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1 Introduction

The topic of infinitesimal calculus, or just calculus as it's more commonly
referred to, has quite the reputation for being “difficult” among callow students
of mathematics. Although it is true that calculus may have, at some point,
been deemed at the cutting-edge of mathematics education; today, this cannot
be farther from the truth—due to its ubiquity, it has become an essential part
of one's elementary mathematical skill set.

Calculus comprises two main areas, the first of which we shall consider is known
as differential calculus. Let f: A — IR be a real-valued function. The principal
goal in differential calculus is to approximate f “around” a point x € A using
simpler functions. Surprisingly, this turns out to have deep connections to the
other main part of calculus, the so-called integral calculus, which has to do
with curved areas. But we will get to that in due time.

Before we can start exploring differential calculus itself, we need to discuss
the so-called /imit of a real-valued function. This idea, or at least its modern
formulation, is mainly the work of Augustin-Louis Cauchy.

2 Limits and Continuity

The limit is the essential idea underpinning all of calculus. Basically, it allows
us to predict the value of a function at a point by looking at neighbouring
points. Differentiation, integration and convergence of sequences/series all
rely on the idea of a limit.

Unfortunately we do not have enough time to get into the technical details of
how limits work, we'll just have to motivate the concept through examples.

2.1 Epsilons and Deltas

Consider the subset A C IR. We say a point x € R is a cluster point of A
if there are points in A which are arbitrary close to x (other than x itself,
if it happens to be the case that x € A). For example, if we take the set
A= (0,1)U{2}, then 2 € Ais not a cluster point because there are no points
of A around 2 other than 2 itself. On the other hand, !/2 is a cluster point,
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Figure 1: The set (0,1) U {2}
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since there are points in A within a distance of € > 0 from 1/2, no matter how
small € is. 1 is also a cluster points because there are always points to its left,
even though 1 itself is not a member of the set.

To make this idea of “arbitrarily close” precise, we state the definition as
follows.

Definition 2.1 (Cluster point). Let A C R, and let x € IR. Then x is said to
be a cluster point or a limit point of A, if for any € > 0,

[(x—e,x+e)NA ~{x} #0.

We need this idea because we can only make sense of limits at cluster points.
Indeed, since the limit is meant to allow us to predict the value of f(x) at x = a
by looking at neighbouring points, then a must have neighbouring points in the
first place!

We can now state the (infamous) definition of the limit.

Definition 2.2 (Limit of a function). Let f: A — R, and let a be a cluster
point of A. Then £ € R is the limit of f as x approaches a or simply the /imit
of f at a, written

lim f(x) =14 or f(x) = £as x — a,
X—ra

if for all € > 0, there exists § > 0 such that for all x € A,

x#a and a—d0<x<a+d = L—e<f(x)<L+e.

Intuitively, what the definition tells us is that the limit is £ if for any € > 0, we
can find a § > 0 such that all values in (a — 6, a+ ) apart from a itself are
mapped to values in (£ — €, £+ €). [Keep re-reading this until you understand
it! Refer to figure 2.]

Graphically, this corresponds to choosing § > 0 such that the outputs of the
function f within the “input strip” (a — 9, a+ 9) (again excluding a itself) lie
in the strip defined by the orange dashed lines in figure 2, corresponding to
(£ —e€,£+¢€). Thisis to hold for any € > 0: in particular, the e-strip defined
by the two dashed orange lines can be made arbitrarily small; which means
that the corresponding chosen ¢ must also become small. This causes us to
“narrow in" on the point (a, £) (figure 3).
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Figure 2: Limit of f(x) at a
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Figure 3: As € > 0 gets smaller, we are forced to choose § > 0 in such a way
that the grey rectangle “narrows in” to (a, £)
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Figure 4: Sketch of y = f(x)

Example 2.3. What we are essentially doing here is predicting the value of
a function at a point by studying where the neighbouring points are mapped
(remember we are never considering where the point a itself is mapped!).
Indeed, consider the strange function f: IR — IR defined by

2x+1 ifx#1
=420 7
4 if x=1,

whose sketch is presented in figure 4. What is the limit of f(x) at x = 17
Unfortunately definition 2.2 does not tell us how to find the limit; it only tells
us what condition a number £ must satisfy in order to be the limit. We will
therefore guess a value for £, and check if it satisfies the defining condition.

Since the idea of a limit is to “predict” the value of a function at a point, we
will guess that limy—1 f(x) = 4 as it is defined. What do we need to prove?
Well we plug into the definition a =1 and £ = 4:

x#1 and 1-0<x<146 = 4—e<f(x)<4d+e
Noting that for x # 1, f(x) = 2x + 1, this becomes equivalent to
x#1 and 1-0<x<14+0 = 4—e<2x+1<4+e€
This is to hold for all € > 0, so we have no control over the value of . What

we do have control over is the value of . Our goal is, for all € > 0, to find a
d > 0 which makes the above true.
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Let's say € = 1.5. Can we find ¢ in this case? We have

x#1 and 1—-0<x<14d =—=4—-15<2x+1<4+15
<~ 25<2x+1<55

Can we take, say, 6 = 0.57 Well... no, because then we get
x#1 and 05<x<15 = 25<2x+1<55

and x = 0.6 satisfies the antecedent but not the consequent. We need the
inequality on x in the antecedent to be tighter. What if we take § = 0.17 In
this case we get

x#1 and 09<x<11l = 25<2x+1<55,

and this actually works! Indeed, if we massage the inequality on the right a
bit, we have

x#1 and 09<x<11l =25<2x+1<55
<~ 15<2x <45
< 0.75 < x < 2.25,

so we must ask ourselves, is it true that
x#1 and 09<x<11 = 0.75 < x <2257

Clearly, it is. But what have we proved here? Have we shown that the limit
is 47 No—the limit is 4 if we can find such a ¢ for all given € > 0, we only
found one for € = 1.5. Refer to figure 5.

We can actually reduce the guesswork involved here. Let us again focus on
the case € = 1.5, but leave § unspecified. We can still carry out the same
“massaging” on the consequent:

x#1 and 1-0<x<14§ =25<2x+1<55
<~ 15<2x <45
<= 0.75 < x < 2.25.

Thus it is clear here that for ¢ = 1.5 we can take any value of § in the range
0 < 6 < 0.25, because then the inequality on the left immediately incorporates
the one on the right. If § > 0.25 though, then we can choose an x such that
the inequality on the left holds, but the one on the right doesn't.
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X
€e=150=0.5 €e=150=0.1
Points mapped to the green part of the This § works for this €, the curve is
line violate the definition, § needs to be mapped entirely within the e-strip

smaller

Figure 5: Different values of § for e = 1.5

Remember that what we are doing here is trying to fit the values of f(x) for
inputs close to x = 1 into the e-strip around £ = 4, where we get to decide
what “close to x = 1" means by varying 9.

Now suppose instead that € = 0.5. Then this time we want
x#1 and 1-0<x<149d =35<2x+1<45

<—25<2x <35
<— 125<x<1.75

But clearly no § > 0 we choose can ever make this implication true, since the
value x =1 — g (for example) will always satisfy the antecedent but not the
consequent.

What does this mean? It means that the limit is not 4! Why? Because for
the limit to be 4, we need that “for all € > 0, there exists 6 > 0 ...", and
we found an € > 0 for which no § > 0 does the job. Thus 4 fails to meet the
definition.

Play around with different values of € and § for f(x) at
https://maths.com.mt/calculus-eg-1.

This is actually not surprising at all, because remember, what the limit does
Is try and guess the value at x = 1 by looking at where all the neighbouring
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points are mapped to (not at x = 1 itself). Based off the neighbouring points,
surely one would have to guess that the limit is 3!

Let us prove that the limit is indeed 3. But first, let us paraphrase definition 2.2
to make it easier to work with.

Remark 2.4. Recall that the absolute value function |- |: R — R is defined by

x ifx=20
x| = .
—x otherwise,

and that it obeys the following three properties for all x, y € RR:
(i) [x] =0 <= x=0,

(i) Ixyl=Ixllyl,

(i) |x+y| < |x|+ |yl (triangle inequality).

Consequently, if we have —a < b < a, we can write this more concisely as
|b| < a. We can use this fact to write definition 2.2 more compactly. The
condition there was

x#a and a—0<x<a+d = L—e<f(x)<l+e
< x#a and —-d<x—a<d = —e<f(x)—£L<e
= x#a and |x—a<d = |f(x)—{ <e
—0<|x—al<d = |f(x)—{ <&,
where the last < follows since 0 < |x — al is true if and only if x # a by (i)

of the properties above. We shall prefer this version of definition 2.2 to work
with, it makes proofs easier.

Therefore to restate the definition with the new condition:

Definition 2.2 (Limit of a function). Let f: A — R, and let a be a cluster
point of A. Then £ € R is the limit of f at a, written

lim f(x) =4 or f(x) = £as x — a,
X—ra

if for all € > 0, there exists § > 0 such that for all x € A,

O0<|x—al<d = |f(x)—{| <e.
Example 2.3 (continued). We now prove that limy_ f(x) = 3.
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Proof. Indeed, suppose we are given € > 0. We need to show that we can
always find a value ¢ > 0 such that for any x € R (the domain of f), we have

O0<|x—1]<d = |f(x)—3| <€
—|(2x+1)—3|<e¢ (since x # 1 by antecedent)
— 2x—2| <€
= 2x—1|<e
= |x — 1] < ¢/

So what we want to show is that no matter what € is, we can choose ¢ such
that the implication

O0<|x—1]<d = |[x—1| <<
is always true. But if we take 0 = ¢/2, then the implication is always true! [J

Thus we have proved that given any €, an appropriate § can be found for that €,
namely § = ¢/2. What this means is that values of x in the range (1—¢/2, 1+¢/2)
(as usual excluding 1 itself) are always mapped to (4 — €,4 + €), no matter
what € is!

The reason we divide by 2 is because the line y = 2x 4+ 1 has gradient 2, so
the sides of the usual “grey rectangle” of figure 2 will be in the ratio 2 : 1.
Play with different values of €: https://maths.com.mt/calculus-eg-2.

Example 2.5. As another example, we show that f: R — R defined by f(x) =
5x — 3 has
lim f(x) = 2.

x—1

Indeed, suppose that € > 0 is given. Then we need to show that we can always
find 6 > 0 such that for all x € R,

0<|x—1]<d = |(bx—3)—2| <€
< |bx —5|<¢
< 5lx—1|<e
— [x — 1| < ¢,

take 0 = ¢/5 and we are done.
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Exercise 2.6. Consider f: IR — R defined by f(x) = 10x + 1 for all
x € R. Guess the value of limy_0 f(x) and prove that it is indeed the
limit.

You may have encountered the term “continuous function” before, maybe
stated loosely as “a function which you can draw without removing your pencil
from the paper”. Here we give a formal definition.

Definition 2.7 (Continuity). Let f: A— IR, and let a € A. Then f is contin-
uous at a if either a is not a cluster point of A, or a is a cluster point of A
and

lim f(x) = f(a).

X—a
If £ is continuous at each a € A, we simply say f is continuous.
In other words, a function is continuous at a if its predicted value (i.e., the

limit at a) is equal to its assigned value (f(a)). Thus a continuous function
should not have unexpected jumps as f in example 2.3 had.

Example 2.8. Let us show that f: IR — R defined by f(x) = x? is continuous
at x =2, I.e. that
lim (x?) = 4.

X—2

Indeed, suppose we are given € > 0. We need to show that we can always find
d > 0 such that for all x € R,
0<|x—2/<d = |x*—4|<e¢
— |(x—-2)(x+2)|<e¢
— x—2|Ix+2|<e¢
As in previous examples, we should delight in the fact that the term |x — 2|

appears on the right, because we know that we can control that with §. The
problem here is now the term |x + 2| — what can we do with this?

Well, we will do our best to transform into |x — 2|! By the triangle inequality
(remark 2.4) we have that

Ix+2|=|x—2+4| < |x—2|+4.

Now consider this: if some ¢ > 1 works (say for example, § = 2 works), then
any 0 smaller than 1 would also work. Indeed, if any § works, then anything
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smaller will also work. So if we add the perfectly reasonable assumption that
0 < 1, we get that

Ix+2|<|x—2|+4<06+4<1+4=5.

Thus if we set 6 = min{¢/s5, 1} (just in case the given € is larger than 5), we
get
0<|x—=2]<d = |x—=2|[x+2| <¢/5(5) =k,

as required.
Exercise 2.9. 1. Show that f(x) = 1 is continuous at every point
x=ceR.
2. Show that f(x) = x is continuous at every point x = ¢ € R.
3. Adapt example 2.8 to show that f(x) = x2 is continuous at x = 3.
4. Show that f(x) = x® is continuous at x = 1.
5. Show that f(x) = 1/x is continuous at x = 2.

2.2 Theorems on Limits

So far we have been using the terminology “the limit of f at x" (as opposed
to “alimit"). Is it true that there is always only one number £ € IR which is a
limit of f(x); i.e. which obeys the condition in definition 2.27

The answer is:

Theorem 2.10 (Uniqueness of Limits). Let f: A — IR, and let a be a cluster
point of A. If there exists £ € R such that

lim f(x) =¢,

X—a

then £ is unique.

Proof. Suppose not. Suppose there are €1 # £ such that limy—, f(x) = £;
and limy—,, f(x) = €. Define € = |[€1 — £>|. Then for all x € A, there exist
01 > 0 and d> > 0 such that

O0<|x—al <6 = |f(x)—4L1] <</, (1)
and 0< |x—al <d = [f(x)—4a] </ (2)
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Now let § = min{d1,d-}, and let x € (a— 9, a+08) N A such that x # a.! Then
x must satisfy both (1) and (2) above; i.e. we have both

|f(x) — 41| <¢f and |f(x)—La] < ¢/
Hence by the triangle inequality,

€= 01— &f = &1 — F(x) + f(x) — &2
SO =l +F(x) — Lo <2+ =¢,

in other words, € < €, a contradiction. O

Remark 2.11. Although the limit of a function is always unique, it does not
always necessarily exist. Consider the function f: R~ {0} — IR defined by

f(x):%.

Although 0 ¢ dom(f), it is a cluster point, so we can still consider the limit as
x — 0. Indeed, suppose that f(x) — £ as x — 0. By definition 2.2, we have
that for all € > 0, there exists § > 0 such that for all x € R~ {0},

O<|x| <0 = |Ix—{ <e (1)

Take e =1, and let x = 0/(6 + 1), where § is the corresponding ¢ for € = 1.
Clearly this value of x satisfies 0 < |x| < 0, so by (1) we get that

d+1
e
= [1+1—¢| <1
= —1<1+1s—-L<1
= s <l<1s+2 (2)

-4 <1

On the other hand, if we take x = —§/(d + 1) this also satisfies 0 < |x| < 9,
and in a similar fashion to the above we get that

2 -15<l< =1/ (3)
From (2) and (3), we get
s<l< -l = < —-1s = 2/s<0 = 20<0 = § <0,

contradicting that § > 0.

!There exists such an x € (a — 6, a+ &) since a is a cluster point of A.

12 PRELIMINARY VERSION 0.1



§2.2 | Theorems on Limits Luke Collins

There is a lot more about limits to be said, and here we've barely scratched
the surface. However in the interest of time, we will have to state the most
important results about them here without proof.

The important thing is that you have been exposed to working with €'s and
0's. The proof of each of these results involves very similar reasoning to what
we've been doing so far. If you ever decide to study mathematics at university,
the proofs of these theorems will be covered in a basic course on real analysis.

Theorem 2.12 (Algebraic Limit Theorem). Let f,g: A — IR be two real-
valued functions, let a be a cluster point of A, and suppose limy_,, f(x) = £
and limy—,, g(x) =44 (i.e. they exist). Then

(i) limx—a(F(x) + g(x)) = £ + £g,
(1) limx—a(f(x) — g(x)) = £r — &g,
(1) limy—a(F(x)g(x)) = £rLg,
(iv) IfLg # 0, then limy—, ") /gx) = /e,

Theorem 2.13 (Composition of Limits). Let f: A— R and g: B — R be two
real valued functions such that f(A) C B, so that go f: A— R is defined. If
limy—a f(x) exists and g is continuous there, then

Xlgwa f(x)=b and Xlinbg(x) =c = Xllna(g of)(x)=c,

or more concisely,
lim (g o £)(x) = g( lim f(x)),

X—ra X—ra
since g is continuous at b.

Remark 2.14. Note the condition that g must be continuous at b = limy_,, f(x)!
It would be nice if in general

lim f(x)=b and Img(x)=c = Ilim(fog)(x)=c (1)

x—a x—b xX—a
but unfortunately this is not true.
A classic counterexample is the following. Define f,g: R — R by

0 fx=#0
1 otherwise.

f(X)—g(X)—{
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It is not hard to see that limy_,0 f(x) = 0 = limx—0 g(x). So (1) above would
suggest that lim(g o f)(x) = 0. But note that for all x # 0,

(gof)(x)=9(0) =1,
so we would actually get that limy_o(go f)(x) = 1.

Example 2.15. Theorems 2.12 and 2.13 are very useful, the allows us to prove,
very easily, facts such as

lim s x3 +7x° (a3 +T7a°

imsin| ——— ) =sin|{ —5————

x—a x2+1 a+1

without writing down a single € or §. One only needs to show that sin x and
x" are continuous (on R), limy—,7 =7, limy—,1 =1 and limy_,,x = a. The

continuity of sinx is the only challenging one here, the rest could be set to
you as easy exercises.

If we allow ourselves to use these facts, by theorems 2.12 and 2.13, we get

im7=7 and Ilmx®>=2a" = Im((7x%) =7a° (1)
X—a X—ra X—ra
(1) and limx*=2a> = Im(3+7x°)=a2+72° (2)
X—a X—a
limx>=2a°> and lml=1 = Ilim(1+x°)=1+2° (3)
X—ra X—a X—ra
3 5 3 5
2 . x4+ 7x>\  a’+7a
(2), (3) and a+17£O:>)1[)na(1+X2>— 211 (4)
. . (X4 (4T
sinx continuous and (4) = limsin| — | =sin| ——— |,
x—a 1+ x2 a?+1

as required.
Theorems 2.12 and 2.13 yield easily the following facts about continuity.

Corollary 2.16 (Algebraic Continuity Theorem). Let f,g: A — IR be two
real-valued functions continuous at a € A. Then

(i) f(x)+ g(x) is continuous at a,
(i) f(x) — g(x) is continuous at a,
(iii) f(x)g(x) is continuous at a,

(iv) If g(a) # 0, F®)/g(x) is continuous at a.
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Corollary 2.17 (Continuity of Composition). Let f: A — IR and g: B — R
be two real valued functions such that f(A) C B. If f is continuous at a, and
g Is continuous at f(a), then g o f is continuous at a.

Next we state some important limits which crop up quite often and are not
trivial to prove.

Theorem 2.18 (Special Limits). (i) limy_o $X = 1.

Tx
(ii) limy_yo 1=55% = 0

(iii) limy_0(1 + x)* = e.
(iv) limyooo (14 %)X =e 2
Finally, we give a list of familiar functions which are continuous.

Theorem 2.19 (List of continuous functions). The following functions are
continuous everywhere on their domain.

(i) all constant functions,

(ii) all polynomials,
(iii) roots of x (v/'x, /X, ...),
(iv) the absolute value |x|,

(v) all rational functions, i.e., all functions of the form

_p(x)
9= 409

where p, q are polynomials (and x € dom(f) < q(x) #0),
(vi) the exponential function e,
(vii) the logarithm log x,

(viii) the trigonometric functions cos, sin, tan, sec, csc, cot

1 1

(ix) the inverse trigonometric functions cos™*, sin~%, tan™!.

2.3 Techniques for Evaluating Limits

TBA
2|f for some A € IR, the set (A o0) C dom(f), then when we write limy o f(x) = £

to mean that for all € > 0, there exists § > 0 such that for all x € dom(f), we have
x| >0 = |f(x) — €| <e.
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sin x

Figure 6: Plot of sinx and x on the same axes, notice that for small inputs x,
they are very close

2.4 Asymptotic Notation
Let £, g: A — IR be functions, and let a be a cluster point of A. If

. f(x
lim Q =1,

x—a g(x)
what could we deduce? If the ratio of two numbers is 1, then they are equal.
Since the /limit of the ratio is 1, it must means that for points close to a, the
values of f(x) and g(x) are approximately the same. This is written as

f(x) ~ g(x) as x — a,

and we say that f(x) is asymptotic to g(x) as x — a. For instance, (i) of
theorem 2.18 tells us that
sinx ~ x

as x — 0. This must mean that for points close to 0, sin x and x are approxi-
mately equal. Indeed, if we look at a sketch of their graphs (figure 6), we see
that this is the case. In fact, sin(0.01) = 0.009999 (for example). Another
example, we have that

2
\/§~3f2(12+12x—x2) as x — 2.

Indeed, since both functions are continuous at 2, we can just plug in x = 2
directly to get that

. NES V2
lim 7 =7 =
X—2 5(12+12x—x2) 5(12—1—12(2) —22)
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£(12 +12x — x?)

Figure 7: Plot of v/x and £(12+ 12x — x?) on the same axes, notice that for
x close to 2, they are good approximations of each other
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and we can see in figure 7 that they good approximations to each other for
inputs close to x = 2.

What if, on the other hand, we have that
im ——2 — Q7
i@a g(x) 0

In this case, for points close to a, the values of f(x) must be much smaller
(in size) than those of g(x); since the ratio of two numbers is approximately
zero if the numerator is much smaller than the denominator.

Definition 2.20 (Little-o notation). Let f,g: A — R be functions, and let a
be a cluster point of A. we say that f is little-oh of g as x — a, or that f is
dominated asymptotically by g as x — a, written

f(x) = o(9(x)) as x — a,
if limy—,f(x)/g(x)=0.
For instance, theorem 2.18(ii) tells us that
1 —cosx = o(x)

as x — 0. In other words, 1 — cos x is smaller than x as we approach 0. Even
though they are both 0 when x = 0, for points close to 0, the value of 1—cos x
is smaller than that of x, which means that it goes to 0 more rapidly. Indeed,
if we tabulate different values as x approaches 0, we see this is the case.

x | 1 | o1 | oocor | 00001 | o0.0001
1 - cosx || 0.4597 | 0.0049 | 0.000049 | 0.00000049 | 0.00000049

So what this means in terms of approximations, is that if we have some ex-
pression involving both x and 1 — cos x, such as

7+ 3x —2(1 —cosx),

we can say that this is approximately 7 + 3x if x is small enough (i.e., close
enough to 0). Indeed, when x = 0.1,

7+3x=723 and 7+ 3x —2(1 — cosx) = 7.290008.
Another example of the notation: let n > 1. Then

x" = o(x)
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as x — 0, since
n

. X . _ _
lim =— = Iim x""1 =0""1 =0,
x—0 X x—0

n—1

where we used the fact that x is continuous at 0. In other words, x
dominates x” when the input x is close to 0 (x — 0), so something like

1+ 3x —2x% +5x3

is well approximated by 1 4 3x when x is small.

If f(x) — g(x) = o(h(x)), we also write that f(x) = g(x) + o(h(x)). For
instance, we said that 14 3x — 2x2 + 5x3 is well approximated by 1+ 3x when
x is small; this is because their difference is o(x), i.e.,

(14 3x —2x% +5x3) — (1 + 3x) = o(x) as x — 0.
Instead, we can write this as
1+3x—2x2+5x3=1+3x+ o(x) as x — 0,

which means that the expression on the left is equal to 1 4+ 3x plus something
which is not as significant as x when we are close to O.

Remark 2.21. Even though we are using = here, this is a bit of an abuse of
notation. Indeed, if f(x) = o(g(x)) and h(x) = o(g(x)), it doesn't mean that
f(x) = h(x), which is not usual behaviour of equality.

3 Differentiation

3.1 Calculus of Differences

Definition 3.1 (Difference). Let f: A — R be a function. The difference or
change of f at x by h, denoted by Af(x, h), is the quantity defined by

Af(x, h) = f(x+ h) — f(x).

This is so that when we change the input x to f by h, we get
f(x+h)= f(x) + Af(x, h).
—— N~ N——
new value old value change
We will often abuse notation slightly, writing truncated versions of this function

such as Af(x) or just Af when things are clear from context. We will also treat
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i
h xh ' h?
X X2 x+— x+h X X2 Xh
X X h

Figure 8: Interpreting example 3.2 as a change in area: A(x?) = 2xh + h?

expressions in terms of x formally as functions. For instance, if f: R — R is
defined by f(x) = x2, we would write A(x?) for Af. In other words, where we
have otherwise been very careful about distinguishing between the notations
f and f(x), here we will not be so strict about it (otherwise some of the
theorems we will do end up looking needlessly more complicated).

Example 3.2. We compute the change of the function x2. We have
AX?) = (x + h)? — x?
= x>+ 2xh+ h?> — x?
= 2xh + h°.

Thus when x = 2 (for instance), we have 22 = 4, and if we change the input
by h = 0.1 to get 2.1°, we just need to add

A(x?)(2,0.1) = 2(2)(0.1) + 0.12 = 0.41
to the value of 22, which gives us that 2.12 = 4.41.

We can interpret what we've computed here as the change of area when we
extend the sides of a square, as shown in figure 8.

Example 3.3. Another example, we find A(x® — 2x + 5).
Ax® —2x+5)=(x+h)®=2(x+h)+5— (x> =2x +5)
=x>+3x°h+3xh*> + h* = 2x —2h + 5 — x> +2x — 5
= (3x%> = 2)h 4+ 3xh?> + h®

Notice that when x = 5, the f(x) = 53—2-54+5 = 120 (where f = x3—2x+5).
If we want to find the value of £(105), we can finding the change with x =5
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and h =100, and then just add that to 120. Indeed, the change is

Af(5,100) = (3-52 —2) - 100 + 3(5) - 1002 + 100
= 7300 + 150 000 + 1 000 000
= 1157300,

so the function at x = 105 equals 1157420. (Obviously we could have just
plugged in 150 into f(x) directly, but then we wouldn't be using Af, and this
wouldn't be much of an example.)

Perhaps an example which illustrates a bit better why it is worthwhile to study
changes: notice that when h is small, we can approximate the change just by
taking the first term (3x? — 2)h, since terms in higher powers of h are less
significant (they are o(h)). So for instance, to approximate the value of the
function at 105.1, we just work out the change with x = 105 and h = 0.1:

Af(105,0.1) ~33073-0.1 = 3307.3.

We found that the function at 105 equals 1 157 420, so adding the approximate
change above, we get that the function at 105.1 ~ 1160727.3. (The actual
value of £(105.1) is about 1160 730.45, so this only introduces a relative error
of 0.0002%).

Even though most of the results here do not make any restrictions on the
size of h, it will be instructive to think of h as “small”, since when we get
to differentials (which are the main object of differential calculus), we will be
thinking about the case where h is small, just as we saw in the last example.
With this in mind, we have the following result.

Proposition 3.4 (Change of x"). Let n € IN, and let f: R — IR be defined by
f(x) = x". Then we have

Af(x, h) = nx""th+ o(h)
as h— 0.

Proof. This follows immediately by the binomial theorem. Indeed, we have

Af(x,h) = (x+ h)" = x"

o n
— Z <k> Xn—khn —x"
k=0
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-1
=x"+nx""th+ n(n2 )x”_2h2 +-- 4+ h"=X"
= nx""h+ (M
2

=nx""th+o(h),

X" h 4 h”_1>h

since @X”*Qh—k -+-+ h"L1is a polynomial in h (so it is continuous in h),
and it equals 0 when h = 0. ]

Example 3.5. We have 503 = 125000. By the above, we have
A(x3)(50, h) = 3-50%h = 7500h + o(h),
as h— 0, and so
50.05% = 50° + A(x3)(50, 0.05) ~ 125000 + 7 500(0.05) = 125 375.

The precise value is 125375.375 125, so the error is 0.00029%.

Remark 3.6 (Arithmetic of functions). Let f, g: A — R be functions, and let
A € R be a constant. Then when we write f + g or Af, we refer the functions
defined in the obvious way, i.e.,

(F+9)(x) =f(x)+g(x) and  (Af)(x) = Af(x)
for all x € A. For instance, 3sin®+2log is the function such that
(3sin? +2log)(x) = 3sin? x + 2log x.

We similarly infer the meaning of expressions such as fg, f/g, and so on; e.g.

(Sin cos + \ﬁ)(x) _ sinxcosx + VX

log> log® x

Notice particularly that the juxtaposition sin cos became the product sin x cos x,
and not the composition sin(cos x) (for which we would instead write sinocos).
This convention will allow us to state properties about A in a concise way.

Proposition 3.7 (Linearity of A). Let f,g: A — R be two real-valued func-
tions, and let a, b be two constants. Then

A(af + bg) = aAf + bAg
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Proof. We have

A(af 4+ bg) = (af + bg)(x + h) — (af + bg)(x)
=af(x+h)+bg(x+h)—af(x)—bg(x)
= a(f(x + h) — f(x)) + b(g(x + h) — g9(x))
=alAf + bAg. L]

Proposition 3.8 (Product Rule for A). Let f,g: A — R be two real-valued
functions. Then
A(fg)=Af g+ fAg+ Af Ag

Proof. This is another straightforward proof:

A(fg) = (fg)(x + h) = (fg)(x)
= f(x+ h)g(x+ h) — f(x) g(x)
=f(x+ h)g(x+h)—f(x)g(x+ h)
+ f(x) g(x + h) = f(x) g(x)
= [f(x+h) = F)]g(x + h) + F(x)[g(x + h) — g(x)]
=Afg(x+h)+fAg
= Af - (g(x) 4+ Ag(x, h)) + f Ag
=Afg+ fAg+ Af Ag. ]

Proposition 3.9 (Chain Rule for A).

A(f o g)(x, h) = Af(g(x), Ag(x, h)).
Proof. Just by expanding the definition, we have

A(fog)(x,h) = (fog)(x+h)—(fog)x)
= f(g(x + h)) = f(9(x))
= f(9(x) + Bg(x, h)) = f(9(x))
= Af(g(x), Ag(x, h)). o

Remark 3.10 (Ax). Notice that for any function f: A — IR, we have f = foid,
where id denotes the identity function defined by id(x) = x for all x € R. If
we apply proposition 3.9 to this composition, we see that

Af = A(f oid) = Af(id(x), Aid(x, h)) = Af(x, Aid).
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Now just as we informally write A(x?) in place of Af (when f(x) = x?), here
we can write A(x), or just Ax, for Aid, since this is the expression defining
id(x). Indeed,

Ax = A(x)(x,h) =id(x+ h) —id(x) =x+h—x=h,
so we have
Af(x, h) = Af(x, Ax).

Going forward, we will be writing Ax for the change of the input (instead of h
which we have been using so far). We can just think of Ax as an independent
variable just as we thought of h, but if we instead interpret it as a difference
in the sense of definition 3.1, (i.e., we think of Ax as A(x)), then by our
reasoning above, everything ends up being the same.

3.2 Calculus of Differentials

We've already seen that it can be useful to take the principal part of a difference
to approximate a change Af when Ax is small, as we did in the second part
of example 3.3. When the difference is essentially proportional to Ax, we say
that f is differentiable.

Definition 3.11 (Differentiable). Let f: A — R be a function, and let a € A.
Then f is said to be differentiable at x = a if there exists a constant A (which
may depend on a) such that

Af(a, Ax) = AAx + o(Ax)

as Ax — 0. This constant is called the derivative of f at x = a, and we
denote it by f'(a).

If f is differentiable at every a € A, we just say that f is differentiable.
Example 3.12. We saw in example 3.2 that when f(x) = x?,

Af(a, Ax) = 2aAx + Ax? = 2a Ax + o(Ax),

so x2 is differentiable at each a in its domain, and its derivative at x = a is

f'(a) = 2a.

A function being differentiable at a point captures the idea of being “smooth”
there. Essentially, a function is differentiable at a if it can be approximated by
a line there. Indeed, if f is differentiable at a, then

f(a+ Ax) = f(a) + AAx + o(Ax)
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Figure 9: Plot of x2 and 4x — 4 on the same axes, notice that for points close
to x = 2, they are very close.

and if we let x = a + Ax, this becomes
f(x)="f(a)+A-(x—a)+o(x—a).

In other words, when x is close to a (or equivalently, when the difference
x —a = Ax is small), we have

f(x)~f(a)+A (x—a).

For instance, the derivative of x2 at x = 2 is A = 4. Thus, for points close to
2, we have

X2 f(2)+A (x—2)=4+4(x—2)=4x—4

Indeed, if we plot these on the same axes, we can see that this gives us a good
approximation for points close to x = 2 (figure 9). In general the line

y=f(a)+f(a)(x - a)

is called the tangent line of f at x = a. Notice the derivative is precisely the
gradient of this line.

Thus you should have the following intuitive understanding of what it means
to be differentiable at the point x = a: if you keep zooming in to the function
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at x = a, looking really close, it should resemble a line. If it does, then the
function is differentiable at that point, and the derivative of the function there
is the gradient of this line.

An example of something which is not differentiable is |x| at x = 0 (we will
prove this formally later). But intuitively, if you keep zooming in towards the
point where x = 0, it never looks like a line, it retains its V-shape.

Remark 3.13 (Uniqueness of Derivatives). If a function is differentiable at
x = a, then its derivative f’(a) is unique. In other words, we cannot find two
different constants, A and B, such that

Af = AAx + o(Ax) and Af = B Ax + o(Ax).
Indeed, if f is differentiable at x = a, then there exists A such that
Af(a, Ax) = AAx + o(Ax),
which by definition of little-o, means that

Af(a, Ax) — AAx = o(Ax),

i.e., that ( )
. Af(a, Ax) — AAx
A|>I<T>O ( Ax > =0
which is equivalent to saying that
. Af(a, Ax)
Alirﬂo ( Ax A) =0

Now clearly limax_.g A = A since A is constant with respect to Ax, so applying
the rule lim(f(x) + g(x)) = limf(x) + lim g(x) (theorem 2.12(i)), we have
that

im Af(a, Ax) _ im ((Af(a,Ax) —A)+A)

Ax—0 Ax Ax—0 Ax
Af(a, AX) .
_< Ax _A)+AI>I<HQOA
=0+A=A

In other words, we have shown that if f is differentiable at x = a, then the
derivative A = f'(a) is equal to
Af(a, A
im (2.8
Ax—0 Ax

and since limits are unique theorem 2.10, then this number is unique.

26 PRELIMINARY VERSION 0.1



§3.2 | Calculus of Differentials Luke Collins

We can summarise the reasoning of remark 3.13 in following proposition:

Proposition 3.14. Let f: A— R be a function, and let a € A. Then

f is differentiable at x = a with derivative A

. Af(x, Ax)
~— |lm ——=

exists and equals A.
Ax—0 Ax q

Proof. The direction = follows from what we said in remark 3.13. To see
why the other direction is true, we can basically reverse the steps we applied.
Indeed, suppose that the limit

. Af(a, Ax)
im ————=
Ax—0 Ax

exists and equals A. Since limax_o A = A, applying theorem 2.12(ii), we get
that

lim (Mg;\): im 2f@8) A A—0

Ax—0 Ax Ax—0 Ax Ax—0
ie., ( )
. Af(a, Ax) — AAx
Aljmo ( Ax ) N
le.,
Af(a, Ax) — AAx = o(Ax),
which rearranges to give Af(a, Ax) = AAx + o(Ax), as required. U

The principal part of the difference Af is called the differential of f.

Definition 3.15 (Differential). Let f: A — R be differentiable at x = a with
derivative f’(a). The differential of f at a is the function defined by

df(a, h) = f'(a) h.
Example 3.16. Let f(x) = x°. From example 3.12, we saw that f'(a) = 2a,

so
df(a, h) =2ah.

We have Af(a, h) = 2ah+ h?> = df + o(h).
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In general, if f is differentiable at a, then we have that
Af(a, h) = df(a, h) + o(h).

In particular, notice that the what makes Af different from df is the “error
term” which insignificant compared to h when h is small (i.e., it is o(h) as
h —0).

Just as we abused functional notation with A, here we do the same, writing
things like A(x?) = 2x h. Moreover, just as in remark 3.10, we note that

A(x)(a,hy=(a+h)—h=h=1-h+0=1-h+ o(h),
so id is differentiable with derivative 1 for all a, and the differential
dx = d(x)(a, h) = h.

Consequently, we can either interpret dx as an independent variable (just as
we were doing with h), or as the differential of the identity, it doesn't make
any difference, and we will subsequently be writing

df(a, dx) instead of df(a, h).
Thus in summary, for differentiable f, we have that
Af = df + o(dx).

Let's do an example.

Example 3.17. Let f(x) = 3x® —2x+1. Let us show that this is differentiable
at every point x in its domain. Indeed,

Af(x,dx) =3(x+ dx)® —2(x + dx) +1 — (3x3 —2x + 1)
=3x> +9x% dx + 9x dx? 4+ 3dx® — 2x — 2dx + 1 —3x> 4+ 2x — 1
= (9x% — 2) dx + 9x dx® + 3 dx3,

thus we have that f is differentiable with derivative f'(x) = 9x2 — 2, and

Af = (9x% — 2) dx + 9x dx? + 3 dx3,
—_— T/
df o(dx)

so the differential df is (9x — 2) dx.

Now we will translate some of the properties of A into properties of d.
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Proposition 3.18 (Linearity of d). Suppose f,g: A — R, let a,b € R and
x € A, and suppose that f and g are both differentiable at x. Then af + bg
is also differentiable at x, and

d(af + bg) = adf + bdg.

Proof. Since f and g are differentiable at x, we have that Af = df + o(dx)
and Ag = dg + o(dx). By proposition 3.7,

A(af + bg) = aAf + bAg
= a(df + o(dx)) + b(dg + o(dx))
=adf + bdg + o(dx)
= (af'(x) + bd'(x)) dx + o(dx)

so we agree with definition 3.11, and the differential is adf + bdg. ]

Let us give the differential of an important class of functions, the powers of x.

Proposition 3.19. Let n € IN. Then f: R — IR defined by f(x) = x" is
differentiable, and moreover,

d(x") = nx""tdx.
This is precisely the statement of proposition 3.4. Combining this fact with
proposition 3.18, we can find the differential of any polynomial.
Example 3.20. We have
d(4x3 — 2x% 4 5x — 9) = 4d(x>) — 2d(x?) + 5d(x) — 9d(1)

= 4(3x2 dx) — 2(2x dx) + 5 dx — 9(0)

= (12x°® — 4x + 5) dx,
where it is straightforward to check that d1 = 0.
Remark 3.21 (Leibniz Notation). Notice that in general,

df(a,dx) f'(a)dx
dx dx F(a).

In particular, the value % does not depend on the value of dx; it's just f(a).

Consequently, the notation
df(a)
dx
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is sometimes used as an alternative to /(a). In a similar spirit, the notation
d% denotes the “derivative operator”, i.e.,

L@ =)

so that we would write things like the previous example as
d
a(4x3 —2x% 4+ 5x — 9) = 12x% — 4x + 5,

where the derivative is the subject of the equation.

We will continue phrasing things in the notes in terms of differentials rather
than using Leibniz notation, it will be advantageous to do so when it comes
to integrals. (If you encounter dy/dx in the wild, you can just interpret it
literally, where the dx's cancel out.)

It turns out that a more general version of proposition 3.19 is true.

Theorem 3.22 (Power Rule). Let r € R. Then x" is differentiable, and
d(x") = rx""tdx.

We will not give the proof here, but it is essentially a consequence of the fact

that x” = exp(rlog x).

Example 3.23. We determine the equation of the tangent line to the curve
y = f(x), where f(x) = %, at the point x = 4. Hence, we approximate
the value of (10v/3 —5).

We have

F_loyx—5
o X

in particular, at x = 4, df = —1—56 dx, so the derivative is f'(4) = —1—56, which
gives the tangent line

y=1F(4)+f'(4)(x—4)
=%~ Gl 4)

= bx+ 16y = 80.

Using the tangent line, %(10\@ -5 = y(3) = 1—16(80 —5-3) =4.0625.
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y = 10\/5—5
5x 4+ 16y =80
X

Figure 10: Plot of y = 10‘/5_5 and the tangent line 5x + 16y = 80 on the
same axes, notice that for points close to x = 4, they are very close.
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