

Coordinate Geometry

Pure Mathematics A-Level

Luke Collins

maths.com.mt/notes

3rd March 2017

The following is a list of definitions and results which are useful in solving classical geometry problems. Note that the symbol Δ in front of a variable denotes the change in that variable; for example if x takes on two values x_0 and x_1 , then $\Delta x = |x_0 - x_1|$.

1. The **distance** between two points $A = (x_0, y_0)$ and $B = (x_1, y_1)$, denoted $d(A, B)$, is defined

$$d(A, B) := \sqrt{\Delta x^2 + \Delta y^2}$$

which, without Δ -notation, is $d(A, B) = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}$.

2. The **midpoint** of the line segment joining the points $A = (x_0, y_0)$ and $B = (x_1, y_1)$ is given by

$$M = \left(\frac{x_0 + x_1}{2}, \frac{y_0 + y_1}{2} \right),$$

i.e. the *average* of the two points. One can verify that this point M satisfies the desired properties; namely:

- $d(A, M) = d(M, B)$, i.e. it lies in the middle of A and B , and
- M lies on the line joining A and B .

3. The **gradient** of a line $\ell \subseteq \mathbb{R}^2$, denoted m_ℓ , is a measure of how steep ℓ is, defined

$$m_\ell := \frac{\Delta y}{\Delta x}$$

for any two points $A, B \in \ell$. Observe that:

- The gradient m_ℓ is invariant; i.e. for any two points $A, B \in \ell$ we choose, m_ℓ remains the same.
- $m_\ell = \tan \theta$, where θ is the angle that ℓ makes with the positive x -axis.
- If two lines ℓ_1 and ℓ_2 are *parallel*, we write $\ell_1 \parallel \ell_2$, and

$$\ell_1 \parallel \ell_2 \iff m_{\ell_1} = m_{\ell_2}.$$

- If two lines ℓ_1 and ℓ_2 are *perpendicular*, we write $\ell_1 \perp \ell_2$, and

$$\ell_1 \perp \ell_2 \iff m_{\ell_1} = -\frac{1}{m_{\ell_2}}.$$

4. The **equation of a line** $\ell \subseteq \mathbb{R}^2$ is an equation in x and y , whose satisfaction by some point (x_0, y_0) is both a *necessary and sufficient* condition for (x_0, y_0) to be a point on ℓ .

If $A = (x_0, y_0)$ is a fixed point on ℓ and $m = m_\ell$, then the equation of the line ℓ is

$$y - y_0 = m(x - x_0).$$

Alternatively, taking $(0, c)$ as the fixed point on ℓ , i.e. the y -coordinate of ℓ as it crosses the y -axis, we get the equation

$$y = mx + c.$$

5. Suppose two curves $\mathcal{C}_1, \mathcal{C}_2 \subseteq \mathbb{R}^2$ are represented by the equations $c_1(x, y) = 0$ and $c_2(x, y) = 0$ in x and y . Then any **points of intersection** of the two curves are given by solving the system of equations

$$\begin{cases} c_1(x, y) = 0 \\ c_2(x, y) = 0 \end{cases}$$

simultaneously. Any solution (x_0, y_0) to this system corresponds to a point $(x_0, y_0) \in \mathcal{C}_1 \cap \mathcal{C}_2$.

6. The **acute angle** θ between two lines $\ell_1, \ell_2 \subseteq \mathbb{R}^2$ with gradients $m_1 = m_{\ell_1}$ and $m_2 = m_{\ell_2}$ is given by

$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.$$

7. The **distance** between the line $\ell : ax + by + c = 0$ and the point $A = (h, k)$ is given by

$$d(A, \ell) = \frac{|ah + bk + c|}{\sqrt{a^2 + b^2}}.$$

8. The **circle** $\mathcal{C} \subseteq \mathbb{R}^2$ with centre $C = (a, b)$ and radius r has the standard equation

$$(x - a)^2 + (y - b)^2 = r^2.$$

Any quadratic equation of the form $x^2 + y^2 + ax + by + c = 0$ represents a circle¹, and can be brought to the form stated above by completing the square twice (once with the variable x , once with the variable y).

Alternatively, one can expand the equation given above and compare the coefficients.

¹ Additionally, it must satisfy the property $a^2 + b^2 > 4c$. Why do you think this is? What would the curve represent if it does not satisfy this property?