ORDINARY DIFFERENTIAL EQUATIONS

L. COLLINS

We cover the following first/second order ordinary differential equations (ODEs).
The order of an ODE is determined by the highest order derivative present in the
equation. By ordinary, we mean that the derivatives are of a function (y) of only
one independent variable ().

1)

FIrRsT ORDER ODESs

Separable
These are equations which can be brought to the form

fy)dy = g(x) da.
Integrating both sides gives the general solution.

Exact Equations
These are equations whose left hand side is an exact differential, i.e., the
result of applying the product rule to some function of x and y. In general,
they have the form

7@ o(y) + 1) ') 2 = h(a),

or, in terms of differentials,
f'@) g(y) do + f(2) g'(y) dy = h(=) da,
which can be transformed to
d(f(x) 9(y)) = h(x) dz.
Integrating both sides gives the general solution.

Linear Equations
First order equations of the form

Yy fa)y = glo)

are said to be linear. They can be reduced to exact equations by multiplying
throughout by

(o) = exp ( [ fa) do).

known as the integrating factor (where exp(z) = e*).
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SECOND ORDER ODES

(1) Homogeneous with Constant Coefficients
A second order ODE with constant coefficients is homogeneous when it
equals zero. In other words, we consider the equation

d*y | dy

where a,b,c € R are constants. First, we solve the auxiliary equation

ak®> +bk+c=0

whose solutions are k = k1 and k = ko. The general solution is then given

by

crek1® 4 cgeher if k1 #£ ko
y(z) = < 1P 4 coneh® ifk=Fk =ko
e**(cycos fr + cosinfx) it k=a=+pieC,

where cq, ¢y are arbitrary constants.

Inhomogeneous with Constant Coefficients
A differential equation is inhomogeneous if it is not homogeneous. Here we
consider the equation

?y | dy
a@+b%+cy—f(l‘)7é0

where a,b,c € R are constants. We solve by following these steps:

(i)

(iii)

(iv)

Solve the homogeneous equation

Py | dy
A A
ada:Q * dx

to obtain the complementary function cf(z).

+cy=0

Guess a trial solution, i.e., a function ts(x) which, when substituted
in the left-hand side of the equation, is likely to result in f(z). Table 1
suggests trial solutions for common elementary functions f. Note that
even if some of the constants a,b,... in f are zero, the corresponding
constants A, u,... in the trial solution should not be assumed zero.
For example, if f(x) = 22, then we still take the trial solution to be
Ax? + px +n. Similarly, the function f(z) = 22 + sin2x has trial
solution Az? + px + 1+ ¢ cos 2z + 7sin 2.

Determine the derivatives ts'(z) and ts”(z), and substitute them into
the LHS of the original ODE. Compare coefficients to determine correct
values for the constants so that the result will equal f(x).

The trial solution with the constant(s) found is called the particular
integral, pi(z).

The general solution is given by y(z) = cf(z) + pi(x).
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f(z) Trial Solution, ts(z)
a A
. axr+b Ar 4+ @
Polynomials az? 4 ba + ¢ Az + puz + 1

Ae®® if ki # o # ko
Exponentials’ ae™® Aze®® if k1 =a # ko
Az2e®®  if k) = a = ky

Trigonometric acosaz + bsinazx Acosazx + psin ax

T Note that ki1,ks are the solutions to the auxiliary equation solved in
part (i).

TABLE 1. Trial solutions of common elementary functions.

Remark: Why does this method work? Differentiation is an operator, that
is, a function whose inputs and outputs are themselves functions. If we denote
the differentiation of f by D[f], then both f and D[f] are functions, which when
evaluated at z, yield the numbers f(z) and D[f](z) respectively. The symbol D
alone denotes differentiation as a function in its own right. (In Leibniz notation, this
is the difference between g—g, which is the function D[f] whose inputs are numbers,
and %, which is equivalent to D and whose inputs are functions.)

In general, an operator L is linear if for any two functions f and g,
Lif+g]=L[fl+Llg] and  Llaf] = aL[f],

where « is any constant. Indeed, the differential operator D is linear, e.g., if for all
x, f and g are defined by f(z) = sinz and g(z) = 22, then

D[2f + 3¢](xz) = 2cosz + 6x = 2D[f](x) + 3D]g|(z),
i.e., D[2f 4+ 3g] = 2D[f] + 3D][g].

Studying linear operators abstractly is useful. Let O denote the zero function, i.e.,
the function defined by 0(z) = 0 for all x. Note that this is different from zero; the
former is a function, the latter is a number. Now if L is a linear operator, the set
of functions which are mapped to 0 by L is called the kernel, denoted ker(L). In
other words,

f €ker(L) < L[f]=0.

The function 0 itself is in the kernel of any linear operator L. Indeed, since for any
function f, we have (0f)(xz) = 0 f(z) = 0 = 0(x) for all x, then 0f = 0. Hence
since L is linear,

L[0] = L[00] = 0 L[0] = O,
so 0 € ker(L).

The kernel of a linear operator L can tell us a lot about it, such as whether or not
L is invertible. Recall that in general, a function F' has an inverse if and only if it
is one-to-one, i.e., if for all x and y, F'(z) = F(y) implies that x = y. Applying this
reasoning to linear operators, it is easy to see that for L to have an inverse L™, only
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0 must be in its kernel. Indeed, 0 € ker(L) for any L by the argument above; but
if f € ker(L) where f # 0, then by definition of ker(L), we have L[f] = 0 = L[0],
but f # 0. This contradicts the definition of one-to-one.

What is the the kernel ker(D) of the differentiation operator D? By now, we know
that ker(D) is precisely the set of constant functions, such as the function 3 where
3(z) =3 for all z.

Now we finally address the problem of solving differential equations. The simplest
differential equation is the implicit one in the evaluation of an indefinite integral
[ f(z)dz, since this is equivalent to finding a solution y(z) for the differential
equation

d

di; = f(2);
or with the operator notation, D[y] = f. Now if D were invertible, the solution
would simply be y = D~![f], but unfortunately the situation is not as simple, since
as we have just seen, ker(D) # {0}. So how do we solve this problem? What we
usually do is determine a particular function y, by the techniques of integration,
and then write

JECIEE:

where ¢ is an “arbitrary constant”. The addition of this constants incorporates
all solutions to the differential equation. In view of the theory of kernels we have
developed, this is equivalent to doing ¥, + ¢ for any constant function ¢ € ker(D).
Indeed, if y, is a solution, it makes sense that v, + ¢ is also a solution, since

Dly, + ¢] = Dly,| + D[c] = Dy,| + 0 = D]y,

But how does this incorporate all solutions? Say we want to solve L[y] = f for
any linear operator L. Let y, be a particular solution we found somehow, and let
y represent any other solution. By linearity,

Lly —yp] = Lly] = Lly,] = f = [ =0,
so y —yp € ker(L), i.e., y — y, = k for some function k € ker(L). Thus
y=yp+k

Hence we have shown that any solution y to the equation L[y] = f can be written
as the particular solution ¥, plus some member of the kernel, and it follows that
all solutions are given by y = y, + k for k € ker(L).

Essentially, this is what the method described is doing. Instead of simply having

% = f though, we have equations of the form

d*y | dy
o—5 +b—=+cy=1F,
dx? de Y !
where a, b, c € R. It is easy to see that the left-hand side is also a linear operator,
2
since it inherits linearity from the operators %, d% and the identity (I[y] = y).



ORDINARY DIFFERENTIAL EQUATIONS 5

indeed, if we define L[y] = a% + b% + cy, then

2
Lf 46 = s (f +6) + bao(f +9) + el +9)

d? d? d? d?
:ad—aj‘é+bd—£+cf+ad—;;+bd—ag+cg
= L[f] + Llgl.
and
d? d d? d?
Lo f] = a0 f) + bo(@ ) + el ) = 0(aTh 05T 1 ef) = a Ll

When defining such operators, we sometimes abuse notation slightly and write
2 2

L=oafs+bd +cor L=aD?+bD +cl instead of L[y] za%—kb%—i—cy for all

y. Since the given equation is equivalent to L[y] = f, we may also write

d? d ,
(a(mz+bdx+6> yl=f or  (aD’+bD+cl)[y] = f.

Let’s take an example, say,

d’y _dy

prche 5£ + 6y = cos 2z.
In this case, we have the operator L = D? — 5D + 6. The first thing we need to
do is to study this operator L, in particular, we need to find its kernel. In general,
operators of the form aD? + bD + cI have an exponential function f(z) = €** in

their kernel for some value of k.
Indeed, since D[f](x) = ke and D?[f](x) = k%e**, then
L{f](z) = ak®e*® + bke*® + cek® = eF (ak? + bk + ¢).

Since ef* # 0 for all # € R (or C), it follows that L[f] = 0 whenever k is a solution
to the auxiliary equation ak? 4+ bk + ¢ = 0. There are some technical details as
to why we take different general solutions depending on the multiplicity of k, or
whether it is real or complex, but essentially, the first step of the solution process is
determining the kernel ker(L) of the linear operator defined by the left-hand side.
This is what the complementary function achieves.

The trial solution part of the method is effectively just a guess for a particular
solution (hence its name), y,. Once a correct solution is found, the general solution
is given by y =y, + k, as described in the general framework of linear operators.

And that’s why it works.

For the unsatisfied: why the kernel comprises exponentials. If you're both-
ered by the fact that I didn’t explain why the kernel functions look like €, then
I’ll explain it briefly here.

Something cool about operators of the form aD? 4 bD + cI is that we can actually
“factorise” them, just like we do with quadratics. Indeed, we know that if the roots
of the quadratic ak? + bk + ¢ are a and 3, then we may write the quadratic as
a(k — a)(k — B). Amazingly, we get that

aD? +bD + ¢l = a(D — aI)(D — BI),
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where for two operators L and M, their product ML means “do L, and then then
do M” (just like functional composition, we could also write this as M o L). For
instance,

(D —2I)(D = 31)[y] = (D —2D)[y’ — 3y]
=y —3y) -2y —3y) =y" — 5y +6y.

Indeed, it’s straightforward to verify that we can factorise in the general case.
Suppose « and 3 are the roots of ak? + bk + c. Then

(a(D —aI)(D = BI))[y] = (a(D — o))y — By
=a((y' = By) — ay’ — By))
=a(y’ —(a+B)y +aby)
=a(y" + 2y + £y)
=ay” +by +cy
= (aD* + bD + cl)[y).
Ok, so we can factorise these operators. How does it help us? Well, to solve the
homogeneous equation (aD? + bD + cI)[y] = 0, we can assume a # 0 and divide by

a, and factorise the operator as (D—al)(D—fI) (using complex roots if necessary).
Thus our goal has now become to solve (D — al)(D — SI)[y] = 0.

Now y is a solution to (D —al)(D — SI)[y] if the result of evaluating (D — SI)[y] is
in the kernel of (D —al). The kernel of (D — al) is precisely the set of all functions
f which satisfy

(D —aD)[f] =0,

i.e., the set of solutions to ' — af =0, or, f' = af. This is a separable first order
ODE, whose general solution is f(z) = ¢;e**. Thus y is a solution to (D —al)(D —
BI)[y] precisely when it is a function of this kind, i.e., if

(D = B0yl = cre®”

for some ¢;. Now, what we have here is a linear first order differential equation,
since we can write it in the usual notation as

Y — By = c1e®”.

Setting u(x) = e#% as our integrating factor, we multiply throughout by pu(z) to
get that this equation is equivalent to
d
e BTy — Be Py = crel@ T — %(ye_ﬂz) = crel@=P)z,

Thus, the general solution is

y(z) = P” (01 /e(o‘_ﬁ)r da:).

At this point, we have three cases for the integral, depending on « and (.

(i) a # B, both real roots. In this case, we work out the integral obtaining

(a—B)z
e c

+ CQ) = L eow 4 c1e0e?® = Cre®® + C’Qeﬂm,
153 a—pf

y(@) = e (S—
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where we can relabel the constants as we did, since given any Cy,Cs € R,
we can set ¢; = (a+ 8)C;1 and ¢o = Cy/cy in the above. Notice that we
are dividing by a — 3, so it is crucial that a # f.

(i) a = B, repeated real root. In this case, the integral is simply [ 1dz, so we
have

y(x) = 167 (1 + ) = e’ (1w + c163) = C1€7" + Cowe™,
where the relabelling is justified by setting ¢; = C3/Cy and ¢z = Cy.

(iii) a, 8 = o % it, complex roots. In this case, the integral is [e?™@dzx =
[(cos(27x) + isin(27z)) do, which gives us that

y(2) = crele—TDa (sin(QTx) _ cos(27x) N 62)

2T 2T
c1e” . . .
= (cos(tx) —isin(7z))(sin(27x) — i cos(27x) 4 27¢2)
= 0126 (27¢5 cos(Tzx) + sin(rx) — (cos(Tx) 4 27¢o sin(Tx))i)
T

_ oz G a AN
=e ((0102 o z) cos(tx) + (27 01022) sm(rw)).
It might not be obvious, but given any constants C; and C5, we can put
c1 = Cor+Cy7i and ¢p = (201Cy — (C1% — C?)i) /(27(C1% 4 C2?)) and the
above becomes
y(x) = e7®(Cy cos(tx) + Cysin(rx)).

For our situation, want y(z) to be a real-valued function, so we restrict our
solutions to when C1,C2 € R (but in truth, this function is a solution to
the homogeneous equation for any C7,Cs € C).

And this is where the general solutions come from.
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