
COORDINATE GEOMETRY

LUKE COLLINS

Abstract. In this set of notes, we introduce the basics of coordinate geometry,

particularly studying lines, circles and conics.

1. An extra ingredient

Recall that R2 = R×R is the set of ordered pairs (x, y) where x, y ∈ R. We can
visualise the points in this set by imagining them to live in a coordinate plane, as
illustrated in figure 1. Notice that this visualisation tacitly adds something to R2
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Figure 1. Points in the plane

which our formalisation using sets is lacking: a notion of distance. Indeed, we see
(visually) that (2, 1) is closer to (3,−1) than to (−π,− 3

4 ), but nothing about the

set R2 allows us to deduce this formally without adding something else.
This something else is called a metric or a distance function.

Definition 1.1 (Metric Space). Let M be a set, and let d : M ×M → R be a
function satisfying

i. d(x, y) = 0 if and only if x = y, (Identity of Indiscernibles)
ii. d(x, y) = d(y, x), and (Symmetry)
iii. d(x, z) 6 d(x, y) + d(y, z), (Triangle Inequality)

for all x, y, z ∈ M . Then the function d is said to be a metric on M , and the pair
(M,d) is said to be a metric space.

A metric space is any set M in which we can compare distances between pairs
of points using a distance function d.
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Examples 1.2. (i) The real numbers with the metric

d(x, y) = |x− y|,
for instance, we have d(2, 5) = 3 and d(−7, 3) = 10. This metric just gives
distances on the number line (see figure 2).
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Figure 2. The metric d(x, y) = |x− y| on the real line

(ii) The set of positive real numbers (0,∞) with the metric d(x, y) = | log(x/y)|.
In this metric, distances between numbers are measured multiplicatively
instead of additively. For instance,

d(1, 3) = log 3 = d(3, 9),

i.e., 3 is in the middle of 1 and 9. You can think of the number line with
this metric getting denser and denser away from 1.
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Figure 3. The metric d(x, y) = | log(x/y)| on the positive reals

(iii) The set of pairs of integer coordinates Z×Z with the metric

d
(
(a, b), (c, d)

)
= |a− c|+ |b− d|,

which counts the total vertical and horizontal displacement between points,
as illustrated in figure 4. Notice that multiple “paths” give us the same
distance.1

(iv) The set E of words in the English language, paired with the Levenshtein
metric, defined as follows:

d(w1, w2) =
the smallest number of insertions, deletions or
substitutions we can apply to w1 to get w2.

For instance, the word kitten can become sitting by the following sequence
of 3 edits:

kitten→ sitten (substitute k→ s)

sitten→ sittin (substitute e→ i)

sittin → sitting (insert g)

1In fact, if h = |a − c| and v = |b − d|, then d
(
(a, b), (c, d)

)
= h + v, and there are precisely

(h + v)!/(h!v!) different possible paths one can take from (a, b) to (c, d) along the grid. Do you

see why?
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Figure 4. The “taxicab” metric on the lattice Z×Z. The green
and blue paths are two equivalent ways of computing the distance
d
(
(−3,−1), (3, 2)

)
= 9.

It is not possible to achieve this with 2 or fewer edits, so their Levenshtein
distance is d(kitten, sitting) = 3.

For each of these examples, make sure that you understand why:

(1) our chosen function introduces a notion of “distance” to the set in question,
(2) each of the metric functions satisfy properties i–iii in definition 1.1,
(3) we would want a distance function to satisfy those properties.

It is productive to study metric spaces abstractly, i.e., it is useful to see what
we can say about any general set M and function d which obey the properties
i–iii. This is because, if we prove something about any general metric space, it
automatically applies to anything which fits the definition of a metric space, and
as we have seen from examples 1.2, these can be wildly different from each other.

A trivial example of this: it makes sense that we would want “distance” to be
non-negative; i.e., we want that d(x, y) > 0 for all x, y ∈ M . But this actually
follows immediately from i–iii, since

d(x, y) = 1
2

(
d(x, y) + d(x, y)

)
= 1

2

(
d(x, y) + d(y, x)

)
(by ii)

> 1
2 d(x, x) (by iii)

= 0 (by i).

This means that if we define a metric on a set, we don’t need to bother checking
it is always positive each time, since it if satisfies i–iii, it inherits this from our
reasoning above.

There are countless books on metric spaces, they are very useful things to study.
We will not talk more about them here, we just simply point out that the introduc-
tion of a notion of distance is an extra step which we need to do ourselves in order
to reason geometrically. Speaking of which, we haven’t defined the metric we will
be using for the rest of this chapter. Here it is:

Definition 1.3 (Euclidean Metric on R2). Let A = (x1, y1) and B = (x2, y2) be
two points in R2. Then the (Euclidean) distance between A and B is defined by

d(A,B) =
√

(x1 − x2)2 + (y1 − y2)2.

https://en.wikipedia.org/wiki/Taxicab_geometry


4 LUKE COLLINS

x

y

(x2, y2)

(x1, y1)

|y1 − y2|

|x1 − x2|

d(
A
,B

)

x1
x2

y1

y2

Figure 5. Points in the plane

Remark 1.4. This definition is inspired by Pythagoras’ theorem. Indeed, if we have
two points (x1, y1) and (x2, y2) in the plane, the horizontal displacement between
them is |x1 − x2| and the vertical displacement is |y1 − y2|.

Since the horizontal and vertical grid lines are perpendicular to each other, we
get a right-angled triangle (see figure 5), and so Pythagoras’ theorem gives us that

d(A,B)2 = |x1 − x2|2 + |y1 − y2|2,

and then taking square roots, we obtain definition 1.3.
Notice that we are appealing to visual intuition in our arguments here, relying

on notions such as “parallel” and “right-angle” which we have not yet defined in
our formal framework of sets. This is why we are saying that Pythagoras’ theorem
“inspires” the definition, because it is not really a theorem (in the sense that, we
don’t have a formal framework within which to prove it yet).

But what is a bit worrying is that our definition of distance seemingly embeds
Pythagoras’ theorem within it. Indeed, it is a philosophically challenging idea
to grasp that we are defining distance here. In other words, in our formalism,
Pythagoras’ theorem is just an immediate consequence of the definition of distance.
The deeper question here seems to be, why did God choose to use the Euclidean
metric when it comes to measuring distances on a piece of paper?

If you are interested in going deeper down this rabbit hole, you can read this
question that I asked myself a while ago on the Mathematics Stack Exchange web-
site.

Notation (Delta prefix). If we are working with a pair of subscripted variables,
say, γ1, γ2, we denote the difference between them by ∆γ, without the subscript.
Moreover, ∆γ2 will mean (∆γ)2, not ∆(γ2).

This allows us to write the distance formula more concisely as
√

∆x2 + ∆y2.

Example 1.5. The distance between (1, 2) and (5,−3) is√
(1− 5)2 + (2−−3)2 =

√
42 + 52 =

√
41 units.

https://math.stackexchange.com/questions/3566541/is-pythagoras-theorem-a-theorem
https://math.stackexchange.com/questions/3566541/is-pythagoras-theorem-a-theorem
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Although we did say that we would not speak more about metric spaces, we
ought to at least show that definition 1.3 defines a valid metric. Before we can do
that however, we will need the following famous inequality for the last step of the
proof:

Proposition 1.6 (Cauchy–Schwarz inequality). Let r1, r2, s1, s2 ∈ R. Then

(r1s1 + r2s2)2 6 (r1
2 + r2

2)(s1
2 + s2

2).

Proof. Simply observe that if we expand the difference

(r1
2 + r2

2)(s1
2 + s2

2)− (r1s1 + r2s2)2,

some terms cancel and we end up with

r1
2s2

2 − 2r1s1r2s2 + r2
2s1

2.

Comparing this with the familiar x2 − 2xy + y2 = (x− y)2, we see that it equals

(r1s2 − r2s1)2,

which must be non-negative, and this completes the proof. �

Now we can prove that our definition of distance is a valid metric.

Theorem 1.7 (R2 is a metric space). Let A,B,C ∈ R2. Then the following
properties hold:

i. d(A,B) = 0 if and only if A = B, (Identity of Indiscernibles)
ii. d(A,B) = d(B,A), and (Symmetry)
iii. d(A,C) 6 d(A,B) + d(B,C), (Triangle Inequality)

Proof. Write A = (x1, y1), B = (x2, y2) and C = (x3, y3). For i, observe that

d(A,B) = 0 ⇐⇒
√

(x1 − x2)2 + (y1 − y2)2 = 0

⇐⇒ (x1 − x2)2 + (y1 − y2)2 = 0

⇐⇒ x1 − x2 = 0 and y1 − y2 = 0

⇐⇒ x1 = x2 and y1 = y2

⇐⇒ A = B.

Next for ii, we see that

d(A,B) =
√

(x1 − x2)2 + (y1 − y2)2 =
√

(x2 − x1)2 + (y2 − y1)2 = d(B,A).

Finally for the triangle inequality, write rx = x1 − x2, ry = y1 − y2, sx = x2 − x3
and sy = y2 − y3. Then we want to prove that√

(rx + sx)
2

+ (ry + sy)
2 6

√
rx2 + ry2 +

√
sx2 + sy2,

and since both sides are non-negative, it’s equivalent to proving that

(rx + sx)2 + (ry + sy)2 6 rx
2 + ry

2 + sx
2 + sy

2 + 2
√
rx2 + ry2

√
sx2 + sy2,

which simplifies to

rxsx + rysy 6
√
rx2 + ry2

√
sx2 + sy2.
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If the left-hand side is negative, then the inequality is obviously true, so we may
assume it is non-negative, so that we can square both sides and equivalently prove
that

(rxsx + rysy)2 6 (rx
2 + ry

2)(sx
2 + sy

2).

But we did prove this, it’s the Cauchy–Schwarz inequality! �

The proof of the triangle inequality isn’t so straightforward, but what it tells
us is intuitive: that the distance between the points A and C is less than the
combined distance from A to B and then from B to C (figure 6). In fact, it gives

A

B

C

d(A,B)
d(B,C)

d(A,C)

Figure 6. The triangle inequality

us a restriction on the side lengths of a triangle: the length of one side of a triangle
cannot exceed the sum of the lengths of the other two.

Exercise 1.8. 1. For each of the following pairs of points in R2, de-
termine the distance between them.

(1, 2) and (3, 4)a) the origin and (−3, 2)b)

(−1,−3) and (−7, 5)c) (1, 2) and (1,−2)d)

(7, 4) and (π,−2)e) (a, b) and (−b,−a)f)
2. Which of the following triples of numbers can be side lengths of a

triangle?
2, 3, 4a) 4, 4, 8b) 5, 12, 13c)

1, 2, 3d) 3, 5, 7e) 2, 5, 8f)
3. Determine a condition on the value of a if the following are side

lengths of triangles.
a, a+ 1, a+ 2a) a, a2, a3b)

4. Using the Cauchy–Schwarz inequality, prove that

a+ b 6
√

2
√
a2 + b2.

Hence or otherwise, deduce that for any x, y > 0,√
x

x+ y
+

√
y

x+ y
6
√

2.

Is this bound sharp? (i.e., is there an assignment of x and y for
which we have equality instead of 6?)

2. Midpoints and Lines

Intuitively, the midpoint of two other points is a point “in the middle” of them.
We define it as follows.
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Definition 2.1 (Midpoint). Let A = (x1, y1), B = (x2, y2) ∈ R2. The midpoint or
centroid of A and B is the point defined by

M =
(x1 + x2

2
,
y1 + y2

2

)
.

Let us start by proving that our definition of the midpoint exhibits the desired
behaviour of being “in the middle” of A and B:

Theorem 2.2. Let A,B ∈ R2, and let M be their midpoint. Then

d(A,M) = d(M,B).

Proof. Write A = (x1, y1) and B = (x2, y2). Then M =
(
x1+x2

2 , y1+y22

)
, and we

have

d(A,M) =

√(
x1 −

x1 + x2
2

)2
+
(
y1 −

y1 + y2
2

)2
=

√(x1 − x2
2

)2
+
(y1 − y2

2

)2
=

√(x1 + x2
2

− x2
)2

+
(y1 + y2

2
− y2

)2
= d(M,B),

as required. �

Remark 2.3. Although the midpoint satisfies this condition, it is not a characteri-
sation, i.e., there are other points which satisfy this. Indeed, pick any λ ∈ R, then
the point

Nλ =
(x1 + x2

2
+ λ(y1 − y2),

y1 + y2
2

− λ(x1 − x2)
)

also obeys d(A,Nλ) = d(Nλ, B). In fact, the set of points

{P ∈ R2 : d(A,P ) = d(P,B)}
for fixed A,B ∈ R2 turns out to be the perpendicular bisector of the line segment
joining A and B. We have not defined any of these terms yet, but you should have
an idea of what these terms mean intuitively. An equivalent way to describe it is as
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∼

∼
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≡

M

Figure 7. The set of points satisfying the equation d(A,P ) = d(P,B).

the set of all possible apices of isosceles triangles with base AB.2 What is special
about the midpoint is that, in addition to satisfying d(A,M) = d(M,B), it also lies
on the line segment joining A and B, as can be seen in figure 7.

2The apex (pl. apices) of an isosceles triangle is the vertex out of which the two sides of equal
length emanate.
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