
ORDINARY DIFFERENTIAL EQUATIONS

L. COLLINS

We cover the following first/second order ordinary differential equations (ODEs).
The order of an ODE is determined by the highest order derivative present in the
equation. By ordinary, we mean that the derivatives are of a function (y) of only
one independent variable (x).

First Order ODEs

(1) Separable
These are equations which can be brought to the form

f(y) dy = g(x) dx.

Integrating both sides gives the general solution.

(2) Exact Equations
These are equations whose left hand side is an exact differential, i.e., the
result of applying the product rule to some function of x and y. In general,
they have the form

f ′(x) g(y) + f(x) g′(y) dy

dx
= h(x),

or, in terms of differentials,

f ′(x) g(y) dx + f(x) g′(y) dy = h(x) dx,

which can be transformed to

d(f(x) g(y)) = h(x) dx.

Integrating both sides gives the general solution.

(3) Linear Equations
First order equations of the form

dy

dx
+ f(x) y = g(x)

are said to be linear. They can be reduced to exact equations by multiplying
throughout by

µ(x) = exp
(∫

f(x) dx
)

,

known as the integrating factor (where exp(x) def= ex).
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Second Order ODEs

(1) Homogeneous with Constant Coefficients
A second order ODE with constant coefficients is homogeneous when it
equals zero. In other words, we consider the equation

a
d2y

dx2 + b
dy

dx
+ cy = 0

where a, b, c ∈ R are constants. First, we solve the auxiliary equation

ak2 + bk + c = 0

whose solutions are k = k1 and k = k2. The general solution is then given
by

y(x) =


c1ek1x + c2ek2x if k1 ̸= k2

c1ekx + c2xekx if k = k1 = k2

eαx(c1 cos βx + c2 sin βx) if k = α ± βi ∈ C,

where c1, c2 are arbitrary constants.

(2) Inhomogeneous with Constant Coefficients
A differential equation is inhomogeneous if it is not homogeneous. Here we
consider the equation

a
d2y

dx2 + b
dy

dx
+ cy = f(x) ̸= 0

where a, b, c ∈ R are constants. We solve by following these steps:

(i) Solve the homogeneous equation

a
d2y

dx2 + b
dy

dx
+ cy = 0

to obtain the complementary function cf(x).

(ii) Guess a trial solution, i.e., a function ts(x) which, when substituted
in the left-hand side of the equation, is likely to result in f(x). Table 1
suggests trial solutions for common elementary functions f . Note that
even if some of the constants a, b, . . . in f are zero, the corresponding
constants λ, µ, . . . in the trial solution should not be assumed zero.
For example, if f(x) = x2, then we still take the trial solution to be
λx2 + µx + η. Similarly, the function f(x) = x2 + sin 2x has trial
solution λx2 + µx + η + ζ cos 2x + τ sin 2x.

(iii) Determine the derivatives ts′(x) and ts′′(x), and substitute them into
the lhs of the original ODE. Compare coefficients to determine correct
values for the constants so that the result will equal f(x).

The trial solution with the constant(s) found is called the particular
integral, pi(x).

(iv) The general solution is given by y(x) = cf(x) + pi(x).
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f(x) Trial Solution, ts(x)

Polynomials

a λ
ax + b λx + µ

ax2 + bx + c λx2 + µx + η
...

...

Exponentials† aeαx
λeαx if k1 ̸= α ̸= k2

λxeαx if k1 = α ̸= k2
λx2eαx if k1 = α = k2

Trigonometric a cos αx + b sin αx λ cos αx + µ sin αx

† Note that k1, k2 are the solutions to the auxiliary equation solved in
part (i).

Table 1. Trial solutions of common elementary functions.

Remark: Why does this method work? Differentiation is an operator, that
is, a function whose inputs and outputs are themselves functions. If we denote
the differentiation of f by D[f ], then both f and D[f ] are functions, which when
evaluated at x, yield the numbers f(x) and D[f ](x) respectively. The symbol D
alone denotes differentiation as a function in its own right. (In Leibniz notation, this
is the difference between dy

dx , which is the function D[f ] whose inputs are numbers,
and d

dx , which is equivalent to D and whose inputs are functions.)

In general, an operator L is linear if for any two functions f and g,
L[f + g] = L[f ] + L[g] and L[αf ] = α L[f ],

where α is any constant. Indeed, the differential operator D is linear, e.g., if for all
x, f and g are defined by f(x) = sin x and g(x) = x2, then

D[2f + 3g](x) = 2 cos x + 6x = 2D[f ](x) + 3D[g](x),
i.e., D[2f + 3g] = 2D[f ] + 3D[g].

Studying linear operators abstractly is useful. Let 0 denote the zero function, i.e.,
the function defined by 0(x) = 0 for all x. Note that this is different from zero; the
former is a function, the latter is a number. Now if L is a linear operator, the set
of functions which are mapped to 0 by L is called the kernel, denoted ker(L). In
other words,

f ∈ ker(L) ⇐⇒ L[f ] = 0.

The function 0 itself is in the kernel of any linear operator L. Indeed, since for any
function f , we have (0f)(x) = 0 f(x) = 0 = 0(x) for all x, then 0f = 0. Hence
since L is linear,

L[0] = L[0 0] = 0 L[0] = 0,

so 0 ∈ ker(L).

The kernel of a linear operator L can tell us a lot about it, such as whether or not
L is invertible. Recall that in general, a function F has an inverse if and only if it
is one-to-one, i.e., if for all x and y, F (x) = F (y) implies that x = y. Applying this
reasoning to linear operators, it is easy to see that for L to have an inverse L−1, only
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0 must be in its kernel. Indeed, 0 ∈ ker(L) for any L by the argument above; but
if f ∈ ker(L) where f ̸= 0, then by definition of ker(L), we have L[f ] = 0 = L[0],
but f ̸= 0. This contradicts the definition of one-to-one.

What is the the kernel ker(D) of the differentiation operator D? By now, we know
that ker(D) is precisely the set of constant functions, such as the function 3 where
3(x) = 3 for all x.

Now we finally address the problem of solving differential equations. The simplest
differential equation is the implicit one in the evaluation of an indefinite integral∫

f(x) dx, since this is equivalent to finding a solution y(x) for the differential
equation

dy

dx
= f(x);

or with the operator notation, D[y] = f . Now if D were invertible, the solution
would simply be y = D−1[f ], but unfortunately the situation is not as simple, since
as we have just seen, ker(D) ̸= {0}. So how do we solve this problem? What we
usually do is determine a particular function yp by the techniques of integration,
and then write ∫

f(x) dx = yp + c

where c is an “arbitrary constant”. The addition of this constants incorporates
all solutions to the differential equation. In view of the theory of kernels we have
developed, this is equivalent to doing yp + c for any constant function c ∈ ker(D).
Indeed, if yp is a solution, it makes sense that yp + c is also a solution, since

D[yp + c] = D[yp] + D[c] = D[yp] + 0 = D[yp].

But how does this incorporate all solutions? Say we want to solve L[y] = f for
any linear operator L. Let yp be a particular solution we found somehow, and let
y represent any other solution. By linearity,

L[y − yp] = L[y] − L[yp] = f − f = 0,

so y − yp ∈ ker(L), i.e., y − yp = k for some function k ∈ ker(L). Thus

y = yp + k.

Hence we have shown that any solution y to the equation L[y] = f can be written
as the particular solution yp plus some member of the kernel, and it follows that
all solutions are given by y = yp + k for k ∈ ker(L).

Essentially, this is what the method described is doing. Instead of simply having
dy
dx = f though, we have equations of the form

a
d2y

dx2 + b
dy

dx
+ cy = f,

where a, b, c ∈ R. It is easy to see that the left-hand side is also a linear operator,
since it inherits linearity from the operators d2

dx2 , d
dx and the identity (I[y] = y).
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indeed, if we define L[y] = a d2y
dx2 + b dy

dx + cy, then

L[f + g] = a
d2

dx2 (f + g) + b
d

dx
(f + g) + c(f + g)

= a
d2f

dx2 + b
d2f

dx2 + cf + a
d2g

dx2 + b
d2g

dx2 + cg

= L[f ] + L[g],
and

L[α f ] = a
d2

dx2 (α f) + b
d

dx
(α f) + c(α f) = α

(
a

d2f

dx2 + b
d2f

dx2 + cf
)

= α L[f ].

When defining such operators, we sometimes abuse notation slightly and write
L = a d2

dx2 + b d
dx + c or L = aD2 + bD + cI instead of L[y] = a d2y

dx2 + b dy
dx + cy for all

y. Since the given equation is equivalent to L[y] = f , we may also write(
a

d2

dx2 + b
d

dx
+ c

)
[y] = f or (aD2 + bD + cI)[y] = f.

Let’s take an example, say,
d2y

dx2 − 5 dy

dx
+ 6y = cos 2x.

In this case, we have the operator L = D2 − 5D + 6I. The first thing we need to
do is to study this operator L, in particular, we need to find its kernel. In general,
operators of the form aD2 + bD + cI have an exponential function f(x) = ekx in
their kernel for some value of k.

Indeed, since D[f ](x) = kekx and D2[f ](x) = k2ekx, then

L[f ](x) = ak2ekx + bkekx + cekx = ekx(ak2 + bk + c).
Since ekx ̸= 0 for all x ∈ R (or C), it follows that L[f ] = 0 whenever k is a solution
to the auxiliary equation ak2 + bk + c = 0. There are some technical details as
to why we take different general solutions depending on the multiplicity of k, or
whether it is real or complex, but essentially, the first step of the solution process is
determining the kernel ker(L) of the linear operator defined by the left-hand side.
This is what the complementary function achieves.

The trial solution part of the method is effectively just a guess for a particular
solution (hence its name), yp. Once a correct solution is found, the general solution
is given by y = yp + k, as described in the general framework of linear operators.

And that’s why it works.

For the unsatisfied: why the kernel comprises exponentials. If you’re both-
ered by the fact that I didn’t explain why the kernel functions look like ekx, then
I’ll explain it briefly here.

Something cool about operators of the form aD2 + bD + cI is that we can actually
“factorise” them, just like we do with quadratics. Indeed, we know that if the roots
of the quadratic ak2 + bk + c are α and β, then we may write the quadratic as
a(k − α)(k − β). Amazingly, we get that

aD2 + bD + cI = a(D − αI)(D − βI),



6 L. COLLINS

where for two operators L and M , their product ML means “do L, and then then
do M” (just like functional composition, we could also write this as M ◦ L). For
instance,

(D − 2I)(D − 3I)[y] = (D − 2I)[y′ − 3y]
= (y′ − 3y)′ − 2(y′ − 3y) = y′′ − 5y′ + 6y.

Indeed, it’s straightforward to verify that we can factorise in the general case.
Suppose α and β are the roots of ak2 + bk + c. Then(

a(D − αI)(D − βI)
)
[y] =

(
a(D − αI)

)
[y′ − βy]

= a((y′ − βy)′ − α(y′ − βy))
= a(y′′ − (α + β)y′ + αβ y)
= a(y′′ + b

a y′ + c
a y)

= ay′′ + by′ + cy

= (aD2 + bD + cI)[y].

Ok, so we can factorise these operators. How does it help us? Well, to solve the
homogeneous equation (aD2 + bD + cI)[y] = 0, we can assume a ̸= 0 and divide by
a, and factorise the operator as (D−αI)(D−βI) (using complex roots if necessary).
Thus our goal has now become to solve (D − αI)(D − βI)[y] = 0.

Now y is a solution to (D − αI)(D − βI)[y] if the result of evaluating (D − βI)[y] is
in the kernel of (D −αI). The kernel of (D −αI) is precisely the set of all functions
f which satisfy

(D − αI)[f ] = 0,

i.e., the set of solutions to f ′ − αf = 0, or, f ′ = αf . This is a separable first order
ODE, whose general solution is f(x) = c1eαx. Thus y is a solution to (D −αI)(D −
βI)[y] precisely when it is a function of this kind, i.e., if

(D − βI)[y] = c1eαx

for some c1. Now, what we have here is a linear first order differential equation,
since we can write it in the usual notation as

y′ − βy = c1eαx.

Setting µ(x) = e−βx as our integrating factor, we multiply throughout by µ(x) to
get that this equation is equivalent to

e−βxy′ − βe−βxy = c1e(α−β)x ⇐⇒ d

dx
(ye−βx) = c1e(α−β)x.

Thus, the general solution is

y(x) = eβx
(

c1

∫
e(α−β)x dx

)
.

At this point, we have three cases for the integral, depending on α and β.

(i) α ̸= β, both real roots. In this case, we work out the integral obtaining

y(x) = c1eβx
(e(α−β)x

α − β
+ c2

)
= c1

α − β
eαx + c1c2eβx = C1eαx + C2eβx,
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where we can relabel the constants as we did, since given any C1, C2 ∈ R,
we can set c1 = (α + β)C1 and c2 = C2/c1 in the above. Notice that we
are dividing by α − β, so it is crucial that α ̸= β.

(ii) α = β, repeated real root. In this case, the integral is simply
∫

1 dx, so we
have

y(x) = c1eβx(x + c2) = eβx(c1x + c1c2) = C1eβx + C2xeβx,

where the relabelling is justified by setting c1 = C2/C1 and c2 = C1.

(iii) α, β = σ ± iτ , complex roots. In this case, the integral is
∫

e2τix dx =∫
(cos(2τx) + i sin(2τx)) dx, which gives us that

y(x) = c1e(σ−τi)x
( sin(2τx)

2τ
− i

cos(2τx)
2τ

+ c2

)
= c1eσx

2τ
(cos(τx) − i sin(τx))(sin(2τx) − i cos(2τx) + 2τc2)

= c1eσx

2τ
(2τc2 cos(τx) + sin(τx) − (cos(τx) + 2τc2 sin(τx))i)

= eσx
((

c1c2 − c1

2τ
i
)

cos(τx) +
( c1

2τ
− c1c2i

)
sin(τx)

)
.

It might not be obvious, but given any constants C1 and C2, we can put
c1 = C2τ + C1τi and c2 = (2C1C2 − (C1

2 − C2
2)i)/(2τ(C1

2 + C2
2)) and the

above becomes
y(x) = eσx(C1 cos(τx) + C2 sin(τx)).

For our situation, want y(x) to be a real-valued function, so we restrict our
solutions to when C1, C2 ∈ R (but in truth, this function is a solution to
the homogeneous equation for any C1, C2 ∈ C).

And this is where the general solutions come from.


	First Order ODEs
	Second Order ODEs
	Remark: Why does this method work?
	For the unsatisfied: why the kernel comprises exponentials


