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LESSON 1 25th October, 2019

1 Differential Equations (Continuation)

Consider the differential equation

dy

dr
or, written differently, Dy = f, where D represents differentiation of the func-

tion y.

To solve this specific type of differential equation, we just do y = [ fdz. We
should think of [ as D!, in a similar way to matrices. But what about the +c
thing?

The detail here is that D is not what we call “one-to-one” or “injective”, i.e.,
it maps different inputs to the same output (e.g. #? is not injective because
(—2)? = (2)? for example). In the case of D, we have D[z*+2] = D[z?+3] = 2z.

In the general case, it’s difficult to study things which are not injective in some
concrete way. But differentiation is a linear operation! We say that a func-
tion/operation/whatever T is linear if it obeys these two properties:

T(f+9)=T()+T(g) and  T(af)=aT(f),

where « is some constant, and f, g are “objects” which make sense in the context
of T (if T' is a matrix, they are vectors, if T' is differentiation, they are functions).

Examples of functions/transformations which are linear:

o f(z) = 2z is linear, f(r+y) = 2(x+y) =2+ 2y = f(z) + f(y) and
flaz) = 202 = a(22) = af (2).

e All functions defined by matrices are linear, e.g. f(v) = Mv where M is
some compatible matrix, then by matrix arithmetic M(x+y) = Mx+My,
and similarly for constants.

e We also know differentiation is linear, e.g. L (52% 4 2¢*) = 10z + 2¢* =
5L (22) + 2L (e¥).

e [ is linear, ) is linear, etc.
The study of linear operations is called linear algebra.

Refer to the remark on page 3 of https://drmenguin.com/files/odes.pdf. The
parts below (before the example) were written whilst we were reading through
that remark.

D[2f +3g] =2cos(-)+6(-)=2D][f]+ 3D]g]

By something like (3f) we mean (3f)(z) = 3f(z), e.g. the function 34/ just
means the function (3y/-)(z) = 34/=.


https://drmenguin.com/files/odes.pdf

So in general, when we do something like f + g, we mean the function defined
by (f + g)(z) = f(z) + g(x) for all z, or af means (af)(z) = af(z) for all z.

E.g. (3cos+2sin)(x) = 3cosz + 2sin .

Matrix times the zero vector is zero. Why? Because 0 = 00. Therefore M(0) =
M(00) = 0M(0) = 0. In conclusion, M(0) = 0.

Antiderivatives always differ by a constant, since ker(D) = the set of constant
functions. This is not always immediately obvious like x and x + 3, for example,

[sinz cos z dz can either work out to —1 cos 2z (by trig identity for 2sinz) or

to —% cos? x by substition. Look at the two plots: https://www.desmos.com/
calculator/czlzorkt7g. You should be able to find a constant ¢ such that
—i cos 2x = —% cos? z + ¢ (by making use of some trig identity).

2
Example. We solve % — 5% + 6y = cos 2x.

(First we want to find the kernel of the operator defined by the LHS. We know
that all functions in the kernel are of the form e** or some variant of this from
the table in the notes).

Consider the homogeneous (= 0) case to determine the kernel.
Auxiliary equation: k> —5k +6 =0 = k =2,3.
Thus the complentary function is cf(z) = ¢1€%* + cpe3®.

(So what we have found here is the kernel of the operator L = D? — 5D + 61.
Any function of the form c¢;e2* 4 c2e3* is mapped to 0 by L)

Now we try to guess a solution. We take ts(x) = A cos 2z + psin 2z.
We work out the derivatives to substitute in the lhs:

ts'(x) = —2Asin 2z + 24 cos 2z
ts”(x) = —4A cos 2z — 4 sin 2x

So we want
ts” —5ts'(x) + 6 ts(z) = cos 2z
(—4X cos 2z — 4psin 2x) — 5(—2Asin 2z + 2 cos 2x) + 6(A cos 22 + psin 2z) = cos 2z

(—4X — 10 + 6A) cos 2 + (—4p + 10X + 6p) sin 2z = cos 2x
(2 — 10p) cos 2z + (24 + 10A) sin 2z = cos 2z

so we solve simultaneously

2X—10p =1 eqn. (1)
2u+10A =0 eqn. (2)

(1) +5(2) = 52X =1 = A= 35, and then by (2), p = — 5.


https://www.desmos.com/calculator/czlz0rkt7g
https://www.desmos.com/calculator/czlz0rkt7g

(Here we’ve managed to find a particular function pi(z) which, when plugged
into the lhs, yields the rhs. Thus, all solutions are of the form y(z) = pi(x) +

cf(z)).

Therefore general solution is | y(z) cos 2x — 58in 22) + c1e2” + cpe®” |.

1
_53(

Now say we were given that y(0) = y/(0) = 1.

y0)=1 = S(M+a+e=1 = a=24—-a (.

Also y/(z) = 5 (—2sin 2z — 10 cos 2z) + 2c1€2® + 3c2€3”, so then

Y(0)=1 = L(0-10)42¢c; +3c; =1

= 201 =55 —2c =3t —3(5 — 1) by (¥)

1
2

ot

which gives that ¢; = g, and then by (%), co =
solution is

—1 = 13. Thus the particular

[

1
y(z) = 3 (cos2z — 5sin 2z + 91 + 40e) |

LESSON 2 23rd November, 2019

2 Integration Techniques and Numerical Meth-
ods

So far, we have seem some analytic methods to evaluate integrals. But some
integrals cannot be “done” this way, a simple example is the indefinite integral

2
/e“" dx,

which cannot be written down using elementary functions.

There is some subtlety here, as to what we mean by “done”, we usually mean a
closed-form solution (https://en.wikipedia.org/wiki/Closed-form_expression).
The reason this is subtle is because a lot of functions are defined by integrals.

If you ever look into the formal definition of Inx, it is actually

ln(x):/ }dt,
1 t

which in some sense is cheating, because rather than working out [ % dt, we
have just given it a name and made use of that name in the answer. So here we
could analogously “cheat” and define a new function lm(z) = fom et’ dt, and if
you differentiate Im(z), by the fundamental theorem of calculus, its derivative


https://en.wikipedia.org/wiki/Closed-form_expression

is 6362, so [ e do = Im(x) 4+ ¢. There is actually a function defined this way,
but it’s called the imaginary Gaussian error function erfi(z) instead of lm(x):
https://en.wikipedia.org/wiki/Error_function (it is slightly different from
lm(x) in that it has a factor of %)

2
2.1 Extract from notes about integration (just gloss through
these)

How can we attempt to formalise the integral? Let’s try to find the area bounded
by the curve y = 22 between z = 0 and z = b € R using only the elementary
notion of the area of a rectangle.

Let us subdivide the interval [0, b] into n subintervals of equal length:
o b] [b 2] [23) | [m=1b b
K n K n? n K n k) n ) ) n K n

and superimpose rectangles on top of each interval, each of which has height
equal to the highest point of the curve within that interval. In the case of y = z2,

this point always happens to be the end of the interval (since 22 is increasing).

fla) = a?

] .

O » 2 3 & s
n

n n n n

Hlustration of upper-rectangles with n = 6.

We will call these rectangles upper-rectangles, since the curve will always be
trapped below them. Now consider the area of the first rectangle, which we will
denote Aj:

b b 2 b b3
Alheightxwidthf<) —=——=—.
n) n nf n n

Similarly, we obtain the area of the second rectangle, As:

hmr(Z).2 2

n n n3


https://en.wikipedia.org/wiki/Error_function

In general, the area of the ith rectangle A; is

b\ b LB
Ai:f(n)‘n:Z $

Now if we determine the sum of all the A;’s, we will obtain an overestimate of
the desired area. Let us determine this overestimate:

A _"A_” L0 B, B on
U—Z i—zl E—EZ% —$~g(n+1)(2n+1)
i=1 i=1 i=1

b3 b3 3 1
= ——2n®+3n+1)=—[1+—+—].
gz 2 T3+l 3<+2n+2n2)

Let us now try and determine an underestimate for the desired area, this time
by considering what we shall call lower-rectangles. We construct these over
the subintervals in a similar way to the upper-rectangles, however this time their
height is the lowest point of the curve within the interval:

fla) = a?

|

2 3 4 5
nn n n

O

Sl

Hllustration of lower-rectangles with n = 6.

Now the area of the first lower rectangle, which we will denote a1, is given by
a; = height x width = f(0) -0 =0,

the second lower rectangle has area as, given by

YAV
2 n) n n2 n nd
In general, the area a; of the ith rectangle is

ai:f((i_l)b>.b:(i_1)2b3.

n



We can find the sum of areas of all these rectangles, just as we did with the
upper rectangles:

Ap = = — i— 12 = —"—(n—-1D2n—-1)==—[1—- =

i=1
which is an underestimate.

Now the desired area, A, is clearly bounded above by Ay and below by Ay, i.e.,
we have
Ap <A< Ay

b3 3 1 b3 3 1
i A P S A
3 < 2n+2n2> 3 ( +2n+2n2>

and as we take more rectangles (i.e., split our interval [0, b] into narrower subin-
tervals), we see that Az and Ay converge towards the value b2/3. In fact, using
the definition of the limit of a sequence,’ we can treat A; and Ay as sequences
in n, the number of rectangles, and confirm that

ie.,

b3 b3
lim Ap = — and lim Ay = —.

Thus we have established that our area A is sandwiched between Aj and Ay
for any number of rectangles n, and that the sequences (A1) and (Ay) converge
to the same limit. If two sequences (a,) and (b,) converge to the same limit a
and a,, < ¢ < by, for all n, then a = ¢,? so it makes sense to define the area to
be this limit, i.e., A = b3/3.

This is called Riemann integration—it is defined only when Ay and Ay, are close
for large n. If this is not the case, the integral is not defined. An example:

fz) =

1 if x is rational
0 otherwise.

Since “most numbers” are irrational, it makes sense that fol f(x)dz should

equal 0. But Riemann always gives that Ay = 1 and Ay = 0, so we cannot

integrate this using Riemann integration. A “stronger” version, called Lebesgue

integration, is used.

Ihttps://en.wikipedia.org/wiki/Limit_of_a_sequence
2https://en.wikipedia.org/wiki/Squeeze_theorem#Statement


https://en.wikipedia.org/wiki/Limit_of_a_sequence
https://en.wikipedia.org/wiki/Squeeze_theorem#Statement

2.2 Trapezium Rule

Here we try to approximate integrals using methods inspired by the definition
of the Riemann integral.

Page 12 of booklet: https://maths.com.mt/assets/files/booklet.pdf

Example of Trapezium rule: fol e du using 4 ordinates, answer accurate to 4
d.p.s.

First, we need h:

Then we work out the y;’s (we work with 6 d.p.s so the answer is definitely
accurate to 4 d.p.s):

ZT; ‘ 0 % % 1

Yi ‘ 1 1.117519 1.559623 2.718282

Therefore fol e da ~ +(1+2.718282 + 2(1.117519 + 1.559623)) = 1.5121.

The “actual” answer is ~ 1.46265. This is what we did: https://www.desmos.
com/calculator/yikw2vzd3b

2.3 Simpson’s Rule

Instead of joining two points with a line (which is what is done in the trapezium
rule) we can use a quadratic. The different ways of joining two points is called in-
terpolation, e.g. Bezier curves: https://www.jasondavies.com/animated-bezier/.
Here is a example of how Simpson’s rule uses quadratic interpolation to better
approximate a curve than with lines: https://upload.wikimedia.org/wikipedia/
commons/6/67/Simpsonsrule2.gif.

You always need an even number of strips (i.e., an odd number of ordinates),
so we have yg,y1,...,Yyn where n is even. The formula is

b
h
A:/ ydfﬂﬁg(yo+yn+4(y1+y3+~~~+yn71)+2(y2+y4+~-~+yn72)).

We do the same example, this time with Simpson’s rule, and we compare.

Let’s do f15 \/%dx.

a) Approximate the area using the Trapezium Rule with 5 ordinates.

b) Do the same thing with Simpson’s rule.

¢) Calculate the integral analytically and find the percentage error in both of
your calculations.

a) We have h = 271 = 1. Therefore


https://maths.com.mt/assets/files/booklet.pdf
https://www.desmos.com/calculator/yikw2vzd3b
https://www.desmos.com/calculator/yikw2vzd3b
https://www.jasondavies.com/animated-bezier/
https://upload.wikimedia.org/wikipedia/commons/6/67/Simpsonsrule2.gif
https://upload.wikimedia.org/wikipedia/commons/6/67/Simpsonsrule2.gif

Zo il X2 x3 Ty
xT; 1 2 3 4 5
Yi ‘ 0.707107 4.618800 13.500000 28.621700 51.031000

Using the trapezium rule,

1
A= 5(0.707107 +51.031 + 2(4.6188 4+ 13.5 + 28.6217))
= 72.6096
Plot: https://www.desmos.com/calculator/ttbmpwcjd5

b) Using Simpson’s rule, we have

1
A x S(0.707107 + 51.031 + 4(4.6188 + 28.6217) + 2(13.5))
= 70.5667

¢c) Puwu=1+2 Thendu=de,z=1=u=2,andz =5= u = 6.
Therefore the integral becomes

6
2
/ (W2 = 303/ 4 30l — /) du = ﬁ(gﬁ + 499V6),
2

Which expands out to

which is approximately 70.5728.

For percentage error, we do

Actual — Approximation

1 .
Actual x 100%

Percentage error =

So, for the trapezium rule, we have W = 2.9%. On the other
70.5728—70.5667 _ () ))8Y% :
hand, CoT =0. 0.

Note. In general, Simpson’s rule produces much better results than the
trapezium rule.

3 Lessons in Person (Malta)
At this stage we met up in Malta and covered, in person, over two lessons, the
following topics:

¢ Newton—Raphson Method
This is used to improve a guess x( of a root of f(x) by iterating the formula
in the booklet.

10


https://www.desmos.com/calculator/ttbmpwcjd5

e Integration by Reduction
Formulas with I,,. Usually use these to reduce integrals like [ cos™ z dz in
terms of simpler ones.

e Length of Arc and Volume of Revolution
Just formulae from the booklet, we did a few examples.

Usually there is a whole question on numerical methods (i.e., some integral which
you find using Simpson’s/Trapezium, together with some Newton-Raphson
problem). Then there is another one with integration by reduction and length
of arc. Take a look at past papers to confirm this, it is usually the case but not
guaranteed.

We also started polar coordinates, and we covered these topics in that chapter:

e Drawing Polar Curves
We drew some polar curves by evaluating them at the “special angles”
(constructing a table, etc). We noticed that some special curves have
symmetry, depending on their form. We discussed special curves like car-
dioids (and more generally limagon curves), as well as roses, lines.

e The Relationship between Polar and Cartesian Coordinates
We saw how to swap between curves in  and y to curves in r and 6 and
vice-versa. An example we did was to express y = 22 as r = secftan6,
and r =1+ 2cosf as 2% +y? = (22 +9? — 27)2.

In general for these it is useful to know how to find cos @ and sin§ when
tan @ = y/x using trigonometry trickery.

e Polar Integration
We solved problems on finding areas bounded by polar curves. This basi-
cally involves using a formula from the booklet.

The only thing we had left to cover were tangents to a polar curve.

LESSON 3 1st February, 2020

4 Polar Coordinates

You asked me the following problem on polar integration.

Problem: Find the (smaller) area bounded between the curves r = ¢’ and
r = cosf (for —m < 0 < 7).

First we need to find the point at which the two curves intersect, for the limits
of integration: https://www.desmos.com/calculator/h3ceonosbe.

11


https://www.desmos.com/calculator/h3ceonosbe

0 = 0 is obvious, but the other is not easy to obtain analytically (most likely
it is impossible to do so), so we use something like Newton—Raphson to get
0 =—1.2927.

So we do

A= Acircle - Aexponential

1 /0 1 /0
:f/ cos29d0—7/ e’ do
2 J_1.2027 2 J_1.2027

= 0.1580

4.1 Tangents

For these, it is best to follow the method described at the end of these notes:
https://drmenguin.com/files/polar.pdf.

E.g. =14 2cos6: https://www.desmos.com/calculator/tiagbrmomw

For tangents at the pole, we solve 1 + 2cosf = 0 in the range —7 < 0 < 7.

1+2cosf =0 = cos = —3, b, = cos ! (—3) = 2, s0 § = £ + 2mn for
n € Z. Within the range, we get 0 = 27” and 0 = —2?”.

For horizontal tangents, we solve % = —rcot 6.

Notice r = 1 4+ 2cos#, so % = —2sin#, and we have

—2sinf = —(1+ 2cosf) cot b.
Multiplying by sin # throughout,
2sin% 0 = cos 6 + 2 cos> 0
and then using the Pythagorean identity, we get
2(1 — cos® ) = cosf + 2cos? b,
which rearranges to
4cos? 0 +cosh—2=0,

so by completing the square, we get

cosf =

—1++/33
8 b

and then either 6, = cosfl(_H'Tm) or O, = Cosfl(_l_T‘/@).

Using the general solution, we get the four solutions 6 = icos_l(*HT‘/@) ~

+0.9359, 6 = + cos ™} (—15Y33) ~ 4+2.5738.

12


https://drmenguin.com/files/polar.pdf
https://www.desmos.com/calculator/tiagbrm9mw

We find the corresponding r-coordinate of the curve at each angle, which yields
the points (2.1862, +0.9359), (—0.6861, £2.5738). These four points lie on the
four horizontal tangents to the curve, and we need to find the appropriate value
of k for these tangents.

(2.1862, —0.9359) = 2.1862 = k csc(—0.9359) —> k = 2.1862sin(—0.9359) =
—1.7602

(2.1862,0.9359) — 2.1862 = kcsc(0.9359) — k = 2.18625sin(0.9359) =
1.7602

(—0.6861,—2.5738) = —0.6861 = kcsc(—2.5738) = k = —0.6861sin(—2.5738) =
—0.3689

(—0.6861,2.5738) — —0.6861 = kcsc(2.5738) — k = —0.6861sin(2.5738) =
0.3689

Therefore the horizontal tangents are
r = +1.7602 cscf and r = £0.3689 csc 6.

For vertical tangents, we do an identical procedure but solve instead % =
rtan . The solutions to this equation are # = 0,7, +1.8234, which correspond
to points (3,0), (—1,£n), (0.5,£1.8234), and give the equations r = 3sec,
r =secl and r = —0.1249 sec 6.

LESSON 4 28th February, 2020

5 Curve Sketching

5.1 Some Revision / Reflection

At this point, we already know how to sketch some curves given by both explicit
and implicit functional equations. We either have things like

y = f(z),

e.g., y = x2, y = cos(2x), etc, whose y-coordinate is given explicitly by a
function. We also have the more general “implicit” equations, and these are of
the form

F(‘Tvy) =0,

which tell us a condition which x and y must satisfy in order to be on the curve,
but do not explicitly tell us how to find y given x, or vice-versa. E.g., the circle
22 + 9% = 1, or the hyperbola 2y = 1. (In these two examples you can make
y subject with some success, but in general it is not always possible, such as
22 +y? = (2% + y? — 22)?%, which is equivalent to the cardioid r = 1 + 2 cosf.)

13



Explicit curves we already know. We can sketch y = f(x) when f(z) is
one of:

o

[ ] .’[2

o |z

® cOST
e sinx
e tanx
Also, if we know how to draw y = f(x), then we also know how to draw
o y=f(z)+k(keR)
e y=flz+k)(keR)
o y=—f()
o y=f(-xz)
e y=kf(x) (keR)
e y=f(kz) (keR)

It is strange that, when we change the z-coordinate versus the y-coordinate,
we get different behaviour. For example, adding to the z-coordinate moves the
curve left (i.e., in the negative z-direction), whereas adding to the y-coordinate
moves the curve up (i.e., in the positive y-direction). Similar for stretch-
ing/squishing when we multiply by a constant, the behaviour is inconsistent.
Why?

We can understand these better if we properly understand the implicit case,
F(z,y) = 0. Suppose we can draw F(x,y) = 0, how do we draw the following?

o Fla+k,y+£) =0
This is going to “translate” the axes. For example, take the circle 22+%% =
1. This is centred at the origin.

14



A
N

Let’s say we want to move the circle so that the centre is now (3,5). What
is the equation describing this new curve? We can achieve this simply by
shifting the y-axis downwards by 5 units, and the z-axis leftwards by 3
units. The corresponding equation is F(x — 3,y — 5) = 0, i.e., (x — 3)? +
(y—5)2=0.

Y=y-5 Yy

A
N

Alternatively, we can see it this way: we changed things so that (—3,—5)
is the “new” origin, and similarly (z — 3,y —5) = (X,Y) is the new (z, y).

How does this relate to the explicit case y = f(x)? Then the equation is

————
F(z,y)

so if we want to move a curve to the right by a units and up by b units,

15



we do
Fz—ay—0)=0<<= (y—b)—flr—a)=0 <= y=f(r—a)+b.

This is why things appear inconsistent. The actual fact of the matter is,
when we add to f(z), we are not adding, but we are subtracting from the
y-coordinate! (y = f(z)+ b is equivalent to y — b = f(x).)

o F(£z,+y) =0,
this is similar to the explicit case, changing sign of z-coordinate “reverses”
the direction of the z-axis, so we mirror the x-axis, and similarly for the
Y.

For example, the circle (x — 1)2 + (y — 1)2 = 1. If we negate both
coordinates, we get (—x — 1)2 + (—y — 1)2 = 1. This is the same as
(x+1)2+ (y+1)%2 =1, i.e., the first circle reflected in both axes.

o F(ax,by) =0.
This is going to compress both axes, the z by a factor of @ and the y by
a factor of b.

Let’s think of F(z,y) := y — cos(xz) = 0 (i.e., the graph of y = cosz). A
point on this curve (and a solution to F(z,y) = 0) is (zo,y0) = (5,3). If
we have instead, F(3z,2y) = 2y — cos(3x) = 0, this point will correspond
to (§, i), since then we get F'(3%,2%) = F(x0,y0) = 0.
In the case y = f(x), we have F(x,y) =y — f(x) = 0. Thus

Flazx,by) =0 = by = f(ax) = y= %f(ax).

This is why in the implicit case, multiplication outside “stretches” rather
than compresses.

Example: draw z2/4 + y2/9 = 1. If we take F(z,y) = 22 + y? — 1, we
recognise that this is F'(z/2,y/3), so we draw this by compressing by a
factor of % (i.e., stretching by a factor of 2) the circle in the z-direction,
and similarly for y.

These three cases incorporate the six we had before, since in truth, there is no
difference between how we change the = versus the y coordinate.

16



Now at this point in the lesson, you asked about:

The inverse of a function. The graph of an injective function f is the set
of points (z,y) such that f(x) = y. The graph of the inverse of f is the set of
points (z,y) such that f(y) = z, since the function f~! is such that f~(z) =y
for every (z,y) satisfying f(y) = x. So if we set F(z,y) :=y — f(z), its graph
is the set of points satisfying F'(x,y) = 0, whereas the graph of the inverse is
the set of points satisfying F(y,z) = 0. (This is a bit hard to read but if you
read it slowly it should make sense.)

Example, Let f be the function f: [0,00) — R defined by f(z) = z2. This is
injective.

The inverse is basically this:

> Y

This indeed is the set of points satisfying F(y,x) = 0. But we usually like to
have the z-axis on the horizontal, so we can switch these by reflection in y = z:

)

17



Inverse trigonometric functions. The trigonometric functions are not in-
jections, therefore they have no inverse. So what are the “inverse trigonometric
functions” we use on our calculator, say?

What we usually do when we have “inverses” of things which are not injections
is we restrict the domain of the function so that they are injections. Then we call
the inverse of the injections the inverses of the original function (and sometimes
use the term “principal value”).

E.g. Take f(x) = 22 on R. This is not invertible. But if we then take F =
f 1[0,00),> then we have an injection. The inverse is /z. We could call this
the “principal value”, of x (say we are solving 22 = 4), and then the general
solution is given by = £xpy.

This is what we do with sin, cos and tan. We set Sin = sin [ [-F, §], Cos =
cos | [0,7] and Tan = tan | [~%, Z]. We then denote Sin™" by sin™ ', and so on.

y = Sinx

VBN

SE

y=Sin"'z=sin"tz

L]
[ ]
S

|
NI

This function has domain [~1, 1] and codomain [~7, 7]

3Let f: X — Y be a function, and let A C X. Then the restriction of f to A is a function
g: A — Y such that g(z) = f(z) for all z € A. We denote g by f | A.

18



LESSON 5 1st March, 2020

5.2 The Reciprocal Function
Suppose we know the graph of y = f(z). The goal here is to sketch

1
Y=
f(z)
We can do this by considering the following, with the example y = ——.
o If f(x) = 0, we get a vertical asymptote for ﬁ Conversely, if at

r = a there is an asymptote, then ﬁ has a root there. The asymp-

totes/intercepts divide the curve into parts which are each either com-
pletely above the z-axis or below.

e If within a part, f(x) > 0, then ﬁ > 0, and similarly if f(z) < 0, then

ﬁ < 0, so the quadrants in which part of a curve appears do not change.
o If (x,y) is a point on y = f(x), then (z, %) is a point on the reciprocal. So

any points of the form (z,+1) remain unchanged by this transformation.

Y

e We also have:
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— If as * — a (where a is either oo or the z-coordinate of an asymp-
tote) f(z) — oo, then ﬁ — 0T, and vice-versa.

— If as * — a (where a is either oo or the z-coordinate of an asymp-
tote) f(xr) — —oo, then ﬁ — 07, and vice-versa.

With these considerations, we can draw:

Y

Notice that

e If f(x) has a y-intercept at y = a, then y = ﬁ has a y-intercept at

Y=y

e If f(x) has a maximum turning point at (x,y), then y = f(lx) has a

minimum turning point at (z, %)
1

Let’s now do y = ——.

This is similar but the turning point is no longer fixed at —1, it goes from —2

1
to—2.

20



Next, we do y = z++1

Another example, y = m.

Notice 6 — 5z — 22 = —(2% + 5z — 6) = —(z + 6)(z — 1).

The turning point occurs at © = —b/2a = —5/2, with y-coordinate 6 + 25/2 —
25/4 = 49/4 ~ 12.

)
r=—06 _5 49 =
1 ( 2’ 4) * 1 !
1 ’/"‘ 1
1 \ 1
1 // N 1
, \
, \
\
/I '
s \
, \
1 6h\

€T
Another example, let us draw y = sec z.
— _3m _ _ T p— T _ 37
rT="7 rT="3 Y T=73 rT="
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
RS 1 1 - S~ 1 1 -
N 1 1 e 1 ~. 1 1 ,”
~ 1 1 e > 1 1 I
A VL7 o 1,7
\\. e AT v,
N e RN i
[ s (BN |
1 So e 1 1 N e 1
1 RS Pie 1 1 S _ 1
1 = < 1 1 p < 1
! /.-\ ! ! /.-\ !
1 1 1 1
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5.3 Rational Functions
We would like to sketch functions of the form
ar?® +bxr + ¢
Yo d? fert f
where a,b,c,d,e, f € R.

First of all, if we have
_ar+b
cr+d’

we can rewrite this using long division as

=A
Y +ca:—|—d

where A = a/c and B = (bc — ad)/c, and recognise that it is a series of trans-
formations applied to 1/x which we can draw:

x x+d cr+d cr+d cxr+d

1 f#(z+d) 1 flex) 1 B f(z) B f@2)+A A B

Remark. When combining these transformations more generally, it is often
desired to obtain f(ax + b). Notice that this corresponds to f(x + b) followed
by f(ax), and not vice-versa! The other way around produces f(a(zx + b)) =
f(azx + ab).

For example, say you want to draw sin(2z + %). First, shift by %, and then
compress things by a factor of 2. Doing things the other way around will give
the graph of sin(2(z + )) = sin(2z + £°), which is not what we wanted.

Now suppose one of a,d # 0. There are two techniques.

The First Technique: Using Calculus
We need to consider 4 things to sketch these curves.
(i) The coordinates of any a- and y-intercepts.
(ii) The coordinate of any stationary points.
(iii) The equations of any linear asymptotes to the curve.
(iv) The behaviour of the curve as  — +o0.

An example:

227+
YT @ n@-2)
1. There are no x-intercepts since the numerator is never zero. The curve
intersects the y-axis at y = ﬁ = —%.
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2. Next, we differentiate and set the derivative equal to zero.

da(z+1)(z—2)— (222 +1)(2z - 1) =0
— 2%+ 51 — % =0
= (z+3)P-%-1=0
== = —g + 37‘/5
These have corresponding y-coordinates %(1 ++/3). Numerically, the co-
ordinates are approximately (—5.1,1.8) and (0.1, —0.488).

3. Vertical Asymptotes. These only occur when the denominator is zero,
ie., when (z +1)(z —2) =0, i.e., when z = —1, 2.

Horizontal/Oblique. These occur as x — £oo. Doing partial fractions

for y, we get
2z 45

(x4+1)(z—2)

In general, the proper component vanishes as x is large, since y = 2+O(%).

y=2+

4. This last step is to help understand the behaviour at the horizontal /oblique
asymptote. We can do this by taking some large values of z and substi-
tuting them in y.

z || —oo | =10000 | 10000 | oo
y || 2 | 1.9998 | 2.0002 | 2

So we conclude that as 2 — —oco, y — 27, whereas as x — oo, y — 2.

Here is an actual plot to compare:
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(—=5.1,1.8)
LESSON 6 18th March, 2020
A second example:
- 22 —b5x+6
Y= T3e =10

We start by finding any x- and y-intercepts.

Whena:zO,yz_Llo == y:—%.

When y =0, 22 - 52+ 6=0 = .

Now for the turning points, we set the derivative equal to zero and solve. We
get

y =0

— (22 —5)(3x — 10) — 3(z* — 52 +6) =0
— 322 -202+32=0

= Bz —8)(z—4)=0

So the turning points are | (£, )| and | (4,1) |

)

wloo

O~

Next for vertical asymptotes (poles), we check when the denominator is zero.

We get that | x = 13—0 is a vertical asymptote.

For horizontal asymptotes, we approximate the behaviour of the curve when =
is large in size. We do this by writing it in proper form (by long division):

2 —bx+6

4/9
5 1 5 1
3e_10 ¢ atgr g3t et O0G)
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so the curve is basically the line Sx -2 when z is large in magnitude (the
notatlon O( ) denotes a quantity which i 1s not larger than some constant times
. This is called big-oh notation. Don’t worry about it if you’re unfamiliar with

1t it just allows us to focus on the important part by hiding away unnecessar
details.) This means we have an oblique asymptote with equation |9y = 3z — 5 |.
The last step is to see what happens at infinity. We can either construct a table
similar to the last example:

x H —oo | —100 | 100 | oo
The Asymptote ( a:— 2 —00 —33.8889 32.7778 | o0
C +6
The curve (y = 525~ ?0 —o0 | —33.8903 | 32.7793
From this we observe that when « is large and negative, y < %x — g (i.e., the
curve is below the asymptote), whereas when x is large and positive, we have
that y > %x - g (i.e., the curve is above the asymptote).

Perhaps something more natural we can do is again study the curve in its proper
form:
4/9
3z — 10
———

diff. bet. asymptote and curve

if we study the difference when x — 400, we more directly see that when =
is negative and large, the denominator is negative, so the curve is below the
asymptote, whereas when x is positive and large, the denominator is positive,
so the curve is above the asymptote.

Y
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The Second Technique: Finding where the curve does/doesn’t exist

Notice that a point on a curve

B az? + bz + ¢
yidﬂ—i—ex—&—f

means that there exists a pair of numbers (z,y) such that this equation holds.
In particular, if we think of y as fixed, we can ask: “is there an x such that the
point (x,y) is on the curve?” This is the same as looking for solutions in z to
the equation

B ax? +bxr+c
v= dz? +ex+ f
— (a—dy)z? + (b—ey)z + (c— fy) =0.

We notice that this is a quadratic, so the existence of a solution is equivalent to
the fact that the discriminant A is non-zero, i.e.,

(b—ey)* —4(a—dy)(c— fy) > 0.

What we have obtained here is a condition which y must satisfy in order for it
to have a corresponding z-value. Let us see how this can help us sketch curves.
For example, say we have

72

V=1

Let’s find the range of values of y for which this curve has points. Rearranging
as a quadratic in x, we get

2 tyr—y=0,

whose discriminant is A = y? 4 4y, which is > 0 for y < —4 and y > 0. In other
words, the region —4 < y < 0 is empty. Also, there is only one point at each
of the extremities of this range, which correspond to turning points. (Reason:
because these will be roots of the equation with multiplicity 2, so they survive
differentiation and are turning points).

So we can find the turning points of our curve simply by setting y = —4 in the
curve:
2 —dr+4=0 = x =2 (twice)

and when y = 0 we get « = 0 (twice). Thus (2, —4) and (0, 0) are turning points.

The rest of the method is analogous to the previous examples, where we deter-
mine intercepts, asymptotes and behaviour at infinity. This part replaces the
calculus step.
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5.4 The Square Root and the Modulus
TBA

LESSON 7 26th March, 2020

6 Further Complex Numbers

Recall that de Moivre’s theorem tells how to “work out” powers of complex
numbers:
(cos ¥ + isin¥)? = cos g + i sin ¢,

where ¢ € Q. (Exercise: prove this for integers ¢ using induction.)
Writing this differently, we have

(eiﬂ)q _ eiqﬂ

The other facts about powers are not necessarily true, in particular, (zy)® #
z%y? in general. The important ones which remain true are 2%z = z%+? and
(xa)b — xab.

6.1 Obtaining Trigonometric Identities

Recall that, e.g., sin2z = 2sinxzcosz. We also had triple angle identities,
sin3z = 3sina — 4sin® z, and so on. To obtain these, we used the compound
angle identity repeatedly, (i.e., first do sin(z + z) for identities on sin 2z, and
then sin(2x + z) for sin 3z, and so on).

There is an easier way, using de Moivre’s theorem. Let’s obtain an identity for
cos4x.

cosdx = R(cos 4z + isindx)

(cosz 4 isinz)?)

R(
(
(e +is)")
(
(

R
R
R(c* + 4c%is + 6c%i%s% + 4ci®s® + its?)

= R(c* —6c25? + 51 +i(4c3s — 4es?))

=c* —6c%5% + §.

In other words,
cos4dx = cos® & — 6 cos? zsin? z + sin? x.
We also immediately get an identity for sin 4a:

sindz = $(c* — 6c252 + s +i(4c3s — 4es®)) = 4 cos zsin x(cos? z — sin® z).
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If we insist of only having cosines for the first identity, we can make use of
Pythagoras:

cosdz = cos* z — 6 cos® zsin? z + sin x

= cos?x — 6cos? z(1 — cos? z) + (1 — cos® z)?

=cos*z —6cos?x +6cos*z+1—2cos®x + cost

=8cos*z — 8cos®z + 1.

We can also use these identities to obtain an identity for the tangent function.

sin 4x
tandx =
cos 4x
4 cos® zsinx — 4 cos xsin® x 4
=— SR — (+cos™ x)
cos* x — 6 cos? rsin“ x +sin” x
4 sinx sin®
— cos & cos3 x
T 4 _ gpsin2z sint x
1 cos? x + cos? z

_ 4tanx — 4tan®
" 1—6tan?z + tantz’

Now perhaps the more useful case for A-level will be the other way around, i.e.,
expressing powers of sines and cosines in terms of multiple angles (for integration
and so on).

Let z = cosx + isinx. Then by DMT, 2" = cosnz + isinnz and 27" =
cosnzx — isinnx. In particular, we get that

n

‘Z"Jrz*”:QCosnz‘ and ‘z — 2z " =2isinnz |

Let’s say we want an identity for cos* 2z (in terms of multiple angles only, no
powers). Put n = 2 in the cosine formula:

2% 4+ 27% = 2cos 2z
— (2423 =2%cos" 22
— A4t 6+427 4278 =24 cost 22
= B2 844zt + 27 + 6 =2%cos? 22
— 2cos8z + 8cosdx + 6 = 2% cos? 2z

and therefore the identity is

cos' z = & (cos8z + 4 cosdx + 3).
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LESSON 8 9th April, 2020

6.2 Some Neat Examples

The complex exponential has certain structure which we can take advantage of,
which the trigonometric functions do not. For instance, consider the following

sum.
n
Z cos(kx).
k=1
Say we want to determine a closed form for this sum. Notice that coskzr =
R(cos kx + isin kx) = Re'k™ = R(e'*)*. So what we have is actually

n

n
2 :%(ezz)k =R § :(6zm)k'
k=1 k=1

We can recognise this as a geometric series:

Z(eim)k — i 1- (ezz)n _ ¢

1—¢® 1—e¢®
k=1

T (eia:)n+1

Now it is “good to know” the following identities:

eiz + e—ix eiz _ e—iw
cosr = ————— and sing = ——,
2 2
these indicate a way forward to simplify the denominator. We would like the
denominator to resemble these cosine/sine identities:

i (eix)n—i-l e—ix(eix _ (eiac)n—i-l) e—im/Q(eix _ (eix)n+1)

e

1 — el e—iw/2 _ giz/2 24 sin

Now we deal with the numerator. We have
—1 (eig;/2 o (eiw)nJrlf%)

i L
251112

which equals

25? (cos % +isinZ — cos((n+ 3)x) +isin((n+ 3)z)),
2
and distributing out the 1,

—2cscZ(icosZ —sinZ —icos((n+ 3)z) —sin((n + 1)),

whose real part is
1 esc Z(sin 2 + sin((n + 3)z)).
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We can simplify this further using sin A+sin B = 2sin((A+B)/2) cos((A+B)/2)
to get the final answer

Z cos(kz) = csc £ sin 2 cos(3 (n + 1)z).

We can similarly obtain a sum for the sine (by taking the imaginary part in-
stead). What about something like

Z kcos(kx)?
k=1

We can do the following neat trick. Notice that we can get a k in front of the
general term z* in
n
>
k=1

by differentiating:

R
I
bl
N

ES

L

d n
2
k=1
and multiplying throughout by z:
d n n
E_ k
o Z Z" = Z kz".
k=1 k=1
But we know what the LHS is:
d 1—2" -
— = k z®.
: dz (Z 1—2 ) ; N

which we can simplify to get that

i (z—1)=1)z"H 4 2
- (z—1)? ’
and then if we put z = €™ and take the real part, the LHS becomes the sum
we want, and we can simplify the RHS in a similar way to the last example,

to get the following final result: https://math.stackexchange.com/a/3611630/
301095.

Question 8, problems sheet. We have that two of the roots are { = 1—+/3i
and ¢ = 1+ fz So the polynomial f = 2% + 623 + 1322 — 182 + 100 has
(z =) (2 — () = 22 — 22 + 4 as a factor. Thus we have

f=2"462% 4132 =182+ 100 = (2% — 22 + 4)(2* + Az + 25)
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where A is a constant to be determined. If we expand the rhs, the coefficient of
23 will be —2 + A, and this should equal 6, so A = 8. Thus

f=(2"—22+4)(2* + 82+ 25)

Thus the remaining two roots of f are the roots of z? + 8z + 25, which we can
find by completing the square to be —4 + 3.

Question 11b, problem sheet.

/2 e? cos 20 do = /2 e Re?? 4o

0 0

— %/j e(1+2i)0 do
0

(T

_ %(1 —52i(e<1+2z‘>% 1))

- a%(l *521(@5@” - 1))

_ §)%(1 —52@(_6% B 1)) _ _6%5— 1

6.3 Complex Loci

We can consider subsets of the complex plane defined by equations, just as we
do in Coordinate geometry and polar coordinates. For instance,

2| =3

represents the equation of a circle centred at the origin, with radius 3 (since
it’s all complex numbers of modulus 3). An easy way to double check what a
complex locus is, is to substitute z = x + 7y, this will translate the equation into
a Cartesian one about points of R?. The above becomes

o 4iy| =3 <= Va2 +y2 =3 <= 22 +y* =9
We have three “main” complex loci we should recognise:
o |z—(|=r
O

o arg(z— () =
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The first one is a circle, centred at ¢ with radius r. Indeed, if ( = a + bi, then
putting z = x + iy, we have

|(z+iy)—(a+bi)| =7 <= (x—a)2 +(y—b)2=r < (z—a)’+(y—b)> =12

The second locus represents a straight line which is the perpendicular bisector
of the line segment joining ¢ to w. (A good exercise to put z = x + iy, etc, to
get the linear equation).

The last one represents a part-line starting from ¢ in the direction of the angle

6.
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