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I. INTRODUCTION

T
HE word algebra, from the Arabic al-jebr (in Maltese, ghall-ġabra)

refers to the study of manipulation of mathematical symbols. The
goal of algebra is to abstract away unnecessary details so that we
can think more generally, using symbols in place of more concrete

objects (such as numbers).

Throughout these notes, we assume basic symbols and notations of sets. Take a
look at appendix A if any of the symbols are new to you.

We take quite a formal approach to things, building off definitions and prov-
ing things every step of the way. It is not important to learn the proofs here by
heart, but it is important to read and understand them well. In the exam, you
will have to produce proofs of your own, often of results which you have never
seen before. Thus the way proofs are written and presented, as well as the differ-
ence between what we are allowed to assume and what we aren’t, are essential
to proving things correctly.

Moreover, in more advanced topics, mathematical jargon of the kind we present
here is vital to be able to explain things as succinctly as possible. Thus, even if
it seems like we are using verbose language to describe something which could
otherwise be stated more matter-of-factly; the goal is to familiarise you with lan-
guage we will rely on in the future.

It is important to work through all the exercises, not only to reinforce what you
have learned, but to also garner sufficient instincts for what is to come. It is not
enough to be able to do the exercises—by the end of them, you should be able to
do similar exercises easily, almost without thinking. This way, when we go on to
more advanced topics, your focus will be entirely on the new material, and you
will not sacrifice any of your brain’s “processing power” to understand the basic
algebra.

When exercises are annotated with a symbol, this is instructing you to pour
yourself some tea and dedicate some time to think about the problem, it might
be harder than the others.

PRELIMINARY TECHNIQUES

Before we start the material of the course, you are encouraged to work through
the following exercise. The ability to solve such basic problems will be assumed.
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Exercise 1.1. 1. LINEAR EQUATIONS IN ONE VARIABLE

Solve the following equations.

3x +4 = 16a) 7x −4 = 24b)

3x +4 = x +16c) 3x −5+2x = 1−x +5xd)
x

2
− x

3
= 8e)

y

6
+ y

4
= 5f)

n

5
+n = n

3
+13g)

t

4
− t

5
= t

2
−18h)

m

3
+ m

2
= m − 1

6
i)

θ

4
+ 1

2
+3θ = 2θ+3j)

5

q +5
= 3

q +7
k)

1− y

1+ y
= 2

3
l)

1

7
(x +1)− 1

11
(x −2) = 1m)

1

x +1
= 3

4(x +1)
+ 1

12
n)

4

2s +1
− 2

3(2s +1)
= 5

9
o)

1

7
(x +2)+3 = x +3

2
p)

3x

2

(
2+ 2

x

)
+7x −3 = 1

4
(39x +7)q)

2. SIMULTANEOUS LINEAR EQUATIONS IN TWO VARIABLES

Solve each of the following systems of equations.{
6x +2y = 30

4x +3y = 30
a)

{
2x +21 = 5y

4x +3y = 23
b)

{
3x +33 = 9y

5x +4y = 40
c)

{
3x +3 = 6y

5x −6y = 7
d)

{
x +9y = 34

4x −5y = 13
e)

{
6x −3y = 3

4x +5 = 3y
f)

Alice has more money than Bob. If Alice gave Bob AC20, they
would have the same amount. While if Bob gave Alice AC22,
Alice would then have twice as much as Bob. How much does
each one actually have?

g)

A woman is now 30 years older than her son. 15 years ago, she
was twice as old. What are the present ages of the woman and
her son?

h)
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3. LINEAR INEQUALITIES IN ONE VARIABLE

x +1 > 2a) 5−3x < 17−2xb)

5(1+x)−2(1−x) Ê 2+3xc)
x +3

2
É x −2

3
d)

4. Solve for x.

x + y = 2x −3za) x + y x + zx = 3−x +4x y zb)

x = x + y + z2

y −3z
c)

1

x
+ 1

w
= 1

z
d)

1

w
+ 1

y
+ 1

x
= 1

z
e) y z = y + z/x

z + y/x
f)

5. A man was looking at a portrait. Someone asks him: “Whose pic-
ture are you looking at?” He replied: “Brothers and sisters I have
none, but this man’s father, is my father’s son.”

Whose picture was the man looking at?

6. Consider three brothers named John, James and William. John and
James (the two J’s) always lie, but William always tells the truth.
The three are indistinguishable in appearance. You meet one of the
three brothers on the street one day and wish to find out whether
he is John (because John owes you money). You are allowed to ask
him one question answerable by yes or no, but the question may
not contain more than three words!

What question would you ask?a

aThis delightful problem was taken from the excellent book To Mock a Mocking Bird
by Raymond Smullyan, which provides a nice informal introduction to combinatory logic
using these kinds of logical puzzles (equivalent to the λ-calculus, for those of who study
computing.)

THE REAL NUMBERS

The set of real numbers R is the object we work with the most throughout the
course, although we will consider other mathematical objects in later topics
(functions, vectors, matrices, complex numbers, etc.). The essential, defining
properties which the real numbers obey are summarised nicely in theorem 1.2.
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Theorem 1.2 (R is an Ordered Field). Let x, y, z ∈ R, and let + and · denote the
operations of addition and multiplication. Then the following properties hold.

I. x + y ∈R (CLOSURE OF +)

II. x + (y + z) = (x + y)+ z (ASSOCIATIVITY OF +)

III. There is a number 0 ∈R such that for any x,
x +0 = 0+x = x (IDENTITY FOR +)

IV. For each x, there is a number −x ∈R, such that
x +−x =−x +x = 0 (INVERSE FOR +)

V. x + y = y +x (COMMUTATIVITY OF +)

VI. x · y ∈R (CLOSURE OF · )

VII. x · (y · z) = (x · y) · z (ASSOCIATIVITY OF · )

VIII. There is a number 1 ∈R such that 1 ̸= 0, and for any x,
x ·1 = 1 · x = x (IDENTITY FOR · )

IX. For each x, if x ̸= 0, then there is a number x−1 such that
x · x−1 = x−1 · x = 1 (INVERSE FOR · )

X. x · y = y · x (COMMUTATIVITY OF · )

XI. x · (y + z) = x · y +x · z (DISTRIBUTIVITY OF · OVER +)

XII. If x É y and y É x, then x = y (ANTISYMMETRY OF É)

XIII. If x É y and y É z, then x É z (TRANSITIVITY OF É)

XIV. x É y or y É x (TOTALITY OF É)

XV. If x É y, then x + z É y + z (ORDER PRESERVATION +)

XVI. If 0 É x and 0 É y, then 0 É x · y (ORDER PRESERVATION · )

We are actually glossing over a key detail here. Upon reading these “defining
properties”, a natural question you might ask is: “then what’s the difference be-
tween Q and R?”, and indeed, you would be right in asking this, because the
rationals are also an ordered field (i.e., they obey all the properties I–XVI of theo-
rem 1.2 too). The rationalsQ are, in a sense, the “smallest” set of numbers obey-
ing these properties, but it has “holes”, i.e., numbers which “should” be there,
but aren’t (such as

p
2, which we proved is not rational in appendix A). When we

think of the number line, we think of a continuum of numbers without holes. So
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in the case of
p

2, we have the approximations

1.4 = 14

10
1.42 = 1.96

1.41 = 141

100
1.412 = 1.9881

1.414 = 1414

1000
1.4142 = 1.999396

1.4142 = 14142

10000
1.41422 = 1.99996164

1.41421 = 141421

100000
1.414212 = 1.9999899241

1.414213 = 1414213

1000000
1.4142132 = 1.999998409369

...

each of which is rational, but we should also have a number at the end of this
process whose square is exactly 2, namely

p
2, having infinitely many decimals

in its expansion. (Note that just because a number has infinitely many decimals,
doesn’t necessarily mean it isn’t rational, think of 1/3 = 0.333. . . ). We will explore
the more technical details behind this in later chapters, but for now, we will sim-
ply say that the real numbers R are defined by the properties I – XVI, plus the
property

XVII. Any integer followed by an infinite sequence of decimals defines a valid real
number,

which is called the completeness of the real numbers.1 We will not talk more of
completeness in this chapter, since it is more of an analytic property of the real
numbers rather than an algebraic one.2

From now on, we will assume nothing about the real numbers apart from the
properties listed above in theorem 1.2. Even though you likely have previous
knowledge of additional properties of real numbers, we approach the subject as
if this is all we are allowed to use. Any other claims must be justified with proofs,

1See https://en.wikipedia.org/wiki/Completeness_of_the_real_numbers if you are
interested in more details.

2When we say “analytic”, we are referring to (real) analysis, which is the study of continuous
things, which heavily relies on the completeness of the real numbers in particular. Algebra on the
other hand doesn’t care about the real numbers particularly, but more about solving equations
and manipulating expressions, whether they contain integers, rationals or reals.
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which we will give throughout the notes (unless the proofs are tedious/compli-
cated and derail us from the topic at hand, often these will be proofs involving
the notion of completeness).

In fact, to expand our toolbox, let us start by proving some easy results about real
numbers which follow from theorem 1.2. All of these probably seem obvious to
you, but how to prove them, allowing ourselves to only use I–XVI, is not always
obvious!

Proposition 1.3. Let a, x, y ∈R. Then

i) The numbers 0 and 1 are unique,3

ii) For each x, there is only one −x and x−1 (where x ̸= 0 for the latter),

iii) −(−x) = x,

iv) x +a = y +a =⇒ x = y,

v) If a ̸= 0, then xa = y a =⇒ x = y,

vi) x ·0 = 0 · x = 0,

vii) x · (−y) = (−x) · y =−(x · y),

viii) (−x) · (−y) = x · y,

ix) (−1) · x =−x,

x) (−1) · (−1) = 1.

Proof. For (i), suppose that there are two zeros, 0 and 0̂ both satisfying III, where
0 ̸= 0̂. Then by III,

0 = 0+ 0̂ = 0̂+0 = 0̂,

contradicting that 0 ̸= 0̂. Replacing 0 and 0̂ with 1 and 1̂ above, the proof for 1 is
the same by VIII.

For (ii), again suppose we have two different minus x’s, −x and ⊖x, both satisfy-
ing IV. Then by II, III and IV,

−x =−x +0 =−x + (x +⊖x) = (−x +x)+⊖x = 0+⊖x =⊖x,

contradicting that −x ̸= ⊖x. A similar argument proves the uniqueness of x−1.

3Meaning that 0 and 1 are the only numbers in R satisfying III and VIII of theorem 1.2 respec-
tively.
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For (iii), we have

−(−x) =−(−x)+0 (by III)

=−(−x)+ (−x +x) (by IV)

= (−(−x)+−x)+x (by II)

= 0+x (by IV)

= x (by III)

as required.

For (iv), suppose x +a = y +a. Then

x = x +0 (by III)

= x + (a +−a) (by IV)

= (x +a)−a (by II)

+ (y +a)−a (by assumption)

= y + (a −a) (by II)

= y +0 (by IV)

= y (by III)

as required. A similar argument proves (v).

For (vi), we have

0+x ·0 = x ·0 = x · (0+0) = (x ·0)+ (x ·0)

by XI. Hence by (iv), 0 = x ·0 = 0 · x by X.

For (vii), observe that

x · y +x · (−y) = x · (y +−y) = x ·0 = 0

by XI and (vi). Hence by (ii), x ·(−y) is the unique inverse −(x ·y) of x ·y . Similarly
(−x) · y =−(x · y).

Now for (viii), we have

(−x) · (−y) =−((−x) · y) =−(−(x · y)) = x · y

by (ii) and by (iii).

For (ix), observe that

x + (−1) · x = x ·1+x · (−1) = x · (1+−1) = x ·0 = 0
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by VIII, XI and (vi). Thus by (ii), (−1) · x is the unique inverse −x of x.

Finally (x) follows by (ix) with x =−1, and we get

(−1) · (−1) =−(−1) = 1

by (iii).

Notice that proving these “obvious” results is quite similar to playing chess in
some sense; we know what tile (on the chessboard) we want to get to, but we can
only make valid moves according to the rules of the game. In our case, the “valid
moves” are the properties of theorem 1.2, and subsequent results we established
from them.

Exercise 1.4. Prove the following for all x, y ∈ R where x, y ̸= 0. You may
use any of the facts from proposition 1.3.

−0 = 0,i) 1−1 = 1,ii)

(x−1)−1 = x,iii) (x · y)−1 = x−1 · y−1.iv)

Notation (Algebraic conventions). We relax the rigid notation introduced in the-
orem 1.2 as follows.

• The product x · y is written simply as x y .

• The sum x +−y is written simply as x − y .

• The product x · y−1 is written as x
y . We call x the numerator and y the

denominator.

• x+(y+z) = (x+y)+z is denoted simply as x+y+z, and similarly x ·(y ·z) =
(x · y) ·z by x y z. Other similar relaxations are made when brackets are not
necessary.

So for example, we write

3x −5y

1+x y z
instead of (3 · x +−(5 · y)) · (1+x · (y · z))−1.

Some consequences of our new notation are the familiar properties of proposi-
tion 1.5.

Proposition 1.5. Let w, x, y, z ∈R. Then
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x
y · w

z = xw
y z ,i) x y

xz = y
z ,ii)

x
z + y

z = x+y
z ,iii) x

y + w
z = xz+y w

y z .iv)

Proof. (i) follows from exercise 1.4(iv) since

x

y
· w

z
= x · y−1 ·w · z−1 = (xw) · (y−1 · z−1) = xw · (y z)−1 = xw

y z
.

(ii) then follows easily from (i): x y
xz = x

x · y
z = x · x−1 · y

z = 1 · y
z = y

z .

(iii) uses theorem 1.2(XI): x
z +

y
z = x · z−1 + y · z−1 = z−1 ·x + z−1 · y = z−1 · (x + y) =

(x + y) · z−1 = x+y
z .

Finally (iv) follows by (ii) and (iii): x
y + w

z = zx
z y + y w

y z = xz
y z +

y w
y z = xz+y w

y z .

Notation (Integers and Rationals). Since we are taking the properties of theo-
rem 1.2 as our starting point, where the numbers 0 and 1 are defined by their
behaviour, we had better discuss how other numbers like 2, 3, 22/7 and −5 fit in to
our framework.

For the natural numbers, we may take the natural definitions

2 ..= 1+1

3 ..= 2+1 = 1+1+1

4 ..= 3+1 = 1+1+1+1
...

from these we can show things like “2 is unique”, and using XV we get a sense of
where each of them must lie on the number line (we can prove 0 É 1 É 2 É ·· · ).

The negative numbers are simply the additive inverses of the natural numbers
in the sense of IV, so that takes care of them. Finally, as discussed in the previ-
ous notational remark, any rational a/b is simply ab−1, so that takes care of the
rationals.

Exercise 1.6. Unless told otherwise, you may only use the facts of theo-
rem 1.2 to justify your answers to the following.

1. Why is x +x = 2x?

2. Solve the equation 2x +1 = 3, justifying each step you make by ref-
erencing one of theorem 1.2, proposition 1.3 or 1.5.
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3. Do the same for the equation x
2 + x

3 = 3+ 1
3 .

4. Prove that (a +b)(c +d) = ac +bc +ad +bd .

5. Prove that −x
y = x

−y =− x
y .

6. Show that x É x for any x ∈R.

7. If x É y , we also write y Ê x. If x É y and x ̸= y , we write x > y or
y < x.

What would the equivalents of XII–XVI be for Ê, < and >?

Prove that these equivalents are true using only theorem 1.2.

8. Rigorously prove that 6
3 = 2.

9. Show that if x É y and a Ê 0, then ax É ay .

10. Assume that 0 < 1.

a) Show that if x > 0, then x−1 > 0.

b) Show that 3 < 22
7 < 4.
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II. SQUARE ROOTS AND INDICES

I
N this section, we study the quantity x · x and more generally, the re-

peated product x · · ·x of a number x with itself. Just as with the last
section, you most likely have previous knowledge of these ideas, but
here we give a more rigorous treatment than you might be used to.

SQUARE ROOTS

In geometry, the area of a square is given by y · y , where y is the length of a side.
Consequently, we refer to the quantity y · y as y squared. The natural reversed
question, “what is the side length of a square, given that its area is x?” gives rise
to the idea of a square root.

Definition 2.1 (Square Root). Let x ∈R. Any y ∈Rwhich satisfies the property

y · y = x

is said to be a square root of x.

Example. 3 is a square root of 9, since 3 ·3 = 9. We also have that −3 is a square
root of 9, since (−3) · (−3) = 9.

Notice that we write “a square root”, not “the square root” in definition 2.1, since
using the definite article “the” implies that it is unique. In fact, as we have seen
in the example, a square root is not unique: 9 has two square roots, 3 and −3.

Notation. For y ∈R, we abbreviate y · y to y2.

Proposition 2.2. If x ∈R, then x2 Ê 0.

Proof. By theorem 1.2(XIV), for any x ∈R, either x Ê 0 or x É 0.

If x Ê 0, then x2 = x · x Ê 0 by theorem 1.2(XVI).

If x É 0, then x − x É 0− x, hence 0 É −x. By XVI in exercise 1.6(7), we get 0 É
(−x) · (−x) = x2 by proposition 1.3(viii).

Proposition 2.2 immediately gives us the following.

Corollary 2.3. Let x ∈R. If x < 0, then x does not have a square root.

Proof. By contradiction: suppose x < 0 and x does have a square root; call it y .
Then by definition, y2 = x < 0 (XVI in exercise 1.6(7)).

But also y2 Ê 0 by proposition 2.2, contradicting that y2 < 0.

13 PRELIMINARY VERSION 0.8



§2.1 | Square Roots Luke Collins

Exercise 2.4. Notice that we didn’t prove any concrete inequalities in the
previous section. In particular, we didn’t even prove that 0 < 1, which we
assumed in question 10 of exercise 1.6. Prove it.

Thus no negative (< 0) real numbers have a square root. What about non-negative
(Ê 0) real numbers? We will explore those in a moment, we first need this lemma.

Lemma 2.5 (Difference of two Squares). Let x, y ∈R. Then

x2 − y2 = (x + y)(x − y).

Proof. Let t = x + y . Then

(x + y)(x − y) = t (x − y)

= xt − y t

= x(x + y)− y(x + y)

= x2 +x y − y x − y2

= x2 − y2,

as required.

The following theorem really belongs in section 1.2 with all the other algebraic
properties of the real numbers.

Theorem 2.6 (R is an Integral Domain). Let x, y ∈ R such that x y = 0. Then one
of x, y must be zero.

Proof. We prove this by contradiction. Suppose x, y ∈ R and x y = 0, but neither
x nor y are zero. In particular since x ̸= 0, the number x−1 exists. Thus

x y = 0 =⇒ x−1 · x y = x−1 ·0 =⇒ 1y = 0 =⇒ y = 0,

contradicting that y ̸= 0.

Examples 2.7. This important fact about real numbers allows us to solve equa-
tions such as x(x −1) = 0, since it tells us that one of x or (x −1) must be zero,
so we get either x = 0 or x −1 = 0 =⇒ x = 1; and therefore the two solutions are
x = 0 or x = 1.

Another example, consider the equation x2 −16 = 0. Since 16 = 42, the left-hand
side becomes x2−16 = x2−42, which by lemma 2.5 becomes (x+4)(x−4). Thus
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the equation we have is (x +4)(x −4) = 0, which by the theorem yields x +4 = 0
or x −4 = 0, i.e., x =−4 or x = 4.

Now we address the question of square roots of non-negative real numbers.

Theorem 2.8. Let x ∈ R such that x Ê 0. Then x has two square roots in R, given
by y and −y, where y ∈ [0,∞) is unique.

Proof. We will not prove the existence of square roots in R, because it is a conse-
quence of the completeness property.4 But the uniqueness part is easy. Indeed,
suppose y and z are both square roots of x, but y ̸= z. Then by definition, y2 = x
and z2 = x. In particular, y2 = z2, that is, y2 − z2 = 0, which by lemma 2.5 gives
(y + z)(y − z) = 0. But by theorem 2.6, this gives either y + z = 0 or y − z = 0, i.e.,
either z =−y or z = y . Since we assumed that z ̸= y , it follows that z =−y . This
means that the only square root of x different from y is −y , as required.

Notation. Let x Ê 0. Then we denote the unique non-negative y provided in
theorem 2.8 by the symbol

p
x.

Example 2.9. As we saw earlier, 9 has two square roots, 3 and −3. The symbolp
9 denotes the non-negative one, i.e.,

p
9 = 3.

Notation is a very powerful tool in mathematics, and we will see throughout the
course that many mathematical insights are purely a product of clever choice of
notation. Simply giving a symbol to a concept allows us to express properties
about it much more succinctly, and leads to theorems such as the following.

Theorem 2.10. Let a,b,c be non-negative real numbers. Then

i)
p

ab =p
a
p

b,

ii) x
p

a · y
p

b = x y
p

ab for any x, y ∈R,

iii)
p

abbc = b
p

ac.

Proof. For (i), observe that

(
p

a
p

b) · (
p

a
p

b) = (
p

a
p

a)(
p

b
p

b) = ab.

In particular, this means that
p

a
p

b is a square root of ab since it agrees with
definition 2.1, and moreover,

p
a
p

b is non-negative since both
p

a and
p

b are

4This should be obvious in fact, since we already mentioned that Q satisfies all of I–XVI in
theorem 1.2, but we know that

p
2 does not exist in Q, thus the existence of

p
2 in R can only be a

consequence of the additional property XVII (completeness).
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(see XVI in theorem 1.2). But by theorem 2.8, the non-negative square root
p

ab
of ab is unique, so we must have

p
a
p

b =p
ab.

(ii) and (iii) follow easily from (i):

x
p

a · y
p

b = x y
p

a
p

b = x y
p

ab,

p
abbc =

√
(bb)(ac) =

p
bb

p
ac = b

p
ac

since bb = bb =⇒ p
bb = b.

Exercise 2.11. 1. Let a,b ∈Rwith a Ê 0 and b > 0. Prove that√
a

b
=

p
ap
b

.

2. Prove that for all x > 1/2,

p
2x −1+ 3p

2x −1
= 2(x +1)p

2x −1
.

Why do we need the condition x > 1/2?

SURDS AND SURD FORM

At some point during your education—probably in primary school—you would
have been told that it’s “impolite” to leave, for example, 4/8 as the answer to a
maths problem, and you should instead write 1/2 like a civilised member of soci-
ety.

Here we introduce an analogue for square roots. Notice that, for example,
p

8
could be written as

p
2 ·2 ·2 = 2

p
2. You are encouraged to “prefer” the latter. For

larger examples, it might be clearer why this is preferable; e.g.
p

106722 is just
231

p
2.

Notice that we are using theorem 2.10(iii) to simplify here, removing every pair
of equal numbers below a square root and placing one outside. So for example,p

72 is 6
p

2 because 72 = 2 ·2 ·2 ·3 ·3, so

p
72 =p

2 ·2︸︷︷︸ ·2 ·3 ·3 = 2
p

2 · 3 ·3︸︷︷︸= 2 ·3
p

2 = 6
p

2.
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Alternatively, one could recognise that 72 = 4 ·9 ·2, then by theorem 2.10(i), we
get p

72 =p
4 ·9 ·2 =

p
4
p

9 ·2 = 2
p

9
p

2 = 2 ·3
p

2 = 6
p

2.

Either method is fine. But what makes
p

2 “unsimplifyable”, where
p

72 wasn’t?
Is it because it is prime? Consider this example:

p
120 =p

4 ·30 = 2
p

30,

30 is not prime, but it cannot be reduced further; if we break it up into as many
factors as we can (its prime factorisation), we get 30 = 2 ·3 ·5. Thus by the rea-
soning before, we cannot “take out” any pairs from underneath the square root.

In fact, this is when an integer below a square root is “unsimplifyable”: when its
prime factorisation contains no repeated factors. We call these numbers square-
free, and their square roots are called surds.

Definition 2.12 (Surd). A surd is a positive real number of the form
p

p1 ·p2 · · ·pn ,

where pi is prime for all i = 1, . . . ,n, and pi ̸= p j for i ̸= j .

Examples 2.13. For example,
p

2 is a surd, since
p

2 =p
p1 where p1 = 2, and p1

is prime. Similarly we have that
p

3,
p

5,
p

7,
p

11, . . . are all surds.

Another example,
p

6 is a surd, since
p

6 = p
2 ·3 = p

p1 ·p2, where p1 = 2 and
p2 = 3, each pi is prime, and p1 ̸= p2, i.e., pi ̸= p j whenever i and j are different.

One final example,
p

1155 is a surd, since
p

1155 =p
3 ·5 ·7 ·11, so p1 = 3, p2 = 5,

p3 = 7, p4 = 11, each pi is prime, and pi ̸= p j when i ̸= j .
p

20 is not a surd, since
p

20 = p
2 ·2 ·5, so p1 = 2, p2 = 2, p3 = 5. Each pi is

prime, but we have p1 = p2 even though 1 ̸= 2.

Theorem 2.14. Every surd is irrational, that is, if x is a surd, then there are no
two integers a,b ∈Z such that x = a/b where b ̸= 0.

Proof. A proof similar to the irrationality of
p

2 in appendix A can be adapted to
prove this more general theorem.

Definition 2.15 (Linear Combination over Q). Let {x1, x2, . . . , xn} ⊆ R. Then a
linear combination over Q of {x1, x2, . . . , xn} is a real number of the form

a1x1 +a2x2 +·· ·+an xn

where a1, a2, . . . , an ∈Q.
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Example 2.16. If S = {π,
p

2,1−p
5}, then some rational linear combinations of

these numbers are

2π+3
p

2+7(1−p
5)

3π−
p

2

2
− (1−p

5) = 3π+ (−1
2 )
p

2+ (−1)(1−p
5)

π+
p

2 = 1π+1
p

2+0(1−p
5)

Definition 2.17 (Surd Form). Let S denote the set of all surds. A real number is
said to be in surd form if it is expressed as a linear combination overQ ofS∪ {1}.

Examples 2.18. We give some examples of how we may transform some real
numbers into surd form.

i) 1
2 +5

p
2 is in surd form, since it equals 1

2 ·1+5 ·p2, and 1
2 ,5 ∈Q and 1,

p
2 ∈

S∪ {1}.

ii)
p

60+p
800 is not in surd form, since

p
60,

p
800 ∉S, because 60 = 22 ·3 ·5

and 800 = 25 ·52, and therefore
p

60 and
p

800 is not made up of a product
of unequal primes (pi ̸= p j ) under the square root. However using theo-
rem 2.10(iii), we have

p
60 =p

2 ·2 ·3 ·5 = 2
p

3 ·5 = 2
p

15,

where
p

15 ∈S, and similarly

p
800 =p

2 ·2 ·2 ·2 ·2 ·5 ·5 = 2
p

2 ·2 ·2 ·5 ·5

= 2 ·2
p

2 ·5 ·5

= 2 ·2 ·5
p

2 = 20
p

2.

Thus we may write
p

60+p
800 in surd form as 2

p
15+20

p
2, since 2,20 ∈Q

and
p

15,
p

2 ∈S∪ {1}.

iii) 7−5
p

3
3 is nearly in surd form, however to write it more precisely as a linear

combination over Q, we express it as
(7

3

)
1+ (−5

3

)p
3, this way it is clear

that 7
3 ,−5

3 ∈Q, and 1,
p

3 ∈S∪ {1}.

iv) (
p

2+5
p

3)(7
p

12−p
18) is not in surd form. We can start by observing that

the second term has square roots which can be reduced.

7
p

12−p
18 = 7

p
2 ·2 ·3−p

2 ·3 ·3 = 14
p

3−3
p

2,
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Hence we have the product (
p

2+5
p

3)(14
p

3−3
p

2). But this is still not in
surd form: it’s a product, not a linear combination of surds. Exercise 1.6(4)
and theorem 2.10(ii) can help us in expanding this out:

(
p

2+5
p

3)(14
p

3−3
p

2)

= 14
p

2 ·3−3
p

2 ·2+5
p

3 ·3−5 ·3
p

3 ·2

= 14
p

6−3 ·2+5 ·3−15
p

6

= 204−p
6,

which is in surd form.

v) 5p
5
+

p
5

5 is not in surd form, the first term 5p
5

is neither a surd nor ratio-

nal. However multiplying the numerator and denominator by
p

5, we get
5
p

5p
5
p

5
, which by definition of

p
becomes 5

p
5

5 . Therefore we have 5
p

5
5 +

p
5

5 ,

which is equal to 6
p

5
5 , or 6

5

p
5, which is in surd form.

When surds appear in the denominator, it is not immediately clear whether
that number can be expressed in surd form (unlike a surd in the numera-

tor;
p

5
5 is clearly just 1

5

p
5). Thus surds should always be “removed” from

the denominator. This process of removing surds from the denominator
is called rationalising the denominator (since the denominator becomes
rational as a consequence).

vi) 2p
2+p3

is not in surd form. If we try the same technique as we did in ex-

ample (iv), that is, multiplying the numerator and denominator by what
is in the denominator, it will not work, since multiplying the denomina-
tor by itself does not entirely get rid of square roots: (

p
2+p

3)(
p

2+p
3) =

2+3+2
p

6. This is due to the fact that (a+b)(a+b) = a2+b2+2ab. But if
we instead consider what lemma 2.5 gives us, i.e., (a +b)(a −b) = a2 −b2,
notice that no terms appear here without being squared. So multiplying
the numerator and denominator by the denominator with one of the signs
reversed, we get

2p
2+p

3
= 2(

p
2−p

3)

(
p

2+p
3)(

p
2−p

3)
= 2

p
2−2

p
3

−1
= 2

p
3−2

p
2,

which is now clearly in surd form.

vii) 5
p

2/3 is not in surd form. But by exercise 2.11, we can express

5

√
2

3
= 5

p
2p
3

,
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and so 5
p

3/2 = 5
p

2
p

3p
3
p

3
= 5

p
6

3 , which is in surd form.

Remark 2.19. Throughout the rest of the course, you are encouraged to give
answers to problems in surd form whenever possible. Most importantly, you
should simplify any square roots of numbers which are not square-free.

Most modern calculators can do this automatically for you, but only for integers
that are sufficiently small. Try to simplify

p
160083 using your calculator, it will

probably give you something like 400.1037, instead of the exact form 321
p

3,
which you should be able to obtain by hand.

Exercise 2.20. 1. Express the following in surd form.
p

243a) 8
p

1250b)

p
44c)

1+p
2p

3
d)

p
60e)

p
500−p

124+5
p

49f)

6+p
2p

2+7
g) (2

p
12−3)

3

4−p
2

h)

(4
p

7+3)(4
p

7+3)i) (4
p

7+3)(4
p

7−3)j)
p

2p
2−1

k)
4

1+p
2

l)

24
p

400m)
2
p

2+3
p

3+5
p

5

6
p

6+7
p

7
n)

5+p
18+9−p

36o) (2
p

2−3
p

3)( 1
2
p

2
+ 1

3
p

3
)p)

2. Simplify the expression
1p
3
−

p
3

1−p
3

writing your answer in the

form (a +b
p

3)/c, where a,b,c ∈Z. (MATSEC Sept ’15)

3. Express

p
2−1

2
p

2+3
+ 3

2
p

2−3
in the form (a +b

p
2).

(MATSEC May ’15)

4. Notice that in examples 2.18(iv), we simplified the second term in
the product so that they were both in surd form, and subsequently
multiplied them. Once we multiplied and combined like-terms, all
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square roots which appeared were surds—we didn’t need to sim-
plify further. Is it always the case that if we start with two numbers
in surd form, their product (expanded and like-terms combined)
will be in surd form?

5. Express
1p

2+2
p

3+3
p

5
in surd form.

6. Solve the equation

1p
2+p

3
= 1

x
+ 1p

2
+ 1p

3
,

giving your answer in surd form.

7. A-series paper (A4, A3, . . . ) has the property that folding it in half
preserves the ratio of the sides.

b

a

fold−−→ x

y

In other words, we have a : b as x : y in the diagram above. Show
that this can only happen if the ratio is 1 :

p
2.

8. Prove that
(1+p

2)(3−p
2)(5+p

2)

(7−p
2)(9+8

p
2)(13−2

p
2)

= 1

p
,

where p is prime.

9. The area of a triangle is 13 cm2, and its base is 4−p
3 cm wide. What

is the triangle’s height?

10. Solve the following equation for x.

a =
p

2+
p

3
x+1p

2−
p

3
x+1

Hence or otherwise, determine the value(s) of a ∈R for which it has
no solutions.
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INDICES

Just as n copies of x added together (x + ·· · + x) may be written as nx (recall
exercise 1.6(1)), here we introduce a shorthand for multiplication.

Definition 2.21 (Power5). Let n ∈N. For any x ∈R, we define the notation xn by

xn ..= x · x · · ·x︸ ︷︷ ︸
n times

,

where n here is called a power (or index or exponent) of x.

This definition immediately gives us the following theorem.

Theorem 2.22 (Laws of Indices). Let a,b ∈ N, and let x, y ∈ R. We have the fol-
lowing laws.

xa · xb = xa+bI.
xa

xb
= xa−b , for a > bII.

(xa)b = xabIII. (x y)a = xa y a , for x and y not both
negative

IV.

(
x

y

)a

= xa

y aV.

Proof. We give the proof of law III here, the other four can easily be proved in a
similar fashion.

(xa)b = xa · xa · · ·xa︸ ︷︷ ︸
b times

(by definition 2.21)

= x · x · · ·x︸ ︷︷ ︸
a times

·x · x · · ·x︸ ︷︷ ︸
a times

· · ·x · x · · ·x︸ ︷︷ ︸
a times︸ ︷︷ ︸

b times

(again by definition 2.21)

= x · x · · ·x︸ ︷︷ ︸
ab times

= xab , (again by definition 2.21)

as required.

These “laws” are mere immediate consequences of the definition: for example,
the first one says that if you write down two x’s, and then three x’s, you get five
x’s:

x2 · x3 = xx · xxx = xxxxx = x5,

5The definition here is not entirely precise, a more formal definition would be expressed re-
cursively. This is something we will revisit later in section 6.2. In general, when one sees dots (· · · )
in a mathematical definition/proof, it’s a sign that things are a bit hand-wavy!
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very straightforward stuff.

Observe that the power notation we have introduced is consistent with the no-
tation of squaring y · y which we denoted by y2 in section 2.1.

Now, as mathematicians, we would like to generalise our notation. Let us start
by allowing for integer powers, particularly zero and negative whole numbers.
In principle, we can define our notation anyway we like, but it would be nice if
our new definition was such that I–V in theorem 2.22 remain true.

If we want I to remain true, then for any x, we must have x1 · x0 = x1+0 = x1, i.e.,
x · x0 = x, i.e., x(x0 −1) = 0. Now we invoke theorem 2.6. If x is zero, then this
equation is obviously true, but for non-zero x, we must have x0 = 1. Thus we
will set x0 = 1 for all x ∈ R, even in the zero case. (Some people like to leave 00

undefined, but in the rare cases where we might have to deal with it, rather than
awkwardly avoiding it, it is often convenient to just have it equal to 1.)

By the same reasoning, we would want that xn · x−n = xn−n = x0 = 1, which
would imply that x−n = 1/xn , and so we take this as our definition for negative
powers. Notice this also implies that 0−n is not defined for n ̸= 0, since 0n = 0 for
all n ∈N. In summary, we have the following definition.

Definition 2.23 (Integer Power). Let x ∈ R, and n ∈ Z. We extend the definition
of xn , by defining

xn ..=



x · x · x · · ·x︸ ︷︷ ︸
n times

if n > 0

1 if n = 0

1

x · x · x · · ·x︸ ︷︷ ︸
−n times

if n < 0 and x ̸= 0.

With this definition, the results of theorem 2.22 are true for any a,b ∈ Z. For
example,

38 ·3−5 = 38 · 1

3 ·3 ·3 ·3 ·3
= �3 · �3 · �3 · �3 · �3 ·3 ·3 ·3

�3 · �3 · �3 · �3 · �3
= 3 ·3 ·3 = 38+(−5),

showing that law I holds.

Next, we want to generalise our notation even further, allowing for rational pow-
ers. Again, in principle, we can define a more general notation any way we’d like,
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but it would be nice if the laws in theorem 2.22 remain true. Take for instance,
3

4/5. What should this equal? Well if III is to hold, we would have that

(3
4/5)5 = 3

4
5 ·5 = 34.

In other words, 3
4/5 should solve x5 = 34. Now we borrow a fact from real analysis,

which is a generalisation of theorem 2.8. We will not prove it here, since as usual,
it is a consequence of completeness of R.

Fact 2.24. Let n ∈N and A ∈R. Then

(i) if n is odd, then there is a unique number x ∈R such that xn = A.

(ii) if n is even and A Ê 0, then there is a unique real number x > 0 such that
both xn = A and (−x)n = A.

(iii) if n is even and A < 0, then there is no real number x satisfying xn = A.

It follows from (i) of the fact that 3
4/5 must be the unique real number satisfying

x5 = 34. This number is called the fifth root of 34, which we denote by
5
p

34. More
generally, if n is odd, then we define

x
a/n ..= n

p
xa ,

where n
p

A denotes the unique solution to xn = A.

Now if n is even, things are not as straightforward. Indeed, consider 3
1/2. What

should this equal? Well by the same reasoning as before, we conclude that it
should solve x2 = 3. But by the fact, we still have two choices, namely x and −x
which (ii) provides. To relieve ambiguity, we usually pick the positive one, and
denote it by

p
3 (as in definition 2.1). This is called the principal square root of

3. In general, if A Ê 0, then n
p

A denotes the positive solution to xn = A, which
we call the principal nth root of A, and if A < 0, then the notation is undefined.
Therefore for a/n ∈Qwhere a ∈Z and n ∈N, we define

x
a/n ..= n

p
xa .

Our decision to choose the positive root sometimes causes problems. For in-
stance,

−5 = (−5)1 = (−5)2· 1
2

?= ((−5)2)
1/2 = 25

1/2 = 5,

which is clearly wrong. Indeed, we can trace the problem to the equality
?=,

which comes from III of theorem 2.22. So we need to be quite careful, it seems
that choosing the positive root to be the value we take for even denominators
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has invalided III for negative bases x. (Notice that were 25
1/2 to equal −5, there

would be no problem above). This is analogous to the fact that
p

x2 is not always
equal to x.

The real picture is the following: in a lot of situations, it is perfectly fine to adopt
the convention that x

a/n denotes the principal root n
p

xa . Usually in such sce-
narios, we do not really care which of the two roots we have, we simply want a
number y which satisfies yn = xa . Other times however, we might get paradoxes
which arise when the two are interchanged, which is what occurred above.

Thus, for rational powers, the laws in theorem 2.22 can be shown to be true,
with some caveats which crop up in specific instances, which are consequences
of our choice of convention.

Later on, we see that the number x y can be defined for all powers y ∈ R, and
even for y in sets larger than R; always in such a way that all the definitions here
are respected, and that the results of theorem 2.22 still hold (adjusting for minor
caveats as we encountered above). For now, we will simply give some intuition
as to what this “should” be when x > 0.

We will see later that we want things of the form x y to be continuous in y . All
this means, intuitively, is that if we vary y by a small quantity, then x y will also
change by a reasonably small quantity. Thus,

3
p

2,

for example, should be reasonably close to 31.4 (which we can evaluate since 1.4
is rational) closer to 31.414, even closer to 31.41412135, and so on, so that the more
digits we take in the power, the more accurate our approximation. The number

3
p

2 should be thought of as the “completion” of this process, just as
p

2 itself is
the completion of a similar process.
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Exercise 2.25. 1. Evaluate the following WITHOUT A CALCULATOR.

23a) 4−2b) [2.314×10−37]0c)

5
2/35

4/3d) 2−9e) 64− 1
4f)

160 ×243
1/5g) π2π−3 ×π52h) 1532 −472i)

223
j) ( 3

7 )2(1/49)−1/2k) 22−43( 1
2 )3l)

(−1)207841(4)
1/2m) ( 1

2 )
3/2n)

√√p
900o)

2. a) Prove that 3
p

ab = 3
p

a 3
p

b in the style of theorem 2.10.

b) Similarly prove that 3
p

abbbc = b 3
p

ac.

c) Allowing yourself to use ideas from this section, how could
you prove these two results for any nth root easily? (You may
assume that a,b,c Ê 0 in the case that n is even.)

3. Solve the equation x2 = 32x−2.

4. How would you generalise the definition of surds and surd form for
cube roots ( 3

p)? Express
1

3
p

2+ 3
p

3

is your new surd form.

[Hint: look up the “sum of two cubes” formula in the A-level book-
let!]
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III. QUADRATICS

H
OW can we solve equations involving an unknown x, together with

different powers of x, such as x2, x3, and so on? This turns out to be
a difficult problem in general, let us start first with the case where
we allow x and x2 to appear in an equation. We call these quadratic

equations.

SOLVING QUADRATIC EQUATIONS

Definition 3.1 (Quadratic). A quadratic is an algebraic expression of the form

ax2 +bx + c,

where x is a variable, and a,b,c ∈R and a ̸= 0. An equation φ(x) = 0 where φ is a
quadratic is said to be a quadratic equation (QE).

Definition 3.2 (Root). Let F ⊆ R and let φ(x) be an algebraic expression depen-
dent on x. A root or zero of φ is an element x ∈ F such that φ(x) = 0.

In particular, we say that x is a real root if we put F =R.

Sometimes if we have a quadratic equationφ(x) = 0, we call its solutions its roots
or its zeros, in view of the definition above.

Examples 3.3. x2−1, 5x2−x, and 3x2+5x−12 are three examples of quadratics,
whereas x2 −1 = 0, 5x2 − x = 0, and 3x2 +5x −12 = 0 are examples of quadratic
equations.

x = 1 is a root of x2 −1 since (1)2 −1 = 1−1 = 0, it is also a solution of x2 −1 = 0.

Notation. To abbreviate “x = a or x =−a”, we write x =±a.

Remark 3.4. Sometimes quadratic equations can be solved if they are trans-
formed into products of linear factors, as we did in examples 2.7. This is called
factorisation, and can be done by close inspection of the quadratic. A few exam-
ples:

x2 −9 = 0 =⇒ (x +3)(x −3) = 0 =⇒ x =±3

x2 −5x +6 = 0 =⇒ (x −2)(x −3) = 0 =⇒ x = 2, x = 3

6x2 +7x −3 = 0 =⇒ (3x −1)(2x +3) = 0 =⇒ x = 1
3 , x =−3

2

This cannot always be done, however. E.g., try to factorise x2+x+1. (We will see
a criterion for when this possible in the next section, theorem 3.16.)
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x

x +

b

x =
x

x

b/2

b/2

−
b/2

b/2

FIGURE 1: Visualisation of Completing the Square

Lemma 3.5. Suppose x, a ∈R and a Ê 0. Then

x2 = a ⇐⇒ x =±pa.

Proof. This follows immediately from theorem 2.8.

The following result is a fundamental identity which you are encouraged to com-
mit to memory!

Theorem 3.6 (Completing the square). Let b ∈R. Then for all x ∈R,

x2 +bx =
(

x + b

2

)2

−
(

b

2

)2

.

Proof. Expanding the right-hand side,(
x + b

2

)2

−
(

b

2

)2

= x2 +bx +
(

b

2

)2

−
(

b

2

)2

= x2 +bx.

Exercise 3.7. Refer to the illustration in figure 1. Provide a geometric ar-
gument for theorem 3.6 (you may assume b > 0).

Examples 3.8. This theorem allows us to solve any quadratic equation!

(i) Suppose we have x2 − 4x + 1 = 0. Applying the theorem to the left-hand
side we get

x2 −4x +1 = (x −2)2 − (−2)2 +1 = (x −2)2 −3.

Thus x2 − 4x + 1 = 0 becomes (x − 2)2 − 3 = 0, i.e., (x − 2)2 = 3, which by
lemma 3.5 becomes x −2 =±p3, so the solutions are x = 2±p

3.
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(ii) Let us give a more complicated example. We solve 7x2 −5x −6 = 0. Since
the coefficient of x2 is not 1, we cannot immediately complete the square,
since the identity calls for something of the form x2 +bx. But since this is
an equation, we can divide throughout by 7 to get

x2 − 5
7 x − 6

7 = 0

=⇒ (
x − 5

14

)2 − 25
142 − 6

7 = 0 (completing the square)

=⇒ (
x − 5

14

)2 − 193
142 = 0 (LCM)

=⇒ (
x − 5

14

)2 = 193
142

=⇒ x − 5
14 =±

p
193
14 (lemma 3.5)

=⇒ x = 5±p193
14 ,

which are the two solutions.

(iii) Completing the square is not just useful for equation solving, as we shall
see later. In general, it is quite useful to be able to change a quadratic
ax2 +bx + c to something of the form a(x + p)2 + q , and this is precisely
what completing the square allows us to do.

Say we want to rewrite 10x2 −2x +1 in this form. Since we don’t have an
equation as we did in (ii), we can’t divide by 10. We can still factorise 10
out though:

10x2 −2x +1 = 10
(
x2 − 1

5 + 1
10

)
= 10

((
x − 1

10

)2 − 1
100 + 1

10

)
(completing the square)

= 10
((

x − 1
10

)2 + 9
100

)
= 10

(
x − 1

10

)2 + 9
10 ,

as required.

(iv) We can use completing the square to prove things like the following: that
2x2 − x +1 is always a positive quantity. In it’s current form, it’s not clear
that the quantity is always positive. But by completing the square,

2x2 −x +1 = 2
(
x2 − 1

2 x + 1
2

)= 2
((

x − 1
4

)2 + 7
16

)= 2
(
x − 1

4

)2︸ ︷︷ ︸
Ê0

+7
8

Ê 2 ·0+ 7
8 = 7

8 .

Indeed, since the quantity x − 1
4 is being squared, the least it can be is

zero (by proposition 2.2), and moreover, we are adding 7
8 , so the given

quadratic expression is at least 7
8 for any value of x.
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Examples 3.9. In these examples, we solve a few different quadratic equations
in which minor complications arise. To keep things simple, all the quadratics
given here are solvable by factorising—but the reasoning applies to any QEs,
and equation solving problems in general.

i) 12x2 +2x −4 = 0.

The first thing we notice is that there is a common factor of 2, so dividing
both sides of the equation by 2 (i.e., multiplying throughout by 1/2) will give
an equation whose left-hand side might prove easier to factorise.

6x2 +x −2 = 0

=⇒ (3x +2)(2x −1) = 0

=⇒ x =−2/3, x = 1/2

ii) 17x2 +81x −20 = 0.

The coefficient 17 of x2 might make this seem harder at first, but being
prime, this actually gives us fewer options for factorisation. The left hand
side factorises to (17x−4)(x+5) = 0, and so the solutions are x = 4/17, x =−5.

iii) 28x2 +7x −7 = 7x2 +5x +1.

Horror! We don’t have = 0 on the end! This is quite simple to get around as
I’m sure you guessed, we can move everything over to the other side and
solve normally (this actually corresponds to adding −7x2, −5x and −1 to
both sides, if we reason about it in the section 1.2 sense).

In fact, so we don’t forget about section 1.2, let’s justify each step in solving
this equation properly:

28x2 +7x −7 = 7x2 +5x +1

=⇒ (28x2 +7x −7)−7x2 = (7x2 +5x +1)−7x2

=⇒ 28x2 −7x2 +7x −7 = 7x2 −7x2 +5x +1

=⇒ (28−7)x2 +7x −7 = 0+5x +1

=⇒ 21x2 +7x −7 = 5x +1

...

=⇒ 21x2 +2x −8 = 0

=⇒ (7x −4)(3x +2) = 0

=⇒ 7x −4 = 0 or 3x +2 = 0
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=⇒ 7x = 4 or 3x =−2

=⇒ 1
7 7x = 1

7 4 or 1
3 3x = 1

3 (−2)

=⇒ x = 4
7 or x =−2

3 ,

as you can see, we did skip some step justifications here. Perhaps this will
cause you to appreciate how many algebraic steps we are used to applying
automatically—we usually solve something like this in 3 to 4 steps!

iv) x2 −4 = 0.

This can be solved in three ways: we could either recognise the left-hand
side as a difference of two squares, and do

(x −2)(x +2) = 0 =⇒ x = 2, x =−2.

Alternatively, we could simply take the 4 over to the right hand side and by
lemma 3.5 we get

x2 = 4 =⇒ x =±
p

4 =±2,

or we could look at it as we do the usual quadratic with a non-zero coeffi-
cient of x:

x2 +0x −4 = 0 =⇒ (x −2)(x +2) = 0 =⇒ x = 2, x =−2.

v) x2 −3x = 0.

This is quite an easy equation to solve, one simply has to notice that x is a
common factor of the left-hand side, and do

x2 −3x = 0 =⇒ x(x −3) = 0 =⇒ x = 0, x = 3.

Perhaps a word of caution: notice that in the very first example, we divided
by 2 because it was a common factor of the left-hand-side. Why not divide
by x here then?

Well, perhaps the way we should look at “dividing by 2” is the following:

12x2 +2x −4 = 0 =⇒ 2(6x2 +x −2) = 0

=⇒ 2 = 0 or 6x2 +x −2 = 0.

Clearly 2 = 0 is a nonsensical conclusion, so we dismiss it and focus on the
other solution. (After all, what we conclude when we apply theorem 2.6 is
an OR statement, meaning at least one of the two conclusions is true, not
necessarily both).
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And in fact, it is precisely the fact that 2 is not 0 which allows us to di-
vide by 2 in the first place (which is actually multiplication by 2−1). In the
case where we have x(x − 3) = 0, we cannot divide by x (i.e., multiply by
x−1) if x could possibly be zero: x−1 does not even exist in that case! (by
theorem 1.2). Thus we should always think of “dividing both sides of an
equation” in the sense of the above, where we get silly conclusions such
as 2 = 0 which we discard. This way, we never lose any possible solutions
which we would miss by “dividing”.

vi) x5 −13x3 +36x = 0.

“This isn’t a quadratic!”, you might protest. But let’s give it a go. First of all,
notice that just as in the previous example, x is a common factor:

x(x4 −13x2 +36) = 0 =⇒ x = 0 or x4 −13x2 +36 = 0,

so we already found a solution. Let’s focus on x4−13x2+36 = 0 now. What
could this give us, and more importantly, how do we solve it? If we stare at
it long enough, we notice that even though it’s not exactly a quadratic, it
has a quadratic form. In fact, if we let t = x2, then the equation is simply
t 2 −13t +36 = 0.

Thus we have

t 2 −13t +36 = 0

=⇒ (t −4)(t −9) = 0

=⇒ t = 4 or t = 9

=⇒ x2 = 4 or x2 = 9

=⇒ x =±2 or x =±3

by lemma 3.5. Thus the solutions are x = 0, x = ±2, x = ±3. The intro-
duction of a new variable t makes things clear (just as in, say, the proof of
lemma 2.5), but it is unnecessary. We could work without it:

x4 −13x2 +36 = 0

=⇒ (x2)2 −13x2 +36 = 0

=⇒ (x2 −4)(x2 −9) = 0

=⇒ x2 = 4 or x2 = 9

=⇒ x =±2 or x =±3.

Notice we get 5 solutions to this equation.
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vii) 2x =p
7−27x.

Again, this isn’t clearly a quadratic: but remember, what is the definition
of the

p
symbol? Well, it means that 2x is a square root of 7−27x, so by

definition 2.1,

(2x)2 = 7−27x

=⇒ 4x2 +27x −7 = 0

=⇒ (4x −1)(x +7) = 0

=⇒ x = 1
4 or x =−7.

Even though we did this with none of the other examples, let’s check that
these answers are right. What does it mean that these are “answers”? Well,
it means that substitution in the left-hand side and the right-hand side of
the given equation should make them equal. Let’s start with x = 1

4 :

LHS = 2x = 2( 1
4 ) = 1

2

RHS =p
7−27x =

√
7−27( 1

4 ) =
√

28
4 − 27

4

=
√

28−27
4 =

√
1
4 =

p
1p
4
= 1

2 ,

so the left- and right-hand sides are equal with x = 1
4 . Now what about

x =−7?

LHS = 2x = 2(−7) =−14

RHS =p
7−27x =

√
7−27(−7) =p

7+189 =p
196 = 14,

Here LHS ̸= RHS! What’s going on?

Well, strictly speaking we should always check the answers when we con-
clude an OR statement. For example, if we declare that z = 2, then it fol-
lows that z · z = 2 ·2, i.e., z2 = 4. But from this, by lemma 3.5, we conclude
that

z = 2 or z =−2,

which is correct: we do indeed have that “z = 2 OR z =−2” is true—and
this does not mean that both give meaningful answers to what we started
with, only that at least one of them does. (In fact, this is similar to how we
obtained 2 = 0 in example (v).)

The reason we didn’t bother checking the other equations is because if we
were to carefully check the directions of our implications (⇒ or ⇐), each
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of them could go both ways (⇔). For example,

x2 −5x +6 = 0 ⇐⇒ (x −2)(x −3) = 0 ⇐⇒ x = 2 or x = 3.

Thus x being 2 or 3 is equivalent to x2−5x+6 equalling zero. On the other
hand, in our z = 2 case, we have z = 2 =⇒ z2 = 4, but not z = 2 ⇐= z2 = 4.
Indeed, if z =−2, it is true that z2 = 4, but we cannot conclude that z = 2.

Similarly in the equation we solved, it is the first step, where we do

2x =p
7−27x =⇒ (2x)2 = 7−27x

which is a strictly one-sided implication. In fact, if (2x)2 = 7−27x, we know
by lemma 3.5 that what we can say is 2x =±p7−27x, which is consistent
with the LHS =−14 and RHS = 14 situation. Indeed, had we started with the
equation −2x = p

7−27x instead, then applying the definition of square
root (which we could see as squaring both sides) will result in the same
equation 4x2 + 27x − 7 = 0. Thus information about the sign of the left-
hand/right-hand sides is lost when we square both sides; we only retain
equality up to sign.

Thus in general, when we “square both sides” of an equation, information
about the sign is lost, so extra solutions (corresponding to LHS =−RHS) are
introduced. Extra care should be taken when performing this operation—
check your answers!

Exercise 3.10. 1. Write the following quadratic expressions in the form
a(x +p)2 +q .

x2 −5x +6a) x2 −3xb) 5x2 +x +1c)

2x2 +1d) x2 −p
2x +p

3e) 17x2 +34x +15f)

x2 +x
p

2+x
p

3g) x2 +kx2 +x +kh) 7−3x −6x2i)

2. Consider the quadratic φ(x) = 9−3x −5x2.

Express φ in the form s −5(x + t )2, where s, t ∈Q.a)

Explain why φ(x) is never more than 189
20 .b)

Is this value attained by φ for some x?c)

Does φ have a lower-bound as well, or only an upper-bound?
Explain why.

d)
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3. Solve the following equations by factorising.

x2 +7x +12 = 0a) x2 −3x −4 = 0b)

x2 +5x +6 = 0c) 10x2 +x = 21d)

x2 +4x −10 = 2x +5e) x2 −16 = 0f)

x2 +3x = xg) x4 −26x2 +25 = 0h)
p

2x −1 = xi)
p

9−5x2 = 2xj)

4. Solve the following equations.

x2 −8x −48 = 0a) x2 +2x −48 =−6b)

5x2 −21 = 10xc) 1 =
p

7x −x2d)

x2 +13x +22 = 7e) x2 −9x −39 =−9f)

2x2 +12x +10 = 0g) 5x2 +19x −68 =−2h)

3x2 +20x +36 = 4i) 19x +x5 = x +10x3j)

5. A rectangle and a square have the same area. Their dimensions are
shown in metres below.

A

(x +1)m

(2x +3)m A

(x +3)m

Find the area A.

6. A rectangular field with an area of 75 m2 is enclosed by a wooden
fence. One side of the fence is 3 m longer than its adjacent side.
What are the dimensions of the fence? Give answers accurate to 2
d.p.s.

7. Two boats start sailing from the same point. One travels north at
25 km/h. Two hours later the second boat starts travelling east at
20 km/h. How much time must pass from the departure of the first
boat for them to be exactly 300 km apart?
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8. (The Quadratic Formula). Use completing the square to show that
if a ̸= 0, then

ax2 +bx + c = a

[(
x + b

2a

)2

− b2 −4ac

4a2

]
.

Hence deduce that if b2 − 4ac Ê 0, the solutions of the quadratic
equation ax2 +bx + c = 0 are given by

x = −b ±
p

b2 −4ac

2a
.

9. Consider the three arrays below.

a) How many dots are there in the fourth array of this pattern?
How many of them are black?

b) How many dots are there in the nth pattern? How many of
them are black?

c) Which array in this pattern contains 4950 black dots?

d) In array 3, the number of black dots can be written 1 + 2 +
3. Express the number of black dots in array 7 as a sum of
integers in a similar way.

e) What is the result of the sum 1+2+3+·· ·+999+1000?

10. a) Solve the equation

1

x
− 1p

2
= 1

x +p
2

,

giving your solution(s) in the form p
p

2+q
p

10 for p, q ∈Q.

b) Solve the equation

1

x +p
2+p

3
= 1

x
+ 1p

2
+ 1p

3
,

giving your answer in surd form. (MATSEC Sept ’17)
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11. Solve the following equations.

10x2 + 24
x2 = 31a)

p
x +1+p

2x +1 =p
3x +1b)

x +2
p

2 = 2
p

x +x
p

2c) 3x2 = 32
x4/3 +95x1/3d)

12. The cost of hiring a bus isAC70. If nine of the seats are unoccupied,
the cost per person isAC1 more than each person would have to pay
if all the seats were full. How many seats are there on the bus?

13. A crocodile is stalking a gazelle that is 20 m upstream on the op-
posite side of a river. Crocodiles travel at different speeds on land
and in water. In water, they travel at 5 m/s, whereas on land, they
travel at 4 m/s. Suppose the crocodile swims to a point that is x m
upstream on the opposite bank of the river, and runs on land the
rest of the way, as depicted below.

20 m

x m

6 m

a) Show that the time taken for the crocodile to reach the gazelle
is given by

T (x) =
p

36+x2

5
+ 20−x

4
.

b) Calculate the time taken if the crocodile does not travel on
land.

c) Calculate the time taken if the crocodile swims the shortest
distance possible.

d) In reality, the crocodile took five and a half seconds to get the
gazelle. How far upstream did the crocodile get before it con-
tinued on land? Write your answer in the form p + q

p
106,

where p, q ∈Q.
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THEORY OF QUADRATIC EQUATIONS

Not all quadratics have roots. For instance, if we try to solve the equation

x2 −2x +2 = 0,

completing the square yields

(x −1)2 +1 = 0 =⇒ (x −1)2 =−1,

which cannot have any real solutions because of proposition 2.2.

In this section, we will try to demystify the relationship between quadratics’ co-
efficients and their roots. In exercise 3.10(6), the number b2 −4ac cropped up.
This important constant can tell us a lot about the corresponding quadratic.

Definition 3.11 (Discriminant). Let φ(x) = ax2 +bx + c be a quadratic. The dis-
criminant of φ, denoted ∆(φ) or ∆, is the real number defined by

∆(φ) = b2 −4ac.

Theorem 3.12. Let φ(x) = ax2 +bx + c be a quadratic, and let ∆ be its discrimi-
nant.

i) If ∆> 0, then φ has two distinct real roots, given by −b+p∆
2a and −b−p∆

2a .

ii) If ∆= 0, then φ has one real root called a repeated root, given by − b
2a .

iii) If ∆< 0, then φ has no real roots.

Furthermore, if a > 0 then φ(x) > 0 for all x ∈ R, whereas if a < 0, then
φ(x) < 0 for all x ∈R.

Proof. In exercise 3.10(6), we saw that by completing the square, we can rewrite
φ(x) = ax2 +bx + c as

a

[(
x + b

2a

)2

+ −∆
4a2

]
.

Assuming for now that ∆Ê 0, we have

φ(x) = 0 ⇐⇒ a

[(
x + b

2a

)2

+ −∆
4a2

]
= 0

⇐⇒
(

x + b

2a

)2

+ −∆
4a2 = 0
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⇐⇒
(

x + b

2a

)2

= ∆

4a2

⇐⇒ x + b

2a
=±

p
∆

2a
(by lemma 3.5, since ∆Ê 0)

⇐⇒ x = −b ±p
∆

2a
.

Now, if ∆ > 0, then the two solutions are distinct, since they differ by the non-

zero quantity
p
∆

a .

If ∆ = 0, then they are both equal to −b±p0
2a = − b

2a , so we have one “repeated”
solution.

Finally, if ∆< 0, we can again rewrite the equation φ(x) = 0 as(
x + b

2a

)2

= ∆

4a2 ,

just as we did above. This is equivalent to the original equation since it was
deduced using two-sided implications (⇔). Now since ∆ < 0, then ∆

4a2 < 0. But
the left-hand side is non-negative independently of x, since no number squared
can be negative (proposition 2.2). Thus this equation can have no solutions.

Moreover, we have

φ(x) = ax2 +bx + c = a
[(

x + b

2a

)2

+ −∆
4a2︸︷︷︸
>0

]
︸ ︷︷ ︸

denote this by K (x)

,

i.e., φ(x) = aK (x) where K (x) is always a positive number independently of x.
Therefore it follows that if a > 0, φ(x) > 0, and similarly if a < 0, φ(x) < 0.

Examples 3.13. We give some examples of applications of this theorem.

i) x2 −5x +5 has real and distinct roots since ∆= 52 −4(1)(5) = 5 > 0.

ii) x2 −6x +9 has a repeated root, since ∆= 62 −4(1)(9) = 0.

iii) 3x2 −5x +11 has no real roots, since ∆= 52 −4(3)(11) =−107 < 0. Further-
more, since a = 3 > 0, then this quadratic is always positive for any value
of x.

iv) x2 + ax +3a2 where a is a non-zero constant has no real roots, since ∆ =
a2 −4(1)(3a2) =−11a2 < 0 for all non-zero a.
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v) We determine which values of b make 3x2 + bx + 3 have repeated roots.
This happens when the discriminant ∆ = b2 − 4(3)(3) = 0, that is, when
b2 −36 = 0, that is, when b =±6.

vi) We prove that 9x2−12ax+4a2 always has repeated roots. Indeed, we have
∆= (−12a)2 −4(9)(4a2) = 144a2 −144a2 = 0, no matter the value of a.

Now that we know when we a quadratic has solutions, we explore the question
of when factorisation is possible. So far, we have seen that when a quadratic
factorises, it tends to looks something like (x −α)(x −β), where α and β are its
roots. For instance, x2−5x+6 becomes (x−2)(x−3), where 2 and 3 are its roots.

This makes sense: quadratics are algebraic expressions which are (typically) zero
at two instances. Expressions like x−2 and x−3 are zero at one instance (namely
when x = 2 and 3 respectively), so if we want to create something that is zero at
both instances, we multiply them to get

(x −2)(x −3) = x2 −5x +6,

which is an expression equal to zero at both x = 2 and x = 3. Similarly if we want
to create an expression which is zero when x is 2,3 or 4, we can do

(x −2)(x −3)(x −4) = x3 −8x2 +26x −24,

which is zero at all three, but then we will be entering the realm of cubics, so we
won’t go there yet.

This train of thought gets interesting when we think about roots which we find,
not by factorisation, but by completing the square when we aren’t able to fac-

torise. For instance, the roots of 7x2 −5x −6 in examples 3.8(ii) were 5±p193
14 . So

what happens if we expand the product
(
x− 5+p193

14

)(
x− 5−p193

14

)
? This expression

is also zero at both those instances of x, so will we get the quadratic we started
with when we expand? Or does that only happen for quadratics we manage to
solve by factorising? Let’s see:(

x − 5+p
193

14

)(
x − 5−p

193

14

)
= x2 − (5+p

193)x + (5−p
193)x

14
+

(5+p
193

14

)(5−p
193

14

)
= x2 − 10

14
x + 25−193

142 = x2 − 5
7 x − 6

7 ,

which is the original quadratic, simply scaled down by a factor of 1
7 ! So it seems

the answer to this question is yes, that in fact, all quadratics are equal to the
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product (x−α)(x−β) (possibly scaled up when the coefficient of x2 isn’t 1), where
α and β are its roots:

Theorem 3.14. Let φ(x) = ax2 +bx + c be a quadratic, and let ∆ be its discrimi-
nant. If ∆Ê 0, then φ(x) can expressed in the form

φ(x) = a(x −α)(x −β),

where α,β ∈ R are its roots. Furthermore, the quadratic K (x −α)(x −β) has the
same roots as φ for any non-zero real number K .

Proof. The roots of the quadratic φ(x) = ax2 +bx + c with ∆ Ê 0 are x = −b±p∆
2a

(theorem 3.12). Denote these by α,β. Now

φ(x) = ax2 +bx + c

= a
(
x2 + b

a x + c
a

)
= a

((
x + b

2a

)2 − ( b
2a

)2 + c
a

)
= a

((
x + b

2a

)2 − b2

4a2 + c
a

)
= a

((
x + b

2a

)2 − b2+4ac
4a2

)
= a

((
x + b

2a

)2 − ∆
4a2

)
= a

((
x + b

2a

)2 − (p
∆

2a

)2)
= a

((
x + b

2a +
p
∆

2a

)(
x + b

2a −
p
∆

2a

))
(lemma 2.5)

= a
(
x − (−b−p∆

2a

))(
x − (−b+p∆

2a

))
= a(x −α)(x −β),

as required. Now to show that K (x−α)(x−β) has the same roots for non-zero K ,
observe that

K (x −α)(x −β) = 0 ⇐⇒ K = 0 or x −α= 0 or x −β= 0,

and since K ̸= 0, the result follows.

Example 3.15. The quadratic 2x2 −4x −5 has roots (2±p
14)/2. Indeed,

2
(
x − 2+p

14

2

)(
x − 2−p

14

2

)
= 2x2 − (2+p

14)x − (2−p
14)x +2

(2+p
14

2

)(2−p
14

2

)
= 2x2 −4x + 22 −14

2
= 2x2 −4x −5.
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This theorem is very useful as we shall soon discover, but we still haven’t an-
swered the question of when factorising a given quadratic is possible in the usual
sense. For that, we have the following theorem.

Theorem 3.16 (Quadratic Factorisation). Let φ(x) = ax2 +bx + c be a quadratic
with ∆ Ê 0, and suppose a,b,c ∈ Z. Then ∆ = k2 for some k ∈ Z if and only if we
can write

φ(x) = (Ax −B)(C x −D)

for A,B ,C ,D ∈Z.

Example 3.17. For example, 6x2+x−2 can be written as (2x−1)(3x+2). Indeed,
∆= 12 −4(6)(−2) = 49 = 72 ∈ {k2 : k ∈Z}.

Thus if you are struggling to determine the factorisation of a quadratic, evaluate
its discriminant and check if it is a square number. If it isn’t, you can stop trying
and use completing the square.

The proof of theorem 3.16 is quite interesting, it involves some number theoretic
ideas in addition to just usual algebra.

Proof of theorem 3.16. If ∆= k2, then

k2 = b2 −4ac =⇒ b2 −k2 = 4ac =⇒ (b −k)(b +k) = 4ac,

so one of b−k and b+k is even. Moreover, both are even, since they differ by the
even number 2k. Thus we can pick two even numbers s and t such that st = 4a,
where s divides b −k and t divides b +k.

Thus by theorems 3.12 and 3.14,

φ(x) = a
(
x − −b −k

2a

)(
x − −b +k

2a

)
= st

4

(
x − −b −k

st/2

)(
x − −b +k

st/2

)
=

( s

2
x − −b −k

t

)( t

2
x − −b +k

s

)
,

where we can see that s
2 , t

2 , −b−k
t , −b+k

s ∈Z, as required.

Conversely, if we can writeφ(x) as (Ax−B)(C x−D), then one of its roots is B
A , so

(w.l.o.g.), we have
−b +p

∆

2a
= B

A
=⇒ ∆=

(2aB

A
+b

)2
,
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so ∆ is a square, provided that 2aB
A +b is an integer. Clearly 2aB

A +b ∈ Q, so we
may write it as X

Y where X and Y have no common factors (otherwise we can just

cancel them). But then the denominator of ∆= X 2

Y 2 written in its lowest terms is
Y 2, and since ∆ = b2 − 4ac ∈ Z, we must have Y 2 = 1 i.e., Y = ±1. Therefore
2aB

A +b =±X ∈Z, which completes the proof.

Corollary 3.18. Let φ= ax2 +bx +c be a quadratic with integer coefficients, and
suppose∆Ê 0. Then∆= k2 for some k ∈Z if and only if the roots ofφ are rational.

Proof. If∆= k2, then we may writeφ(x) as (Ax−B)(C x−D) where A,B ,C ,D ∈Z,
so its roots are B

A and D
C which are clearly rational.

Conversely, if the roots of φ are rational, let B
A denote one of them. Then we

have (w.l.o.g.) that −b+p∆
2a = B

A , and the proof continues identically to that of the
converse in theorem 3.16.

Don’t confuse what this theorem is telling us with what theorem 3.14 is saying.
What we have is that, in theory, any quadratic with ∆ Ê 0 can be factorised as
a(x −α)(x −β), but due to our human limitations, we can’t immediately notice
the factors unless they are sufficiently “nice” (i.e., rational, as in corollary 3.18).
So in theory, you should be able to look at

x2 −x −1 = 0

and say “of course! This factorises as(
x − 1+p5

2

)(
x − 1−p5

2

)= 0.”

But in practice, we can only manage what theorem 3.16 tells us (by sight).

We will conclude this section by discussing the relationship between the roots of
a quadratic and its coefficients. This leads us to the following famous relations.

Theorem 3.19 (Viète’s Formulæ for Quadratics). Let φ(x) = ax2 + bx + c be a
quadratic. Then

φ(x) = a(x2 − (α+β)x +αβ) = a(x2 −Σx +Π),

where α,β are its roots, and Σ and Π denote the sum and product of the roots
respectively. In other words, α+β=−b/a and αβ= c/a.
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Proof. By theorem 3.12, φ can be expressed as a(x −α)(x −β), which when ex-
panded, gives

φ(x) = a(x2 − (α+β)x +αβ) = ax2 −a(α+β)x +aαβ.

Comparing this with ax2+bx+c yieldsα+β=−b/a andαβ= c/a, as required.6

Example 3.20. If you want to “create” an equation with solutions x = 2 and x = 5
(say), you now have two ways. The first is to simplify K (x −2)(x −5), where you
can choose K ̸= 0 to be any number you like (you could just take K = 1).

Alternatively, by Viète’s formulæ (theorem 3.19), we have the sum Σ = 2+5 = 7
and the productΠ= 2 ·5 = 10. Thus a(x2−7x+10) for any a ̸= 0 has the required
roots.

Example 3.21. Viète’s formluæ also allow us to modify roots of quadratics with-
out having to find them. This is not why they are important, but doing this re-
quires you to have a firm understanding of what the theorem is actually saying
(and is therefore something which examination boards like to ask of you!). Sup-
pose we have the quadratic x2−17x+15 whose roots areα and β. Can we devise

a quadratic whose roots are, for example, α
β and β

α ? A naïve way of doing this

is to actually find the roots of the quadratic (α and β), then determine α
β and β

α

explicitly, and then simplify the expression
(
x− α

β

)(
x− β

α

)
, which by theorem 3.14

has the required roots.

Naïve solution: By completing the square, we get that x2 −17x +15 = (x − 17
2 )2 −

289
4 +15 = (x − 17

2 )2 − 229
4 . Thus the roots are given by x2 −17x +15 = 0 =⇒ (x −

17
2 )2 = 229

4 =⇒ x = 17±p229
2 . Therefore

α

β
=

17+p229
2

17−p229
2

= 17+p
229

17−p
229

, and
β

α
= 1

α/β
= 17−p

229

17+p
229

,

so the required quadratic is given by(
x − 17+p

229

17−p
229

)(
x − 17−p

229

17+p
229

)

= x2 − 17+p
229

17−p
229

x − 17−p
229

17+p
229

x +
(

17+p
229

17−p
229

)(
17−p

229

17+p
229

)
6The “comparing coefficients” technique is justified in proposition 5.36 later on. The basic

idea is that, if two quadratics are equal for any value of x, it follows that their coefficients must be
equal.
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= x2 − (17+p
229)2 + (17−p

229)2

(17+p
229)(17−p

229)
x +1

= x2 − 289+34
p

229+229+289−34
p

229+229

289−229
x +1

= x2 − 259

15
x +1,

which we can give as 15x2 − 259x + 15, since this has the same roots by theo-
rem 3.14.

Now we proceed to give a simpler solution using theorem 3.19.

Solution using theorem 3.19: By the theorem, we have Σ=α+β= 17, and Π=
αβ= 15. Now since the required expression is also a quadratic, then it will be of
the same form, that is, x2−Σx+Π, where the new sum (ΣN ) and product (ΠN ) are

ΣN = α
β + β

α = α2+β2

αβ = (α+β)2−2αβ
αβ = 172−2(15)

15 = 259
15 , and ΠN = (

α
β

)(β
α

) = 1. Hence

the required quadratic is x2−ΣN x+ΠN = x2− 259
15 x+1, which has the same roots

as 15x2 −259x +15.

Example 3.22. Here is another interesting application of Viète’s formulæ. Sup-
pose we have information about the roots of a given quadratic. Can we express
this information as a relation in terms of the coefficients? This is precisely how
we should think of Viète’s formulæ: as a bridge between the coefficient world to
the root world (and vice-versa). For instance, suppose we know that ax2+bx+c
has one root equal to twice the other. What conditions does this force on a, b
and c?

Well, we can let the roots equal α and 2α (rather than just α and β), this way
we incorporate the information we know about them. Then Viète’s formulæ be-
come

α+2α=−b

a
and α(2α) = c

a
.

We don’t care about α here, we want to obtain a relation about a,b and c. Since
we have two equations, we can use one to eliminate α from the other. The first
one tells us that α=− b

3a , so we can just plug this into the second one and get

2
(
− b

3a

)2 = c

a
=⇒ 2b2 −9ac = 0.

Thus having one root equal to double the other implies that 2b2 − 9ac = 0. It
would be nice if this is also a sufficient condition, i.e., if the converse is also true,
so that we get an equivalence. Indeed, consider the quadratic ax2 +bx + c and
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suppose the coefficients satisfy 2b2 −9ac = 0. Then by Viète’s formulæ, we have

α+β=−b

a
and αβ= c

a
.

We can square the first equation to get a b2, which we can then substitute for a
9
2 ac to incorporate our condition on the coefficients:

(α+β)2 = b2

a2 =⇒ (α+β)2 =
9
2 ac

a2 = 9c

2a
.

Now we should aim to get an equation involving only α and β, because what we
want to end up showing is that our condition imposes that one root is double the
other. Notice the presence of a c

a on the RHS of our equation, we can substitute
this with αβ by the second Viète formula to get

(α+β)2 = 9
2αβ =⇒ 2α2 −5αβ+2β2 = 0

=⇒ (2α−β)(α−2β) = 0

=⇒ α= 2β or β= 2α,

i.e., that one root is double the other. Thus we have shown that

One root of ax2 +bx + c is double the other ⇐⇒ 2b2 −9ac = 0.

This is an interesting result, notice that 2b2 −9ac is quite similar to the familiar
discriminant expression b2−4ac. The latter is zero when the roots are the same,
the former acts as a sort of modified discriminant which is zero when one root
is twice the other.

Exercise 3.23. 1. Determine the nature of the roots of the following
quadratic equations without solving them.

x2 −2x =−5a) x2 −5x +9 = xb)

5x2 −5x +1 = 0c) k2x2 +kx +4 = 0, k ̸= 0d)

x2 −kx +2k = x +k, k ̸= 1e) kx2 = k, k ̸= 0f)

2. For what value(s) of k do the following quadratics have repeated
roots?

x2 +2kx +1a) 3x2 +x +kb) kx2 +kx +4c)
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3. Prove that the roots of the equation 4+b −bx − x2 = 0 are real and
distinct for any b ∈R.

4. Consider the quadratic φ(x) = x2 −6x +13.

a) Prove that φ has no real roots.

b) Suppose that i is a special number with the property that i 2 =
−1 (we know that there is no such real number, but pretend
it exists anyway). Show that 3+2i and 3−2i are roots of the
quadratic φ.

c) Suppose the quadratic ax2 + bx + c has no real roots. Show
that

x = −b ± i
p−∆

2a
are two roots of this quadratic, where i behaves as described
in part (b).

5. Prove the following, and memorise them well!

a) α2 +β2 = (α+β)2 −2αβ

b) α3 +β3 = (α+β)3 −3αβ(α+β)

6. Given the equation 2x2 + 7x − 3 = 0 has roots α and β, form QEs
whose roots are given by the following expressions:

α2, β2a) α3,β3b)
2

α
,

2

β
c)

1

α2 ,
1

β2d) α3 −1, β3 −1e)
α+1

α
,
β+1

β
f)

α2

β
,
β2

α
g)

α

α+β ,
β

β+αh) α+3β, β+3αi)

7. The equation x2 + (2r −3)x +1 = 0 has the roots α and β. Form an

equation whose roots are
α

αβ+1
and

β

αβ+1
.

8. One of the roots of the equation x2 +px +8 = 0 is the square of the
other. Find p.

9. The equation r x2 +p = x +1 has one root double the other. Show
that 2 = 9r (p −1).
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10. If α and β are the roots of x2 −2kx +k −2 = 0, form the quadratic

equation whose roots are α2

β −1, β2

α −1.

11. Given that the equation ax2 +bx + c = 0 has roots α and β, form
QEs whose roots are given by:

a) aα, aβ b)
bα

β2 ,
bβ

α2
c)

1

α− c
,

1

β− c

12. If α2 and β2 are the roots of the equation x2 − 10x + 9 = 0, where
α,β > 0, evaluate αβ and α+β. Hence, write down the equation
whose roots are α and β.

13. Show that if a and b are both positive or both negative, then

x

x −a
+ x

x −b
= 1

has two distinct real solutions.
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IV. LOGARITHMS

W
HAT if, instead of studying expressions like x2, we swap things around

and consider 2x , where now the index itself is an unknown? If we
have the equation 3x = 27, we know that x = 3 is a solution, but
can we develop a general understanding of such equations without

cherry-picked examples? Is there a real number x such that, 3x = 28 instead? (for
instance).

Definition 4.1 (Logarithm). Let a, x ∈ (0,∞) such that a ̸= 1. The logarithm of x
to base a, denoted

loga x,

is a number y ∈R such that ay = x.

Example 4.2. For example, log2 8 = 3, and log5 5 = 1. Indeed, logx x = 1 for any
x ∈ (0,∞).

We essentially have three ways to denote the same relationship between three
numbers. Taking the example of 2, 3 and 8, we have

23 = 8,
3
p

8 = 2, and log2 8 = 3.

In each case, we have a different number as subject of the equation. The loga-
rithm allows us to “access” the power directly, making it subject.

Theorem 4.3. Let a, x ∈ (0,∞) where a ̸= 1. Then loga x exists, and moreover it is
unique, that is, there exists only one real number y such that ay = x.

Proving the existence and uniqueness of loga x in R requires a lot of work (anal-
ysis) which we will not bother getting into here, but we might revisit it later.

Examples 4.4. It’s important to get a feel for logarithms. For instance, what
should log3 10 be? We know that 32 is 9, and 33 is 27, so log3 10 should just a
bit more than 2, probably around 2.1. In fact, log3 10 ≈ 2.095.

Similarly, what is log2 56? We know 25 = 32 and 26 = 64, so we’d expect log2 56 to
be between 5 and 6, closer 6. We can hazard a guess of 5.7. In fact, the real value
is around 5.833.

What about log100 5 be? We know that
p

100 = 1001/2 = 10, and 1000 = 1, so we’d
expect something between 0 and 1/2. We could guess 0.3. The real answer is
about 0.349.

One final example, what should log6

(1
3

)
be? Well, 60 = 1, and 6−1 = 1

6 , so we’d
expect something between the two, perhaps −0.5? The real answer is in fact
−0.613.
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Remark 4.5. loga x only exists when x > 0. For instance, what should log5(−4)
equal? If we think about it, 51 = 5, 52 = 25, 53 = 125, etc., so taking powers of
5 larger than 1 will just give us larger and larger positive numbers. Perhaps we
consider powers between 0 and 1? Well things like 51/2 give us

p
5 ≈ 2.2, so still

a positive number. It’s only once we get to 50 do we get 1. Then if we consider
negative powers, they are simply reciprocals of the positive ones, so 5−1/2 = 1p

5
≈

0.45, 5−2 = 1
25 = 0.04, 5−3 = 1

125 = 0.008. Large negative powers bring us close to
zero (e.g. 5−10 = 1

9765625 ≈ 0.0000001024), but we can’t do better than that; we
can’t even get 5x = 0. Thus loga x only makes sense when x is positive.

The following is another analytic property of logarithms, which we’ve already
been assuming tacitly in our reasoning about them:

Theorem 4.6. Let a ∈ (0,∞) where a ̸= 1. Then loga x is an injection, that is, if
loga x = loga y, then x = y. Moreover, loga is increasing, i.e.,

x < y =⇒ loga x < loga y.

Later on when doing functions, we will talk more about injections. The function
f (x) = (x −1)2 is not an injection for example, since f (3) = f (−1), but 3 ̸= −1. In
general, just because two outputs of a function are the same, it doesn’t mean the
two inputs are the same. But for loga , it is true. (Notice a is fixed here!)

Thus if we come across the equation log3(x +7) = log3(2x +5) (for instance), we
can infer that x +7 = 2x +5, i.e., that x = 2.

Examples 4.7. We give two examples of applications of logarithms. First, we
solve the equation 4x = 8. By the definition, the desired x is given by log4 8.
Indeed, plugging this into a calculator gives x = 3/2. Let us verify that this is the
answer: 4

3/2 = 43· 1
2 = (43)

1/2 = 64
1/2 =p

64 = 8, as required.

For the next example, suppose we placeAC2000 in a bank savings account, which
offers 1.2% interest per annum. How many years must pass before the account
balance exceedsAC2500, assuming that no other deposits/withdrawals are made?
Well, the first step here is to notice that the balance after a year is given by
AC2000 + 1.2%(AC2000) = AC2000(1 + 1.2%) = AC2024. Similarly for the next year,
we do AC2024+1.2%(AC2024) =AC2024(1+1.2%) =AC2048.29. But this is the same
as doingAC2000(1+1.2%)(1+1.2%). In fact for the following year, we would work
outAC2000(1+1.2%)(1+1.2%)(1+1.2%), and in general, after n years, the balance
isAC2000(1+1.2%)n .

So what we want is a value n such thatAC2000(1+1.2%)n =AC2500. This equation
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simplifies to
(253

250

)n = 5
4 , so the required n is given by ⌈log 253

250

(5
4

)⌉ = 19 years.7

By definition, logarithms only allow us to solve equations of the form ax = b,
so any seemingly more complicated equations must be reduced to ones of this
form using techniques we already know about indices.

Examples 4.8. Let us give a series of increasingly more “complicated” equations
to illustrate how each is reduced to the form ax = b.

(i) 2x = 256
Nothing much to do here, by definition, the answer is x = log2(256) = 8.

(ii) 2x ·3x = 256.
Here we can’t take a logarithm yet since the equation is not of the desired
form, but we can use law IV from theorem 2.22 to rewrite the equation as
(2 ·3)x = 256, i.e., 6x = 256. Therefore the solution is x = log6 256.

This time we do not get a rational answer, so we leave it in the exact form
x = log6 256. We can get a sense of how large this number is by observing
that 63 = 216 and 64 = 1296, so we expect it to be around 3.1 (it’s actually
≈ 3.09).

(iii) 2x ·3x+1 = 256.
We can’t combine the powers this time, but we can use law I of indices to
split the x +1, giving 2x ·3x ·31 = 256. Moving the 3 to the other side, the
equation becomes 2x ·3x = 256

3 . Proceeding as in (ii), we have

(2 ·3)x = 256
3 =⇒ x = log6

(256
3

)
.

(iv) 2x+1 ·32x+1 = 256.
Proceeding as before, we first split the exponents to get 2x ·21 ·32x ·31 = 256.
This time we have 32x rather than 3x , but we can use law III to write it as
(32)x instead, i.e., as 9x , so that the equation becomes 2x ·21 ·9x ·31 = 256.
Placing numbers on one side and exponentials on the other gives

2x ·9x = 256
2·3 =⇒ 18x = 128

3 =⇒ x = log18

(128
3

)
.

(v) 93x ·31+x = 152x+3.
This final example demonstrates the general strategy we’ve developed:

93x ·31+x = 152x+3

7⌈x⌉ denotes the ceiling of x, i.e., the smallest integer larger than x. Here we are using it since
presumably, the interest is computed at the end of the year. Since 18 years are not sufficient
(log 253

250
( 5

4 ) ≈ 18.71), we round up to 19 years.
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=⇒ (93)x ·31 ·3x = 152x ·153

=⇒ (93)x ·3x

(152)x = 153

3

=⇒ (93 ·3)x

(152)x = 1125

=⇒
(93 ·3

152

)x = 1125

=⇒
(243

25

)x = 1125

=⇒ x = log 243
25

1125.

Examples 4.9. Here we give two examples of a different kind.

(i) 32x +6 = 5 ·3x .
In contrast to the equations in examples 4.8, here we have three terms, so
we can’t just divide and multiply as easily. The trick is to rearrange this
equation as

32x −5 ·3x +6 = 0 =⇒ (3x )2 −5 · (3x )+6 = 0.

What we have here is the QE t 2 −5t +6 = 0 with t = 3x . Thus we can fac-
torise to get

(3x −2)(3x −3) = 0

=⇒ 3x = 2 or 3x = 3

=⇒ x = log3 2 or x = 1,

which are both valid solutions.

(ii) 4x+1 +2x = 1.
Just as in (i), we notice that the equation has more than two terms, so we
need to try a similar strategy. This time the quadratic is more well-hidden,
but it’s in there:

4x+1 +2x = 1 =⇒ 4 ·4x +2x = 1 =⇒ 4 · (2x )2 +2x −1 = 0.

We have 4t 2 + t −1 = 0 with t = 2x . Proceeding by completing the square,
we get

(2x + 1
8 )2 − 17

64 = 0 =⇒ 2x = −1±p17
8 =⇒ x = log2(−1+p17

8 ).

Notice that we discard the solution corresponding to 2x = −1−p17
8 since

−1−p17
8 < 0 (remark 4.5).
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THE LAWS OF LOGARITHMS

Some indicial equations present multiple courses of action. For instance, given
the equation 23x−1 = 5, we could either split up the index, in accordance with
the strategy we were using in examples 4.8, to get

23x−1 = 5 =⇒ (23)x ·2−1 = 5 =⇒ 8x = 10 =⇒ x = log8 10,

or else we could invoke the definition of logarithm immediately to get

23x−1 = 5 =⇒ 3x −1 = log2 5 =⇒ x = 1
3 (log2 5+1).

These answers look wildly different, but by theorem 4.3, we expect equations of
this form to have a unique solution; so we expect that

log8 10 = 1
3 (log2 5+1),

which is true, in fact. But how can we see that this is true without the context of
the equation we started with? In this section, we aim to establish some laws of
logarithms so that we may better understand equalities of logarithmic quantities
such as the one above.

The key thing to remember about logarithms is that what they give us is an index.
The following theorem is essentially a translation of laws I–III in theorem 2.22,
in terms of logarithms.

Theorem 4.10 (Laws of Logarithms). Let a, x, y ∈ (0,∞) such that a ̸= 1, and let
c ∈R. Then we have the following laws.

loga x + loga y = loga(x y)I)

loga x − loga y = loga

(
x

y

)
II)

c loga x = loga(xc )III)

Proof. Let u = loga x and v = loga y . By definition of loga , it follows that au = x
and av = y . Now by law I of indices (theorem 2.22), we have

x y = au av = au+v ,

converting this equation to log form we get loga(x y) = u + v = loga x + loga y ,
proving I. Similarly by law II of indices, we have

x

y
= au

av = au−v ,
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and converting this equation to log form we get loga

( x
y

)= u−v = loga x− loga y ,
proving II. Finally by law III of indices, we have

au = x =⇒ (au)c = xc =⇒ acu = xc ,

and converting to log form we get loga(xc ) = cu = c loga x, proving III, as re-
quired.

Example 4.11. Before calculators, these laws were essential to be able to evaluate
logarithms using logarithm tables. Given that log2 3 ≈ 1.584 and log2 5 ≈ 2.322,
we find log2 5400. Indeed, log2 5400 = log2(23 ·52 ·33) by prime factor decompo-
sition. By law I this becomes log2(23)+ log2(52)+ log2(33), which then by law III

becomes 3log2 2+2log2 5+3log2 3 = 3(1)+2(2.322)+3(1.584) = 12.396.

Notation (Standard Bases). Some logarithm bases are very common, so we give
them their own special symbol.

ln x denotes loge x and is called the natural logarithm, where e ≈ 2.718 is
an important constant we will discuss later.

(i)

lb x denotes log2 x, and is called the binary logarithm. This is common in
computer science.

(ii)

lg x denotes log10 x, which is referred to the common logarithm.(iii)

log x without a base usually denotes the natural logarithm ln x in most
mathematics and physics contexts, but in engineering it sometimes means
log10. On scientific calculators, the log button usually stands for log10 also.

(iv)

Examples 4.12. We solve some logarithmic equations.

(i) log x + log3 = log(2x +3).
Using the first law on the LHS, we get log(3x) = log(2x +3), and since log is
injective, we can cancel it from both sides to get 3x = 2x +3, i.e., x = 3.

(ii) 2 log7(x −1) = log7 9.
By the third law, this becomes log7(x −1)2 = log7 9, so (x −1)2 = 9, which
implies that x = 1±3, i.e., x = 4 or x =−2.

But we need to be careful—recall from remark 3.4 that we cannot input
negative numbers into a logarithm. In the original equation, the term
log7(x −1) appears, so we can’t input any x É 1 here. Thus the only valid
solution is x = 4.
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(iii) ln(2x +3) = 2ln x −5.

There are two main approaches we can take with this equation. The first
is to transform it into an indicial equation by taking the exponential e(·) of
both sides, this will give

e ln(2x+3) = e2ln x−5.

The key thing to understand here is that a(·) and loga(·) undo each other;
e.g., 2log2 7 = 7. This is the idea that motivates this approach. The equation
becomes

2x +3 = e2ln x−5 =⇒ 2x +3 = (e ln x )2e−5 =⇒ 2x +3 = x2

e5 ,

so we have the QE x2 − 2e5x − 3e5 = 0. Proceeding by completing the
square,

(x −e5)2 −e10 −3e5 = 0 =⇒ x = e5 ±
√

3e5 +e10.

Now we need to be careful, remember that the equation we want to solve
is ln(2x +3) = 2ln x −5. Since e5 −

p
3e5 +e10 ≈−1.49 < 0, we cannot sub-

stitute this into the equation since ln x appears there. Thus the only valid
solution is x = e5 +

p
3e5 +e10.

The second approach is to use the laws of logarithms to get an equation of
the form ln(· · ·) = ln(· · ·), and cancel the logs as we did in (i) and (ii). Notice
we can transform the coefficient 2 into a power on the RHS using the third
law of logarithms:

ln(2x +3) = 2ln x −5 =⇒ ln(2x +3) = ln
(
x2)−5

Now we can’t do much with the −5, unless we write it as a logarithm, be-
cause then we can use the second law. Obviously 5 = ln

(
e5

)
, so

ln(2x +3) = ln
(
x2)− ln

(
e5) =⇒ ln(2x +3) = ln

( x2

e5

)
=⇒ 2x +3 = x2

e5 ,

and now we continue as in the first approach to get x = e5 +
p

3e5 +e10.

Apart from allowing us to solve logarithmic equations, the laws of logarithms
present us with another approach to solve indicial equations. Recall the equa-
tion 93x ·31+x = 152x+3 from examples 4.8. We can apply logarithms to both sides,
and use the laws to bring the exponents down as terms in the equation. For in-
stance, let’s apply log7 to both sides:

log7(93x ·31+x ) = log7(152x+3)
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=⇒ log7(93x )+ log7(31+x ) = (2x +3)log7 15

=⇒ 3x log7 9+ (1+x) log7 3 = (2x +3)log7 15

=⇒ 3x log7 9+ log7 3+x log7 3 = 2x log7 15+3log7 15

=⇒ 3x log7 9+x log7 3−2x log7 15 = 3log7 15− log7 3

=⇒ x(3log7 9+ log7 3−2log7 15) = 3log7 15− log7 3

=⇒ x = 3log7 15− log7 3

3log7 9+ log7 3−2log7 15
.

Just as at the start of this subsection, using a different method gave us a drasti-
cally different looking answer—in examples 4.8, we got x = log243/25 1125. But
now we can use the laws of logs to try and massage the answer to look like the
first one:

3log7 15− log7 3

3log7 9+ log7 3−2log7 15
= log7(153)− log7 3

log7(93)+ log7 3− log7(152)

= log7(153/3)

log7(93 ·3/152)

= log7(1125)

log7( 243
25 )

.

Although this is not exactly the same answer as we got the first time round, it’s a
lot closer. The only thing we can’t seem to get rid of is the log7, and if we think
about it, the choice of 7 as a base was completely arbitrary. In fact, this example
seems to suggest that we can just pick any base B and rewrite

loga x = logB x

logB a
.

This is actually true! And it’s called:

Theorem 4.13 (Change of Base). Let a, x,B ∈ (0,∞) where a ̸= 1 ̸= B. Then

loga x = logB x

logB a
.

Proof. Let u = loga x, so that au = x. Applying logB to both sides, we get

logB (au) = logB x =⇒ u logB a = logB x =⇒ u = logB x

logB a
,

which completes the proof.
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This theorem tells us that the logarithm in any base can be expressed in terms
of logarithms of any other base. In fact in some textbooks, the only logarithm
introduced is the natural logarithm ln x, and then loga x is defined to be short
for ln x/ln a.

Now that we have developed these tools, we can easily resolve the issue we
started this subsection with, namely to see why log8 10 = 1

3 (log2 5+ 1). We can
start by changing the base 8 to base 2:

log8 10 = log2 10

log2 8
= log2(2 ·5)

log2 8
= log2 5+ log2 2

3
= log2 5+1

3
,

as required.

Example 4.14. We solve the equation logx 9+1 = log3 x. It’s a bit strange to have
an unknown in the base, perhaps we ought to invoke the change of base formula
to get everything in terms of base 3:

log3 9

log3 x
+1 = log3 x =⇒ 2

log3 x
+1 = log3 x

=⇒ 2+ log3 x = (log3 x)2

=⇒ (log3 x)2 − log3 x −2 = 0

Here we have the quadratic t 2 − t −2 where t = log3 x. This factorises to give

(log3 x +1)(log3 x −2) = 0

=⇒ log3 x =−1 or log3 x = 2

=⇒ x = 1
3 or x = 9.

Checking the original equation, we see that both answers are valid.

Exercise 4.15. 1. Express the following in terms of a, b and c; where
a = log x, b = log y and c = log z.

log x y za) log
x

z y
b) 4log y

p
xc)

log4x − log3yd) log
(
x y

)ae) ln xf)

2. Solve the following equations.

2x = 32a) 7x = 14b)
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log5x = 1c) 3x2−3x = 81d)

2x+1 +4 = 9(2x )e) 216(22n +32n) = 793(6n)f)

123x+1 ×155−2x = 22(2x+1) ×33x ×5g)

32x+1 = 3x+2 +
√

1−6(3x )+32(x+1)h)

log5+ log2x = 2i)
18log8 x −8

log8 x
= 9log8 xj)

4 log x = 2log x − log
625

4
k) lb(5−x2) = 2lb(1−x)l)

logx 27− logx x = 2

log27 9
m)

ln
(
35−x3

)
ln(5−x)

= 3n)

100x log x−2 +x2−log x −20 = 0o)

2+ log
p

1+x +3log
p

1−x = log
p

1−x2p)

3. Show that the unique solution of the equation 2x 52x 73x = 3 is given
by the real number

x = ln3

ln2+2ln5+3ln7
.

4. Solve the following systems of equations.{
2log y + log2 = log x

5y = x +2
a)

{
log3 x log3 y = 6

log3 x y = 5
b)

{
2log2 y +2 = log2 x

x + y = 3
c)

{
2log

(
y −1

)= log x

2x = 4− y
d)

{
log2 x −4 = log4 y

log2(x −2y) = 5
e)

{
log2 x + log4 y −4 = 0

3x2 −9(315y+2) = 0
f)

5. An amount ofAC1500 is deposited in a bank paying an annual inter-
est rate of 5% compound interest per year. How many years must
pass for this amount to exceedAC2000?

6. A certain strain of E-coli bacteria doubles in number 30 minutes.
If there are 100 E-coli bacteria that are allowed to grow under ideal
conditions, how long will it take to reach 1 million bacteria?
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7. The speed of the wind in a tornado, v (km/h), is related to the dis-
tance s (km) it travels before dying out by the equation v = 93log6 s+
63. If a tornado has wind speed of 95 m/s, how far does it travel?

8. Show that the solutions of the equation 2log2(x+15)−log2 x = 6 are
also the solutions of the equation x2 + 255 = 34x without actually
finding the solutions.

9. Let a,b > 0. Show that if ln 1
2 (a +b) = 1

2 (ln a + lnb), then a = b.

10. Prove the following results WITHOUT USING THE CHANGE OF BASE

THEOREM.

logpb x = 2logb xa)

log1/
p

b

p
x =−1

2 logb xb)

logb4 x2 = logb
p

xc)

11. Prove that

1

log2 x
+ 1

log3 x
+ 1

log4 x
+·· ·+ 1

log100 x
= 1

log100! x
,

where 100! = 100 ·99 ·98 · · ·2 ·1.
(MATSEC May ’17)
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V. POLYNOMIALS

H
ERE we attempt to generalise the ideas from the section on quadratics

to algebraic expressions containing larger integer powers of a sin-
gle variable x. Can we hope to solve equations containing multiple
powers of x?

THE BASICS AND POLYNOMIAL DIVISION

Definition 5.1 (Polynomial). Let n ∈N∪{0}, and let a0, a1, . . . , an ∈Rwith an ̸= 0.
Any expression of the form

p = an xn +an−1xn−1 +·· ·+a2x2 +a1x +a0

is said to be a polynomial in x, where x is called an indeterminate and the ai ’s
are called its coefficients. The non-negative integer n is called the degree of the
polynomial, denoted deg p. The number an is called its leading coefficient.

Notation. The set of all polynomials with coefficients inR is denotedR[x]. More
generally, the set of polynomials with coefficients in some set F is denoted by
F [x], e.g., the set of polynomials with integer coefficients is Z[x].

Examples 5.2. We give some examples.

(i) The expression 12x7−32x3+5x2−3x+2 is a polynomial of degree 7, since
it is of the form a7x7 +a6x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x +a0, where
a7 = 12, a3 =−32, a2 = 5, a1 =−3, a0 = 2 and a6 = a5 = a4 = 0.

(ii) Any linear expression ax +b is a polynomial of degree 1, since it is of the
form a1x +a0.

(iii) Any quadratic ax2 + bx + c is a polynomial of degree 2, since it is of the
form a2x2 +a1x +a0.

(iv) Any non-zero real number a0 is a polynomial of degree 0.

Remark 5.3 (The zero polynomial). Notice that by definition 5.1, we have that
p = 0 is technically not a polynomial, since we require that the lead coefficient
(an) is always non-zero. In the definition, we do this so that the degree is defined
meaningfully, otherwise we could say that something like 0x2 +3 has degree 2.

Even though it does not agree with definition 5.1, we still consider the expression
p(x) = 0 to be a polynomial, and we call it the zero polynomial.

Notation (Abstract polynomial). We want to make the distinction between the
notation p and p(x) where p is a polynomial. When we write p alone, we are

60 PRELIMINARY VERSION 0.8



§5.1 | The Basics and Polynomial Division Luke Collins

referring to the polynomial p in the abstract, in the sense that, p is the object
with coefficients, p has a degree, and so on. On the other hand, p(x) denotes a
real number obtained when x is plugged into p. Therefore it makes no sense to
speak of the degree of p(x), or the coefficients of p(x), since concretely, this is
just a number.

Now we will abuse this convention slightly when it makes it convenient to write
things down. For instance, when we write ax2 +bx + c as we did in the section
on quadratics, then in most cases, we cared about the quadratic as an abstract
entity, rather than its value at some particular x. We could write something ab-
stract looking such as a□2+b□+c to make the distinction clearer, but this looks
a bit strange so we will stick to using x. But make sure that you are aware that a
distinction is being made.

When we write things like p + q or pq , we are referring to the polynomials ob-
tained when they are treated as formal expressions and simplified algebraically.
For instance, if p = x2 −3 and q = 3x +5, then

p +q = (x2 −3)+ (3x +7) = x2 +3x +4

and
pq = (x2 −3)(3x +7) = 3x3 +7x2 −9x −21.

Similarly, if we say that, e.g., “there exists a polynomial s such that p = qs”, then
this polynomial s is such that they are equal as polynomials, meaning that p
and qs have the same coefficients and the same degree. Notice therefore that
writing something like p = q is different from writing p(x) = q(x). By the former,
we mean we have equality as polynomials, whereas the latter means we have
equality for a particular value of x.

Example 5.4. If p = x2 −3 and q = 3x +7, then p ̸= q , but p(x) = q(x) is possible
(if x happens to be equal to 5, say).

Some textbooks say that two polynomials p and q are equal if p(x) = q(x) for
all possible inputs x ∈R. Is this equivalent to our definition, or is ours stronger?
Obviously if p = q by our definition, then p(x) = q(x) for all inputs x, but if p(x) =
q(x) for all x, does it necessarily imply that the degree and coefficients of the
polynomial are the same?

This turns out to be true (at least, for F [x] when F is infinite), but we will prove
it later in proposition 5.36. This fact also justifies the idea of “comparing coeffi-
cients” which we used to prove theorem 3.19 (Viète’s formulæ for quadratics).
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Definition 5.5 (Polynomial Factors). Let p, q ∈R[x] be polynomials. If there ex-
ists a polynomial s ∈ R[x] such that p = qs, then we say that q is a factor of p,
or that q divides p. This relation is denoted by q | p, and the polynomial s is
denoted by p/q .

Example 5.6. The polynomial q = x − 3 is a factor of p = 2x2 − 7x + 3, since p
can be written as p = (x −3)(2x −1). Similarly s = x −2 divides the polynomial
t = 6x4−10x3−7x2+5x+2 because t can be written as t = (x−2)(3x+1)(2x2−1).

Remark 5.7. The polynomial p/q agrees with the usual notation for division of
real numbers when it makes sense, i.e., if p = qs, then for any x, s(x) will be
equal to the value of the real number p(x)/q(x), unless q(x) = 0. Notice how-
ever, that in the case that q(x) = 0, the value of s(x) is still defined; so we can
evaluate (p/q)(x) ( ̸= p(x)/q(x)). This is one of the situations where the distinc-
tion between the notations p and p(x) is important!

Example 5.8. In the last example, we had p = (x −3)(2x −1) and q = (x −3) and
so p = qs where s = p/q = 2x − 1. Now (p/q)(1) = s(1) = 2(1)− 1 = 1, and also
p(1)/q(1) = ((1−3)(2(1)−1))/(1−3) = 1. However, (p/q)(3) = s(3) = 2(3)−1 = 5,
but p(3)/q(3) is not defined since q(3) = 0.

Remark 5.9. The degree of the zero polynomial p = 0 for all x is not defined. (In
particular, it is not zero). The reason for this is that the results of the following
theorem would not hold otherwise.

Theorem 5.10 (Degree Laws). Let p, q ∈R[x] be non-zero polynomials. Then

(i) deg(pq) = deg p +deg q

(ii) If q |p, then deg(p/q) = deg p −deg q

(iii) If n ∈N, then deg(pn) = n deg p

Proof. For (i), simply observe that if we have p = an xn +·· ·+a0 and q = bm xm +
·· ·+b0, then

pq = (an xn +·· ·+a0)(bm xm +·· ·+b0) = anbm xn+m +·· ·+a0b0,

so deg(pq) = n +m = deg p +deg q .

For (ii), if q | p, then by definition p = qs for some s ∈ R[x]. Therefore deg p =
deg(qs) = deg q +deg s = deg q +deg(p/q) by (i).

Finally for (iii), observe that by (i), deg(pn) = deg(p · · ·p) = deg p + ·· ·+deg p =
n deg p.
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Note. Observe the similarity between these degree laws and the laws of loga-
rithms (theorem 4.10).

Example 5.11. These laws allow us to determine the degrees of polynomial prod-
ucts on inspection. For example, using law (i), we get

deg((x +2)(3x −4)(x2 +1)) = 1+1+2 = 4,

and another example,

deg((x −3)2(5−2x)3(x3 −9x +4)2) = 2 ·1+3 ·1+2 ·3 = 11,

by (i) and (iii).

We also have the following property about the degree of sums of polynomials.

Proposition 5.12. Let p, q ∈R[x] be polynomials. Then

deg(p +q) É max{deg p,deg q},

where max{a,b} denotes the larger of the two numbers a and b.

The proof is straightforward.

We can make sense of the notation p/q in the case that q does not divide p, by
considering the corresponding algebraic expression in x, i.e., p(x)/q(x).

Definition 5.13 (Rational Function). A rational function is an algebraic expres-
sion of the form

p(x)

q(x)

where p, q ∈ R[x] are polynomials. Furthermore, if deg p < deg q , we say that
p/q is proper. Otherwise if deg p Ê deg q we say that p/q is improper.

Examples 5.14. The following are rational functions.

5x2 −6x

x3 +5x −4

x2 −3x +2

4x2 −5x +3

x6

x5 +x2 −4

The first one is proper, the second two are improper.

In general, (p/q)(x) equals p(x)/q(x) for any x unless q(x) = 0, in which case, it
is either undefined, or can be assigned a value if p and q have common factors
which cancel, so that we can evaluate it as in remark 5.7.
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Example 5.15. Even though the numerator and denominator of

f (x) = x2 −1

x2 −4x +3

are both zero when we plug in x = 1, we have f (1) = −1. Indeed, rather than
treating it as a formal algebraic expression and substituting directly, we first no-
tice that (x −1) is a factor of both the numerator and denominator, so in fact we
can simplify

f (x) = (x −1)(x +1)

(x −1)(x +3)
= x +1

x −3
.

Plugging in x = 1 into the simplified version of f allows us to assign the value −1
to f at x = 1.

Now, in primary school, fractions such as 7
3 were described as improper, and we

would instead write them as mixed numbers; so 7
3 becomes 2 1

3 (i.e., 2+ 1
3 ). We

could equivalently write what we’re saying here as

7 = 3 ·2+1.

The conversion from improper fractions to mixed numbers involved a process
called long division. Here we introduce an analogue to long division for polyno-
mials.

Theorem 5.16 (Euclidean Algorithm). Let p, q ∈ R[x] with deg p Ê deg q. Then
we may write p as

sq + r,

where s,r ∈R[x] are polynomials such that:

• deg s = deg p −deg q,

• r = 0 or degr < deg q.

Proof. Suppose p, q ∈ R[x] are p = an xn + ·· ·a0 and q = bm xm + ·· ·b0, where
deg p = n Ê m = deg q . Define s = an

bm
xn−m . The key is to observe that we can

transform p by writing it as

p = sq + (p − sq),

where it’s easy to see that deg(p − sq) < deg p, since the leading term an xn is
eliminated. If deg(p−sq) < deg q , then we are done, if not, then we carry out the
same transformation on (p − sq), which gives

p = sq + s′q + ((p − sq)− s′q) = (s + s′)q + (p − sq − s′q),
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where we are denoting the “new” s by s′. Now deg(p − sq − s′q) < deg(p − sq) <
deg p. We keep doing this procedure until the degree of p − sq − s′q − s′′q −·· · is
less than m = deg q (or if it equals zero), at which point we are done. Clearly the
degree of the obtained polynomial s+s′+·· · is deg(s) = n−m = deg p−deg q .

Corollary 5.17 (Euclidean Algorithm for Rational Functions). Let p, q ∈R[x] with
deg p Ê deg q. Then we may write the rational function p/q as s + q/r where
s,r ∈R[x] are polynomials such that:

• deg s = deg p −deg q,

• r = 0 or degr < deg q (so that r /q is proper).

Example 5.18. The best way to understand the Euclidean algorithm (and its
proof) is to work through an example. Let

p = 3x4 −x +1 and q = x2 +2x −1.

In the proof, we defined s as the ratio of the leading term of p (i.e., an xn) to that
of q (i.e., bm xm), so for this example we have s = 3x4/x2 = 3x2. Then we used the
fact that p = sq + (p − sq), and most importantly, since the term an xn appears
both in p and in sq , the degree of p−sq is less than that n = deg p. Applying this
reasoning to our example, we have

p = 3x2 ·q + (
3x4 −x +1− (x2 +2x −1)(3x2)

)
= 3x2 ·q + (

3x4 −x +1− (3x4 +6x3 −3x2)
)

= 3x2 ·q + (−6x3 +3x2 −x +1),

and as we can see, the degree of what’s left over has decreased, however it’s still
not less than 2 = deg q . We therefore apply the same procedure again on the
result, and the “new” s is now −6x3/x2 =−6x:

p = 3x2 ·q + (−6x ·q + (−6x3 +3x2 −x +1− (−6x)(x2 +2x −1)
)

= (3x2 −6x)q + (−6x3 +3x2 −x +1− (−6x3 −12x2 +6x)
)

= (3x2 −6x)q + (15x2 −7x +1).

The degree of what’s left over is still not less than 2, however one more iteration
yields

p = (3x2 −6x +15)q + (
15x2 −7x +1−15(x2 +2x −1)

)
= (3x2 −6x +15)(x2 +2x −1)+16−37x,
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which is finally in the required form.

In terms of corollary 5.17, what this tells us is that we can write

p

q
= sq + r

q
= s + r

q
,

where now r /q is proper. In other words, we have

p

q
= 3x2 −6x +16+ 16−37x

x2 +2x −1
.

Notation. In view of this method being the analogue to long division for polyno-
mials, we adopt a similar way of denoting the procedure. Instead of proceeding
as we have done in the example above, we instead write out the problem as a
long division problem:

x2 +2x −1
)

3x4 −x +1

Notice that we leave room for any terms in x3 or x2 to appear, organising the
terms in non-overlapping “columns”.

We start the algorithm just as before, by computing the ‘s’ term, which is the
result of dividing the left-most term below the division sign with the left-most
term of the polynomial outside division sign. This is written above the division
sign.

3x2

x2 +2x −1
)

3x4 −x +1

Next we multiply the term above by the polynomial outside the division sign to
get the equivalent of sq . This is written underneath the polynomial below the
division sign, and the signs are flipped, so that we have −sq .

3x2

x2 +2x −1
)

3x4 −x +1
−3x4 −6x3 +3x2

Next, we add to get p − sq . This will only differ from p in terms of degree 2 or
higher, so we can just add those for now, and copy the −x down for the next
stage.
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3x2

x2 +2x −1
)

3x4 −x +1
−3x4 −6x3 +3x2

−6x3 +3x2 −x

If p − sq had degree less than 2, we would be done, but here the degree is 3, so
we start the procedure again, dividing the leading coefficient of the remainder
by the leading coefficient of the divisor, writing this “new s” in the appropriate
column at the top.

3x2 −6x

x2 +2x −1
)

3x4 −x +1
−3x4 −6x3 +3x2

−6x3 +3x2 −x

Multiplying this by q and flipping signs, we get the “new p − sq”

3x2 −6x

x2 +2x −1
)

3x4 −x +1
−3x4 −6x3 +3x2

−6x3 +3x2 −x
6x3 +12x2 −6x

Adding the terms affected (those with degree 1 and higher) and copying the +1
down for the next stage, we get

3x2 −6x

x2 +2x −1
)

3x4 −x +1
−3x4 −6x3 +3x2

−6x3 +3x2 −x
6x3 +12x2 −6x

15x2 −7x +1

We check the degree again, and since it’s not less less than 2, we repeat the pro-
cedure to finally arrive at
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3x2 −6x +15

x2 +2x −1
)

3x4 −x +1
−3x4 −6x3 +3x2

−6x3 +3x2 −x
6x3 +12x2 −6x

15x2 −7x +1
−15x2 −30x +15

−37x +16

Which corresponds to the fact that 3x4−x+1 = (3x2−6x+15)(x2+2x−1)+16−
37x, or in terms of rational functions,

3x4 −x +1

x2 +2x −1
= 3x2 −6x +15+ −37x +16

x2 +2x +1
,

as we obtained previously.

Examples 5.19. Here are two more examples with this new notation. To divide
(x3 −8x2 +3x −1)/(x2 −7x +2), we do

x −1

x2 −7x +2
)

x3 −8x2 +3x −1
−x3 +7x2 −2x

−x2 +x −1
x2 −7x +2

−6x +1

so
x3 −8x2 +3x −1

x2 −7x +2
= x −1+ 1−6x

x2 −7x +2
,

and for (2x2 −2x +2)/(3x2 +3x +1), we do

2
3

3x2 +3x +1
)

2x2 −2x +2
−2x2 −2x − 2

3

−4x + 4
3

so
2x2 −2x +2

3x2 +3x +1
= 2

3
− 12x −4

3(3x2 +3x +1)
.
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Exercise 5.20. 1. State whether the following rational functions are
proper or improper.

4x2 +7x −3

2x +1
a)

4t +1

3t −1
b)

4x2 −28

3x
c)

x3 +x2 +x +1

x2 +x +1
d)

4x4 +3x3 +2x2 +x

x +1
e)

(x −1)(x −2)(x −3)

(x +1)(x +2)
f)

4x3 +x

16x6 −x2g)
1

x +1
(x3 −27)h)

πx +2π+π2

2(x +π)
i)

x4 −x2 −2x −1

x2 +x +1
j)

2. Convert the improper fractions from the exercise above to proper
fractions.

Now we will conclude with some more theory which will be useful in future sec-
tions.

Definition 5.21 (Monic). A polynomial p is said to be monic if its leading coeffi-
cient is 1, i.e., if deg p = n, then the coefficient of xn in p is 1.

Recall that the highest common factor of two integers a and b is the largest posi-
tive integer k such that k | a and k | b (i.e., k divides both a and b). For example,
the highest common factor of 15 and 25 is 5, and that of 27 and 36 is 9.

Definition 5.22 (Polynomial hcf). Let p, q be two polynomials (not both zero).
Then the highest common factor of p and q , denoted hcf(p, q), is the monic
polynomial s of largest degree such that s | p and s | q .

Example 5.23. If p = x4 + 2x3 + x + 2 and q = 3x4 − 4x3 − 43x2 − 56x − 20, we
have hcf(p, q) = x2 +3x +2, since in factorised form, these polynomials are p =
(x+1)(x+2)(x2−x+1), q = (x+1)(x+2)(x−5)(3x+2) and x2+3x+2 = (x+1)(x+2).
Notice we require the additional constraint that the hcf is monic so that it is
unique, otherwise any constant multiple of the hcf still divides both p and q .

An important fact about the hcf is the following.

Proposition 5.24. Let p, q ∈ R[x] be two polynomials (not both zero). Then the
highest common factor hcf(p, q) exists and is unique.
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We will not prove this fact because it requires some advanced algebra (namely
the theory of Euclidean rings). But it plays a key role in the proof of the following
result.

Theorem 5.25 (Bézout’s lemma). Let p, q ∈R[x] be two polynomials. Then there
exist s, t ∈R[x] such that

sp + t q = hcf(p, q),

where deg(s) < deg(q) and deg(t ) < deg(p).

Notice that an an analogous result is true for integers: for any a,b ∈ Z, we can
find s, t ∈Z such that sa + tb = hcf(a,b). For instance, if a = 3 and b = 5, then

2 ·3+ (−1) ·5 = 1 = hcf(3,5).

We will not prove this result either (not for integers, nor for polynomials), but it
is essentially a consequence of theorem 5.16 plus some advanced algebra.

THE REMAINDER AND FACTOR THEOREMS

With numbers, the term “remainder” refers to the quantity left over when per-
forming division. For example, if we divide 17 by 3, then we get

17

3
= 5+ 2

3
,

so the remainder is 2. Notice that the remainder is always less than the divisor.
For polynomials, we have the analogous notion, where we perform long division
to get

p

q
= s + r

q
,

and deg(r ) < deg(q) (or r = 0). Sometimes it is more useful to look at this relation
in the form

p = qs + r.

The corresponding equality for the numeric example would be 17 = 3 ·5+2 (this
is why we stated theorem 5.16 the way we did). But unlike numbers, polynomials
have a variable which we can substitute for. This allows us to prove the following.

Theorem 5.26 (Remainder theorem). Let p ∈ R[x] be a polynomial. Then the
remainder upon division by (x −α) is p(α).

Proof. First of all notice that when we divide p by (x −α), by theorem 5.16, the
remainder has r (x) < deg(x −α) = 1 or it equals 0, i.e., the remainder is a con-
stant. After division, we can write p = s ·(x−α)+r . In particular, this is true when
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x =α, which gives us that
p(α) = s(α)(0)+ r,

i.e., that r = p(α).

This allows us to determine the remainder of a division without having to actu-
ally perform the division! (Albeit limited to the case where our divisor is linear.)

Example 5.27. Say we divide p(x) = x4 + 3x3 + 5x2 + 7x + 9 by x + 1. Then the
remainder should be equal p(−1) (since (x +1) = (x − (−1))), i.e.,

r = p(−1) = (−1)4 +3(−1)3 +5(−1)2 +7(−1)+9 = 5.

Indeed, if we do the division, we get

x3 +2x2 +3x +4

x +1
)

x4 +3x3 +5x2 +7x +9
−x4 −x3

2x3 +5x2

−2x3 −2x2

3x2 +7x
−3x2 −3x

4x +9
−4x −4

5

which gives

x4 +3x3 +5x2 +7x +9

x +1
= x2 +2x +3x +4+ 5

x +1
,

as expected.

Remark 5.28. Notice that if we are dividing by a factor of the form (ax+b), for the
purposes of the remainder theorem, this is equivalent to dividing by (x − (−b/a)).
Indeed, if

p = s · (ax +b)+ r,

putting x =−b/a gives p(−b/a) = s0+ r , i.e., r = p(−b/a).

Why is this theorem particularly useful? Why should we care about being able to
find the remainder if we still have to do long division for the quotient? Well, if it
happens that the remainder is zero, then we get

p = q · (x −α)+ r = (x −α) ·q,
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i.e., we will have determined a linear factor of p. In other words, we have

Theorem 5.29 (Factor theorem). Let p ∈R[x] be a polynomial. Then

p(α) = 0 if and only if (x −α) | p.

Proof. If p(α) = 0, then by the remainder theorem, we get that p = (x −α) · s.

Conversely, if (x −α) | p, then p = (x −α) · s and so p(α) = 0.

This allows us to prove various fundamental facts about polynomials. But first
we will need to generalise it slightly. Ifα is a root of p, then by the factor theorem,
(x−α) | p, and so p/(x−α) is a polynomial. Now ifα is a root of this polynomial,
then applying the factor theorem again gives us that (x −α) | (p/(x −α)), or, (x −
α)2 | p. But this in turn implies that p/(x −α)2 is a polynomial, and we can
ask again whether α is a root of this new polynomial. If this is the case, we will
similarly get that (x −α)3 | p, and so on. This idea gives rise to the following
definition.

Definition 5.30 (Multiplicity). Let f ∈ R[x] be a polynomial, and let α ∈ R be a
real root of f , so that (x−α) | f by the factor theorem and so f /(x−α) is a polyno-
mial. Then α is said to be repeated if it is also a root of f /(x −α), or equivalently,
if (x −α)2 | f .

More generally, we say that α is a root with multiplicity n if n is the largest inte-
ger such that (x −α)n | f .

Notice this definition is compatible with the notion of repeated root for quadrat-
ics introduced in theorem 3.12. If we say that a polynomial has rootsα1, . . . ,αn ∈
R, we do not exclude the possibility that some of the αi are equal to each other,
and interpret n occurrences of the same αi as its multiplicity.

Examples 5.31. The polynomial x3−1 has one root, namely x = 1 with multiplic-
ity 1, since it factorises as (x −1)(x2 + x +1) and the second factor has discrim-
inant −3. The polynomial x5 +3x4 +4x3 +4x2 +3x +1 has only one root, but it
has multiplicity 3. Indeed, its factorisation is (x −1)3(x2 +1).

Now we can state a generalisation of theorem 3.14.

Theorem 5.32. Let p ∈ R[x] be a polynomial with s real roots α1, . . . ,αs ∈ R (not
necessarily distinct). Then

p = (x −α1) · · · (x −αs) ·q,

where q is either a polynomial with deg(q) = deg(p)− s or the zero polynomial.
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Proof. If p is the zero polynomial, then the result is obvious, we can take any
αi ∈ R we want and then set q to be the zero polynomial. So suppose p ̸= 0. By
the factor theorem, p(α1) = 0, so we may express p as p = (x −α1) · t . Now if
t (α1) = 0 (i.e., α1 is a repeated root), then we can apply the factor theorem to t
and get that p = (x −α1)2 ·u. Repeating the process until α1 is no longer a root,
we will obtain p = (x−α1)m1 ·v , where v(α1) ̸= 0, and m1 denotes the multiplicity
of α1. (This is guaranteed to happen eventually by theorem 5.16, since dividing
p by (x −α1) repeatedly decreases its degree, and a degree 0 polynomial has no
roots.)

Now if there are roots left (i.e., if they weren’t all equal to α1), then there is a root
α2 (let’s keep the subscripts simple) so that α2 ̸=α1 and

0 = p(α2) = (α1 −α2)m1 v(α2).

Since (α1 −α2)m1 ̸= 0, then we must have v(α2) = 0, and so (x −α2) | v , and we
can write p = (x−α1)m1 (x−α2)·w . Continuing similarly, accounting for repeated
roots, we get that p = (x −α1) · · · (x −αs) ·q and q ̸= 0.

Finally by theorem 5.10(i), we see that deg(p) = s +deg(q).

As an immediate consequence, we have an upper-bound to the number of roots
of a polynomial.

Theorem 5.33. Let p ∈ R[x] be a non-zero polynomial of degree n. Then p can
have at most n roots (including multiplicity).

Proof. Suppose p has s rootsα1, . . . ,αs . Then p = (x−α1) · · · (x−αs)·q with q ̸= 0,
and so

deg(p) = deg((x −α1) · · · (x −αs) ·q)

= deg((x −α1) · · · (x −αs))+deg(q)

Ê deg((x −α1) · · · (x −αs)) = s,

so number of roots is at most the degree, as required.

In general, the roots of polynomial equations of degree higher than quadratic
are not as simple to understand. But what can these theorems tell us about the
next type of polynomial, namely, those of degree 3? These are called cubics. Well,
we know that the cubic can have at most 3 roots by theorem 5.33. In particular, it
can have zero, one or three real roots (including multiplicity), since if it has one
root, it will be equal to

(x −α1) ·q
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where q has degree two, but if it has two roots, it will equal

(x −α1)(x −α2) ·q

and q will be linear, i.e., q = a(x −α3), which necessarily introduces a third root.
So a cubic cannot have precisely two roots. Moreover, we will later see that, un-
like a quadratic, a cubic ax3 +bx2 +cx +d cannot have zero roots. The intuitive
reason for this is that when x is very large in size (think of x = 10000), then x3 is
much larger than the remaining terms, and the value of the polynomial at x is
approximately ax3. Thus assuming a > 0, if x is large and positive, the value of
the polynomial at x is large and positive, and similarly if x is large and negative,
then the value of the polynomial at x is large and negative. (If a < 0, then things
are the other way around). Either way, we have that at some point, the polyno-
mial is positive, and at another point, the polynomial is negative. Because poly-
nomials behave “nicely” (they are continuous, as we will discuss later), we will
see that they must take on all values in between these extremes, and in particu-
lar, the cubic must take on the value zero for some x between these two “large”
inputs. Thus, a cubic has at least one root.

In conclusion, a cubic always has either 1 or 3 real roots.

But this is not very helpful, since the roots are rarely easy to obtain unless the
polynomial is hand-picked. (i.e., if I give you the cubic (x −1)(x −2)(x −3), then
clearly its roots are simple, but if I randomly pick coefficients for x3, x2, x and 1,
even if they are all integers, then the roots can be complicated to express.) Take
the innocent looking x3 +4x −1. Then this cubic only has one real root, and it is
given by

4 3

√
2

3(−9+p
849)

−4 3

√
2

3(9+p
849)

,

and the reasoning to obtain such an expression can sometimes involve non-
trivial algebraic difficulties. This was not a specially picked polynomial whose
root is particularly ugly, these were literally the first three random numbers I
picked as coefficients. This is what “normal” cubic roots look like. The picture
gets a lot worse for polynomials of higher degree. It turns out that if a fourth de-
gree polynomial has roots, then they will be expressible (usually as some horri-
ble humongous expression) involving square (p), cube ( 3

p) and fourth ( 4
p) roots.

But for degree 5 and higher, most roots cannot be written down using any com-
bination of nth roots, for n as large as you like, and we can only speak of their
existence and approximate them numerically as decimals. The very profound
and elegant theory behind these facts is called Galois theory, which was devel-
oped by the French mathematician Évariste Galois in the 19th century. He died
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at the age of 20 in a pistol duel (allegedly over a woman), and he was so con-
vinced of his impending death that he stayed up all night writing letters to his
Republican friends and composing what would become his mathematical tes-
tament, the famous letter to Auguste Chevalier outlining his ideas, and three
attached manuscripts.

Therefore, when it comes to polynomials of degree higher than 2, we will restrict
our interests only to roots which are rational. In particular, we have the following
condition for the existence of rational roots which we will find useful.

Theorem 5.34 (Rational roots theorem). Let p ∈Z[x] be a polynomial

p = an xn +·· ·+a0

with integer coefficients. Then if x = c/d is a root, c | a0 and d | an .

Proof. We can assume that c and d share no common factors (i.e., the fraction
is in its lowest form). If p(c/d) = 0, then

an

( c

d

)n +an−1

( c

d

)n−1 +·· ·+a1

( c

d

)
+a0 = 0 (×d n)

=⇒ c(ancn−1 +an−1cn−2d +·· ·+a1d n−1) =−a0d n ,

since both sides are integers, we get that c divides −a0d n . Moreover, since c and
d share no factors, it follows that c | a0. On the other hand, we can rearrange the
last equation to get

d(an−1cn−1 +·· ·+a1cd n−2 +a0d n−1) =−ancn ,

and by similar reasoning, d | an .

Example 5.35. The polynomial 2x3+7x2+16x+15 has x =−3/2 as a root. Indeed,
3 | 15 (the constant coefficient), and 2 | 2 (the leading coefficient). Notice that
this is a necessary but not sufficient condition for the existence of a rational root.
For instance, for the same polynomial, we have 5 | 15 and 1 | 2, but 5 = 5/1 is not a
root.

Therefore in general, given an nth degree polynomial

an xn +·· ·+a0,

with integer coefficients, we have a method to obtain all possible rational root-
s/factors. If c0, . . . ,ck are all the positive divisors of a0 and d0, . . . ,dℓ are all the
positive divisors of an , then we try substituting

x =± ci

d j
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for all 1 É i É k and 1 É j É ℓ. By theorem 5.34, this will exhaust all possible
rational roots.

Before we give an example of the method, we will give this useful proposition.

Proposition 5.36 (Comparing coefficients). Let f , g ∈R[x] be two non-zero poly-
nomials, and let n be the larger of deg( f ) and deg(g ). If f (x) = g (x) for n + 1
different values of x, then f (x) = g (x) for all values of x and moreover, f and g
have the same degree and coefficients (i.e., f = g ).

Proof. If f (x) = g (x) for n+1 different values of x, then f −g has n+1 roots. But
deg( f − g ) É n, so by theorem 5.33, f − g is the zero polynomial, i.e., f (x) = g (x)
for all values of x.

Now for the coefficients, notice that the constant term is given by f (0) = g (0),
so they have the same constant term, say a0. Define a new polynomial f1 by
f1(x) = ( f (x)−a0)/x and similarly g1(x) = (g (x)−a0)/x. These are polynomials
since we can factor x out of both numerators. Now we have f1(0) = g1(0) since
these depend only on f and g which are equal for all x. But f1(0) is the coefficient
of x in f and g1(0) is the coefficient of x in g , so their x-coefficients are equal, say
to a1. Now define f2(x) = ( f1(x)− a1)/x and g2(x) = (g1(x)− a1)/x. Continuing
this way up to fn and gn , we get that all coefficients are equal. In particular, they
have the same largest non-zero coefficient, which implies that their degrees are
also equal.

Thus from the proposition, we know that, for example, if x2+1 = ax2+bx+c for
3 different values of x, then we must have a = 1, b = 0 and c = 1. Now let us give
an example of our general method for finding rational roots.

Example 5.37. Say we want to factorise the polynomial

p = 4x4 −4x3 +13x2 −12x +3.

The divisors of 3 are 1,3 and the divisors of 4 are 1,2,4. Thus we need to try

x =±1
1 ,±1

2 ,±1
4 ,±3

1 ,±3
2 ,±3

4 .

If we do this, we get that only p(1/2) = 0, and so p = (2x −1) · q for some cubic q
(notice this is equivalent to the factor (x− 1/2)). Now we could determine q using
long division since q = p/(2x−1). But a shorter way is possible. Since q is cubic,
we have

p = (2x −1)(ax3 +bx2 + cx +d).
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Moreover, it’s easy to see that when we expand this, the constant term is −d and
the leading coefficient is 2a. By proposition 5.36, these must be equal to the
coefficients 3 and 4 of p (since we want equality for all x ∈ R, let alone n + 1
values!). Thus we get

p = (2x −1)(2x3 +bx2 + cx −3).

Now to determine b and c, we can think about what the other coefficients are
when we expand the brackets. The coefficient of x3 is going to be 2b−2, and this
should equal −4, so b =−1. Similarly the coefficient of x will be −c −6, and this
should equal −12, so c = 6. Therefore

p = (2x −1)(2x3 −x2 +6x −3).

The remaining coefficient, that of x2, can be used to check that we’ve done
things correctly. Indeed, this should equal −b + 2c = 1+ 12 = 13, which agrees
with p.

Now we need to check if we can factorise 2x3 − x2 +6x −3 further. Clearly if this
has a rational root, then it would also be a root of p, so we would have found it in
the initial stage where we computed all possible rational roots. So this definitely
can’t have any “new” factors, but it might have another factor of (2x −1), which
corresponds to x = 1/2 having multiplicity 2. Indeed, if we plug in x = 1/2, we get
that it equals zero again. Thus

2x3 −x2 +6x −3 = (2x −1)(ax2 +bx + c)

for some quadratic ax2 + bx + c. Again we can reason about the first and last
coefficients upon expansion to get that

2x3 −x2 +6x −3 = (2x −1)(x2 +bx +3),

and for b, consider the coefficient of x2. Upon expansion of the RHS, this is 2b−1,
and this should equal −1, so we get that b = 0. It follows that

p = (2x −1)2(x2 +3).

This quadratic factor is not zero when x = 1/2, so this root has multiplicity 2.
Moreover, it has no real roots at all since its discriminant is −12. Therefore the
solutions of the equation p(x) = 0 are x = 1/2 (twice).

Example 5.38. Say we want to solve x4 +12x2 +2 = 6x3 +9x. First we rearrange
it into a question of finding zeros, namely, the zeros of

x4 −6x3 +12x2 −9x +2.

77 PRELIMINARY VERSION 0.8



§5.2 | The Remainder and Factor Theorems Luke Collins

The only possible rational roots are x = ±1,±2 by the rational roots theorem
(5.34). Indeed, if we try these, we get that (x − 1) and (x − 2) are both factors.
Hence

x4 −6x3 +12x2 −9x +2 = (x −1)(x −2)(x2 +bx +1)

where the constant and leading term of the remaining factor were determined
by thinking about expansion, as in the last example. Finally for b, notice that
the coefficient of x3 will be b −1−2 upon expansion, which should equal −6, so
b =−3. Thus the equation becomes

(x −1)(x −2)(x2 −3x +1) = 0

=⇒ x = 1 or x = 2 or x2 −3x +1 = 0.

Solving this remaining quadratic by completing the square, we get that the solu-
tions of the equation are x = 1,2, 1/2(3±p

5).

Exercise 5.39. 1. The polynomial ax3 − x2 + bx − 6 leaves a remain-
der of 54 when divided by (x −4), whereas (x −3) is a factor of the
expression. Determine the values of a and b, and hence; by com-
paring coefficients or otherwise, express the given expression as a
product of three linear factors.

2. Solve the following equations by factorising.

x3 −4x2 +10 = 3x −8a) 3x3 −10x2 −71x = 42b)

0 = 6+7x −9x2 +2x3c) x3 −2x2 −36x +7 = 0d)

x2(x2 +6x +7) = 6x +8e) x4 +16 = 8x2f)

24x3 +26x2 +9x +1 = 0g) x3 −6x2 +10x = 3h)

x3 +3a = ax2 +3xi)

3. Let p ∈R[x] be defined by p = 3x4 −26x3 +39x2 +4x −4.

Determine all the rational roots of p.a)

Find the remaining roots of p without performing long division.b)

What is the remainder when dividing p by (x −3)?c)

4. Solve the following cubic equations.

2x3 −15x2 +22x +15 = 0a) 3x3 −5x2 +x +1 = 0b)

2x3 +7 = x(11x +9)c) 2x3 −11x2 +19x −7 = 0d)
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5. Suppose x = 3/5 is a root of the polynomial an xn + ·· · + a0 where
a0, . . . , an ∈Z. Prove, without using the rational roots theorem, that
3 | a0 and that 5 | an .

6. In this question, we will extend the theory of Viète’s formulæ (the-
orem 3.19) to cubics. Suppose a cubic

p = ax3 +bx2 + cx +d

has roots α,β,γ ∈R.

a) Show that p = a(x −α)(x −β)(x −γ).

b) Let Σ=α+β+γ,Π=αβγ and Ξ=αβ+βγ+γα. Show that

p = a(x3 −Σx2 +Ξx −Π).

c) Show that
α2 +β2 +γ2 =Σ2 −2Ξ

and that
1

α2 + 1

β2 + 1

γ2 = Ξ
2 −2ΣΠ

Π2 .

Hence, given that the cubic 3x3 −5x +1 has roots α,β,γ, de-
termine a cubic with roots α/βγ, β/αγ and γ/αβ.

7. a) By considering the polynomial x2 − 2, use the rational roots
theorem to deduce that it has no rational roots. Conclude thatp

2 is irrational.

b) Construct a polynomial which has
√

2+p
3 as a root. Use the

rational roots theorem similarly to part (a) to conclude that it
is irrational.

c) Construct a quadratic polynomial which has
√

4+2
p

3−p
3

as a root. Deduce that it is rational, and write it in the form a/b

with a,b ∈Z.

PARTIAL FRACTIONS

It is simple to verify that, for example,

2

x +1
− 1

x −2
= x −5

(x +1)(x −2)
.

79 PRELIMINARY VERSION 0.8



§5.3 | Partial Fractions Luke Collins

But can we somehow reverse this process? In other words, given

x −5

(x +1)(x −2)
,

can we decompose it as a sum of two rational functions over each linear de-
nominator? First of all, observe that this is a proper rational function, and that
its decomposition is a sum of proper rational functions. Indeed, if p1, q1, p2, q2

are polynomials with deg(p1) < deg(q1) and deg(p2) < deg(q2), then

p1

q1
+ p2

q2
= p1q2 +p2q1

q1q2

is necessarily proper, since

deg(p1q2 +p2q1) É max{deg(p1q2),deg(p2q1)}

= max{deg(p1)+deg(q2),deg(p2)+deg(q1)}

< max{deg(q1)+deg(q2),deg(q2)+deg(q1)}

= deg(q1)+deg(q2) = deg(q1q2),

where max{a,b} denotes the larger number of a and b.

But why would it be desirable to reverse this process? In later chapters, we are
going to be performing operations on rational functions which are additive. An
operation T is additive if

T ( f + g ) = T ( f )+T (g ).

Therefore, if we can decompose a rational function p/q into a sum of simpler
rational functions p1/q1 + ·· · + pn/qn, it might turn out to be simpler to work out
T (p1/q1), . . . , T (pn/qn) separately and add them up, rather than to compute T (p/q)
directly. These will be the same if T is additive. (For those who are curious,
additive operations include limits, summation, differentiation and integration).
For now we will not worry about the applications, but suffice it to say that what
we are doing will actually prove useful!

Let’s start by considering rational functions of the form

f

p1p2

where p1 and p2 do not have any factors in common (i.e., hcf(p1, p2) = 1), and
deg f < deg(p1p2), so that the function is proper.
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Proposition 5.40. Let f , p1, p2 ∈R[x] with hcf(p1, p2) = 1), and deg f < deg(p1p2).
Then there exist polynomials f1, f2 ∈R[x] with deg f1 < deg p1 and deg f2 < deg p2

such that
f = f1p2 + f2p1.

Proof. By theorem 5.25 (Bézout’s lemma), we can find polynomials s and t such
that sp1 + t p2 = hcf(p1, p2) = 1. So

f = f ·1 = f (sp1 + t p2) = f t p2 + f sp1.

Now write f t = up1+ f1 with deg f1 < deg p1 by dividing f t by p1 (theorem 5.16).
Define f2 = f s +up2. Then

f = f t p2 + f sp1 = (up + f1)p2 + ( f2 −up2)p1 = f1p2 + f2p1.

We already have that deg f1 < deg p1, we just need to show that deg f1 < deg f2.
By the above, we have that f2 = ( f − f2p1)/p1, so

deg f2 = deg( f − f1p2)−deg p1

É max{deg f ,deg( f1p2)}−deg p1

< max{deg(p1p2),deg(p1p2)}−deg p1

= deg(p1p2)−deg p1 = deg p2,

which completes the proof.

Thus we have established the existence of a way to write

f

p1p2
= f1p2 + f2p1

p1p2
= f1

p1
+ f2

p2
,

where the two rational functions on the right are both proper. Let’s take the
example we started with,

x −5

(x +1)(x −2)
.

By proposition 5.40, we can write

x −5 = f1(x −2)+ f2(x +1), (∗)

where deg f1 < deg(x +1) and deg f2 < deg(x −2), i.e., they are both degree zero
polynomials (or zero). Assuming f1(x) = A and f2(x) = B for all x, we have

x −5 = A(x −2)+B(x +1).
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