a=y —2(2y —x)/7=(2x+3y)/7. Thus we see
that

FEF 27 = ()

and since this works for all (x, y) in the codomain, we see that
f is surjective.

We also immediately obtain a formula for =1, namely,

Flxy)= (252,225 O
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(c) For the base case with n =1, there is nothing to show.®

Now, let n = 1, and suppose that we have a jumbled inequality with
n+1 gaps. We can insert the numbers 1, ..., n in the first n places
by the induction hypothesis. Now if the last symbol is <, we can
just add n+1 on the end.

Otherwise, if it is >, we can increment each of the already placed
numbers by 1, and naturally the ordering is still respected, so that
now there are the numbers 2, ..., n+1 placed in the first n spaces,
and finally we can place 1 at the end. O

3. (a) (i) Forall graphs G,
Y deg(v)=2IE(G)I.

veV(G)

Proof 1. The number deg(v) counts the number of edges inci-
dent to the vertex v. Since each edge in the graph is incident
to precisely two vertices, then each edge in |E( G)| contributes
2 to the sum. O

Proof 2. We have
>, deg(v)= ) IN(v)|

veV(G) veV(G)
= Z Z Tvee
veV(G)ecE(G)
=Y Y Le= Y 2=2EG). O
eeE(G)veV(G) ecE(G)
(ii) First of all, observe that
(n-1)IE(G)l _2E(G)]
(n=Dp(C) =002 = Wie)
Now clearly

Y 8(G)< ) deg(v)

veV(G) veV(G)
= |V(G)I6(G) <2|E(G),

SOptionally, the student can present the base case with n = 2, there are only two cases:
_<_and _>_, which are easily filled: 1<2and 2 > 1.
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and dividing through by |V/(G)| gives

21V (G)|
0(G) < =(n-1)p(G) < n-p(G),
(6)= gy = (= De(6)<n6(6)
as required. O
3 marks (b) (i) If we take two adjacent K3's in the cycle, we see that they

induce K as a subgraph. Thus y(G) = x(Ke) =6.

2 marks (ii) Here's a possible 6-colouring:

This graph is clearly bipartite, so y(G) =2.

(c) (i) Let P be a longest path in the tree. This necessarily has two
leaves at its end, since otherwise it is not a longest path.
(i) By induction on n. Clearly when n=1we have 0 = n—1 edges,

which establishes the base case. Now given a tree T on n
vertices, remove a leaf ¢ (guaranteed to exist by (i)) toget T—¢,
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Figure a: Schematic representation of a vertex v, its neighbourhood N(v) and
N'(N(v)) in a graph with no cycles of length < 5: notice the vertices in N'(N(v))
are potentially allowed to be connected.

which by the IH has (n—1) -1 = n—2 edges. But adding ¢ back
increases the number of edges by 1, sowe have n—1 edges. [

(iii) Suppose there are k vertices of degree 1. Then there are n—k
vertices of degree 4, and so the sum of degrees is k +4(n— k),
which by the handshaking lemmais 2|E(G)| = 2(n—1). Solving
the equation k+4(n—k)=2(n-1) for k gives k = %(n+ 1). O

Fix a vertex v € V(G), and consider the set of its neighbours, N(v).
No two vertices x,y € N(v) are connected, otherwise we'd get the
cycle vxy of length 3 in the graph. There are at least §(v) vertices
in N(v).

Each vertex x € N(v) has at least §(G) — 1 neigbours outside of {v}
and N(v) (we've said no two vertices in N(v) can be connected
to each other). Moreover, none of these can overlap, i.e., for any
x,y € N(v), we have N'(x)nN'(y) = @ (where N'(x) here is denot-
ing N(x)~ {v}, because v is obviously included in the intersection
but we don’t want to count it again). Thus, each vertex x € N(v)
gives rise to the existence of §( G) —1 distinct vertices in the graph.

Therefore we have
L+ IN(W)I+IN'(N(v) =1+8+6(6-1)=86(G)? + 1

vertices in the graph, as required. O
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4 marks 4. (a) (i) The computation gives AB=28l,s0 A~ = %B.

4 marks (i) The given system is Ax = (4,7,0), so using A~! from part (a),
we have x = A71(4,7,0) = $B(4,7,0) = (-1,2,-3).
e, x=-1,y=2,z=-3.

4 marks (iii) If Mx = Ax, then M~1Mx = M-1(Ax),ie, x= AM~1x, so that
M~1x = 1x. Thus } is an eigenvalue for M~1.

3 marks (iv) The eigenvalues of B are 2,4 and 8. The inverse of B is %A.
Thus 1, 1 and 1 are eigenvalues of A, i.e., they satisfy (§A)x =
Ax. But this means that Ax = 81x, i.e,, the eigenvalues of A
are 81 for A=1,1 and £, which gives 1,2 and 4.

(v) Usual calculation, the eigenvector for A = 1is (2,-1,2), the one
for A =21is(1,1,3), and the one for A =4 is (1,1,1).
(b) Let's call this transformation T. Then:
y y
jl\ L
X < X
i T()
h 4 T(i)

Reading off the coordinates of T (i) and T (j), the desired matrix is
easily seen to be

r=(re) 0)=(% )

(c) We can view the internet as a digraph in which each directed edge
indicates a link from one page to another. Brin & Page’s PageR-
ank algorithm takes the corresponding adjacency matrix A, makes
it stochastic by dividing each column by its outdegree, and then
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blends it with a small “teleportation” (uniform jump) term. This re-
sults in the matrix B = 0.85A + 0.15(%J), where J is the all-ones
matrix, ensuring there are no zeroes (so we can apply the Perron-
Frobenius theorem and ensure a unique stable-state).

The vector x = (0.11, 0.14,0.27, 0.29, 0.19) is the principal eigen-
vector (eigenvalue 1) of B. Interpreting these as probabilities, page
4, corresponding to 0.29 is ranked highest (about 29% of the time
a “random surfer” would end up there), and the one correspond-
ing to 0.11, page 1, is ranked lowest. Thus x acts as a steady-state
distribution, measuring each page'’s importance in this simple ex-
ample.
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