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I. INTRODUCTION

T
HE unit circle is the circle centred at the origin with radius 1. Formally,

it is the subset C ⊆ R2 of points (x, y) ∈ R2 satisfying the equation
x2 + y2 = 1.
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FIGURE 1: The unit circle C : x2 + y2 = 1.

An angle ϑ ∈R is simply a real number, which in the context of trigonometry, we
interpret as a distance travelled anticlockwise along the unit circle, starting from
the point (1,0). The notion of “curved distance” requires calculus to formalise
properly. Let us briefly discuss how this can be done, without getting into the
heavy details. Suppose for now that 0 ÉϑÉ 2.

The construction of a line segment of length ϑ such that one end of the segment
is at (1,0), and the other is at a point on the circle above the x-axis, uniquely
determines a point P1 (see figure 2).
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FIGURE 2: The point P1, uniquely determined by the line segment of length ϑ.
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In fact, it is not hard to show that

P1 =
(
1− ϑ2

2
,
ϑ

n

√
1− ϑ2

4

)
.

Next, if we divide this line segment into two segments of length ϑ/2, joining them
tail to tip at another point of the circle, this similarly determines a point P2 (see
figure 3). Notice the combined length is still ϑ/2+ ϑ/2 =ϑ.
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FIGURE 3: The point P2, uniquely determined by two touching line segments of
length ϑ/2.

We can similarly divide the line segment into three pieces of length ϑ/3, deter-
mining a point P3, retaining combined length ϑ/3 + ϑ/3 + ϑ/3 = ϑ. Continuing this
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FIGURE 4: The point P3, uniquely determined by three touching line segments
of length ϑ/3.

way, we can for any n, determine a point Pn , obtained by joining n line segments
of length ϑ/n, tail to tip, at other points on the circle. In each case, the combined
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length of the segments is always ϑ. It can be shown (by induction, say) that the
x-coordinate xn of Pn is given by

xn =
⌊n/2⌋∑
k=0

(−1)k
( n

2k

)(
1− (ϑ/n)2

2

)n−2k(ϑ
n

)2k(
1− (ϑ/n)2

4

)k
, (1)

and similarly, the y-coordinate yn is given by

yn =
⌊n/2⌋∑
k=0

(−1)k
( n

2k +1

)(
1− (ϑ/n)2

2

)n−2k−1(ϑ
n

)2k+1(
1− (ϑ/n)2

4

)k+1/2

. (2)

In the limit of this process (in the calculus sense), we end up with our desired
“curved” distance travelled, at a point we shall call P∞.
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FIGURE 5: The point P∞, at a curved distance of ϑ from (1,0).

Now if ϑ> 2, the initial line segment P1 will exit the circle, so instead we start at
a later stage, namely, with some Pn such that ϑ/n É 2. Furthermore, if ϑ< 0, then
we instead travel a distance of −ϑ in the clockwise direction. In both cases, it can
be shown that the formulæ in (1) and (2) remain valid. Thus we can determine
P∞ for any angle ϑ ∈R.

DEFINING THE CIRCULAR FUNCTIONS

Definition 1 (Sine and cosine). Let ϑ ∈R be an angle, and perform the described
process to obtain P∞ = (x, y). Since these two values depend solely on ϑ, we
define the cosine function, denoted by cosϑ, to be the x-coordinate of P∞, and
the sine function, denoted by sinϑ, to be the y-coordinate at P∞.

In other words, we have P∞ = (cosϑ, sinϑ). These functions are called circular
or trigonometric.
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FIGURE 6: The functions cosϑ and sinϑ.

Remark 2 (Maclaurin series). If you have not seen power series yet, you can
safely ignore this remark. As n →∞, one can show that( n

2k

) 1

n2k
→ 1

(2k)!
,

(
1− (ϑ/n)2

2

)n−2k
→ 1 and

(
1− (ϑ/n)2

4

)k
→ 1.

It follows that the kth term in (1) becomes

(−1)k

(2k)!
ϑ2k ,

and so, glossing over some details of convergence (swapping the limit and the
sum), we have that

cosϑ=
∞∑

k=0

(−1)k

(2k)!
ϑ2k ,

which is usually given as the definition of the cosine function in more formal
treatments. Identically, from (2), we obtain that

sinϑ=
∞∑

k=0

(−1)k

(2k +1)!
ϑ2k+1.

Notation. The squares (cosϑ)2 and (sinϑ)2 of the trigonometric functions are
denoted by cos2ϑ and sin2ϑ. More generally, for n Ê 2, f n(x) denotes ( f (x))n .

What links the sine and cosine functions is the fact that they represent a point
on the unit circle C . This is summarised in the following theorem.

Theorem 3 (The Pythagorean Identity). Let ϑ ∈R. Then

cos2ϑ+ sin2ϑ= 1.
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Proof. By definition, the point (cosϑ, sinϑ) lies on the unit circle, so satisfies the
equation x2 + y2 = 1.

Another important property about the sine and cosine is that they are bounded
in size by 1. This is intuitive, since they are coordinates of points on the circle.

Theorem 4. Let ϑ ∈R. Then

−1 É cosϑÉ 1 and −1 É sinϑÉ 1.

Proof. We have |cosϑ| =
√

1− sin2ϑÉp
1−0 = 1 since sin2ϑÊ 0 and the square

root function is increasing, and similarly |sinϑ| =
p

1−cos2ϑÉ 1.

The sine and cosine are the most important trigonometric functions, but there
are others. Each function corresponds to some length when we look at the pic-
ture of ϑ on the unit circle, which can be seen in figure 7.
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FIGURE 7: The trigonometric functions

The reason these are “less” important is that we can easily express them in terms
of sine and cosine, rendering them redundant, in a sense. Usually, the main six
functions are grouped as follows.
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• Major Trigonometric Functions. This group consists of the sine, cosine,
and tangent functions, the latter of which is denoted by tanϑ. This func-
tion is the length of the tangent to the circle at the point P∞, from P∞ to
its x-intercept. It turns out that

tanϑ= sinϑ

cosϑ
.

• Minor Trigonometric Functions. This group consists of the secant, cose-
cant and cotangent functions, denoted secϑ, cscϑ (sometimes cosecϑ),
and cotϑ respectively. The secant and cosecant measure the x- and y-
intercepts of the tangent line at P∞, and the cotangent measures the length
from P∞ to the tangent’s y-intercept. It turns out that

secϑ= 1

cosϑ
, cscϑ= 1

sinϑ
, and cotϑ= cosϑ

sinϑ
= 1

tanϑ
.

The remaining functions are the versine (versed sine), coversine, exsecant (exte-
rior secant), excosecant and the chord, denoted by versinϑ (sometimes vrsϑ),
cvsϑ, exsecϑ (sometimes exsϑ), excscϑ (sometimes excϑ) and crdϑ, respec-
tively. The easiest way to explain what each of these are is to direct the reader to
figure 7. The chord is the length of the chord from (1,0) to the point P∞. These
functions have been popular historically, but are seldom used today, so we will
not be using them. We only mention them here for completeness. In terms of
the major and minor trigonometric functions, we have:

versinϑ= 1−cosϑ cvsϑ= 1− sinϑ

exsecϑ= secϑ−1 = 1−cosϑ

cosϑ
excscϑ= cscϑ−1 = 1− sinϑ

sinϑ

crdϑ= 2sin ϑ/2.

Observe that the “co-” prefix to each trigonometric function respects the sym-
metry of the diagonal in figure 7. Notice also that Pythagoras’ theorem applied
to the two right-angled triangles with hypotenuse secϑ and cscϑ respectively
gives us the following.

Corollary 5 (Pythagorean Identities). Let ϑ ∈R. Then

1+ tan2ϑ= sec2ϑ and 1+cot2ϑ= csc2ϑ,

where the first holds if cosϑ ̸= 0, and the second holds if sinϑ ̸= 0.

Proof. Divide the identity cos2ϑ+ sin2ϑ = 1 of theorem 3 by cos2ϑ for the first
identity, and by sin2ϑ for the second.
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II. GRAPHS AND PROPERTIES OF THE CIRCULAR FUNCTIONS

I
N this section, we will aim to plot the major trigonometric functions

as they vary with ϑ. In order to reason about their graphs, we must
first define some nice properties which real-valued functions might
have, and develop some theory around them.

ODD AND EVEN FUNCTIONS

Definition 6 (Even and odd functions). Let A ⊆R. A function f : A →R is said to
be even if for all x ∈ A,

f (−x) = f (x),

whereas it is said to be odd if for all x ∈ A,

f (−x) =− f (x).

For example, f (x) = x2 is an even function, and g (x) = x3 is an odd function.
The function h(x) = x +1 is neither even nor odd. Graphically, an even function
must be symmetric in the y-axis, since (x, y) is a point on y = f (x) if and only if
(−x, y) is. On the other hand, an odd function must have rotational symmetry
about the origin, since (x, y) is a point on y = f (x) if and only if (−x,−y) is. Refer
to figure 8.

x

y = x2

x

y = x3

x

y = x +1

FIGURE 8: Plots of y = x2, y = x3 and y = x +1. Notice that y = x2 is symmetric
in the y-axis, y = x3 has rotational symmetry about the origin, and y = x +1 has
neither of these properties.

Proposition 7. Let A ⊆ R, let fe , ge : A → R be a pair of even functions, and let
fo , go : A →R be a pair of odd functions. Then

fe ± ge is even,(i) fo ± go is odd,(ii)
fe ge is even,(iii) fo go is even.(iv)
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Proof. We simply use the definitions of even and odd. For (i),

( fe ± ge )(−x) = fe (−x)± ge (−x) = fe (x)± ge (x) = ( fe ± ge )(x),

and for (ii),

( fo ± go)(−x) = fo(−x)± go(−x) =− fo(x)∓ go(x)

=−( fo(x)± go(x))

=−( fo ± go)(x),

the proofs of (iii) and (iv) are similar.

PERIODIC FUNCTIONS

Definition 8 (Periodic function). Let A ⊆ R. A function f : A → R is said to be
periodic (with period T ) if there exists T > 0 such that

f (x +T ) = f (x)

for all x ∈ A. If there exists a number T0 > 0 such that f is periodic with period
T0, and for all T ∈ (0,T0), f is not periodic with period T , then T0 is said to be
the fundamental period of f . (In other words, the fundamental period is the
smallest possible T .)

Graphically, a periodic function exhibits translational symmetry.

x

y

T0

T

FIGURE 9: The graph of a periodic function. T is a possible period, T0 is the
fundamental period.

Proposition 9. Let f : A →R be periodic with fundamental period T0. Then each
period of f is an integer multiple of T0, and f (x +nT0) = f (x) for all n ∈Z.
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Proof. We start with the second part. If n Ê 0, applying the periodicity of f n
times, we have

f (x +nT0) = f (x +T0 +·· ·+T0︸ ︷︷ ︸
n times

)

= f (x +T0 +·· ·+T0︸ ︷︷ ︸
n −1 times

)

...

= f (x +T0)

= f (x)

for all x. On the other hand, if n < 0, then again applying periodicity −n times,
we get

f (x +nT0) = f (x +nT0 +T0) = ·· · = f (x +nT0 + (−n)T0) = f (x),

for all x, as required.

Now for the first part, suppose f is periodic with period T , but T is not an integer
multiple of T0. Notice

R= ·· · [−2T0,−T0]∪ [−T0,0]∪ [0,T0]∪ [T0,2T0]∪·· · ,

and since T is not one of the end points, it lies precisely in one of the intervals
[nT0, (n +1)T0] for some n ∈Z. So we have

nT0 < T < nT0 +T0

=⇒ 0 < T −nT0 < T0.

Let T ′ = T −nT0. Then for all x, f (x +T ′) = f ((x +T )−nT0) = f (x +T ) by the
second part of the proposition, and by periodicity, this equals f (x). In other
words, f is periodic with period T ′. But T ′ < T0, and T0 is a the fundamental pe-
riod! This is a contradiction, so there cannot be a period which is not an integer
multiple of T0.

To state the next proposition, we need some notation of sets.

Notation (Set operations). Let A,B ⊆R, and x ∈R. Then we adopt the following
notations.

• A+B = {a +b : a ∈ A and b ∈ B},

• A−B = {a −b : a ∈ A and b ∈ B},
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• x + A = {x +a : a ∈ A} and A+x = {a +x : a ∈ A},

• x A = {xa : a ∈ A} and Ax = {ax : a ∈ A}.

Be careful with this notation, although the definitions mirror closely the corre-
sponding operations on numbers, not all properties follow, e.g., 2A ̸= A+ A.

The next proposition tells us about solving equations involving periodic func-
tions.

Proposition 10. Let f : A → R be a periodic function with fundamental period
T0, let α ∈R, and let X be the set of solutions of the equation f (x) =α in the range
[a, a +T0) for some a ∈R. Then the set of solutions of f (x) =α over A is

(X +T0Z)∩ A.

Proof. Let S be the set of all solutions of f (x) = α over A. We want to show that
S = (X +T0Z)∩ A. We will do this by showing that each is a subset of the other.
First, take x ∈ (X +T0Z)∩ A. Then x = x ′+nT0 for some x ′ ∈ X and n ∈Z. Thus

f (x) = f (x ′+nT0) = f (x ′) =α
by proposition 9, and so x ∈ S. It follows that (X +T0Z)∩ A ⊆ S.

Next, take x ∈ S. Since

R= ·· · [a −2T0, a −T0)∪ [a −T0, a)∪ [a, a +T0)∪ [a +T0, a +2T0)∪·· · ,

Then x lies in precisely one of the intervals [a+nT0, a+(n+1)T0] for some n ∈Z.
So we have

a +nT0 < x < a +nT0 +T0

=⇒ a < x −nT0 < a +T0.

Set x ′ = x −nT0. Then x = x ′+nT0 ∈ X +T0Z, and since x ∈ S ⊆ A, it follows that
x ∈ (X +T0Z)∩ A, so S ⊆ (X +T0Z)∩ A.

ANGLE FACTS

Now let us think a bit about angles. How large does ϑ have to be so that we
traverse a semicircle, i.e., what is the smallest ϑ> 0 such that cosϑ=−1?

Definition 11 (π). The smallest positive real number such that

cosϑ=−1

is denoted by π.
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