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§

1 Introduction

You are encouraged to look through appendix A before you start reading
these notes.

Recall that all pairs (x, y) of real numbers are regarded as points in the xy-
plane, where the set of all such points is denoted by

R =R x R.

Here we will interpret the pair (x,y) in two ways: sometimes as the point
(x,y) in the plane just as before, which we will call the position (x,y); other
times as the directed line segment taking us from the origin (0,0) to the point
(x,y), which we call the vector (x, ).

Yy Yy

o (4,5)

(4,5)

FIGURE 1: The position (4, 5) FIGURE 2: The vector (4,5)

The distinction between the two interpretations is rarely important, and
whenever the distinction is important, it is often clear from the context.

Note that vectors which are translated in the plane (that is, vectors which
are moved so that their tails do not sit at the origin (0, 0)) correspond to the
same pair of coordinates (x, y), since what the pair of numbers represent in
this case is the displacement from the tip of the arrow to its head. Thus if a
vector is translated, we treat the tip as the “new origin”, and read off the
coordinates at the head of the arrow, thus obtaining the same pair (x, y).

These ideas easily extend to the ordered triples (x,y,z) of real numbers,
corresponding to points or vectors in three dimensional space

RP=R xR x R.
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FIGURE 3: Still the vector (4,5) FIGURE 4: A vector in R3

Nothing stops us from considering the set R" = []_; R of ordered n-
tuples. Although there is no geometric meaning for n > 3, it is convenient
to use geometric language. Thus, we still call these tuples points or vectors,
its entries are called coordinates or components, and the set as a whole we call
n-dimensional (Euclidean) space.

1.1 Vector Operations

Here we introduce some operations on vectors. We denote vectors using
single letters in bold typeface, and their coordinates are denoted using the
same letter with corresponding subscripts. Thus we write

x = (x1,x2,...,%n)

for example. We sometimes write Ox when we want to emphasise that we
consider x to be a directed line segment whose tail sits at the origin (as in
figure 2). In this case, Ox is called the position vector of x. In R?> and R3, we
use the letters x, v,z to avoid subscripts, so we write u = (x,y) € R? and
v = (x,y,z) € R for example. In writing, you are encouraged to underline
vectors to distinguish them from numbers, e.g., writing v, for v.

Notation. We adopt the notation
0 = (vi)n
or simply v = (v;) to stand for v = (v1,v,...,v,), where v; is denoting the

general ith component of the vector v.

4 PRELIMINARY VERSION 0.4



§1.1 | Vector Operations Luke Collins

Definition 1.1 (Vector Addition). Let u = (#;) and v = (v;) be two vectors
in R". Then the sum u + v is defined by

u+v:=(u; +v;).

Example 1.2. In R3, if u = (uy,us, u3) and v = (vq,v,,03), then

u+v = (u+v;) = (U1 + 01, U2 + v, u3 + 03).

Remark 1.3. Observe that the vector addition u + v corresponds to the posi-
tion obtained when translating the vector v such that its tail is at the head
of the vector u, or vice-versa; as shown in figure 5. This is a consequence of
the fact that we think of vectors as representing only relative displacement,
and not position. Think about it this way: first we travel from the tip of
the vector u to the head, and then treating the head as if it were the “new
origin”, we travel along the vector v. This is known as the parallelogram law.

y

FIGURE 5: Illustration of the parallelogram law in R?

Definition 1.4 (Scalar Multiplication). Let A € R, and let v = (v;) be a
vector in R”. Then the scalar multiplication of v by A, denoted Av, is the
vector given by

Ao = (Av;).
Example 1.5. In R3, if u = (x,y,z) then

Au = (Ax, Ay, Az).
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Remark 1.6. The reason we call this operation scalar multiplication is that
the result of Av is a scaled version of v by a factor of A. When A < 0, then
the direction of v is reversed. In particular, —1v, which we denote by —v,
corresponds to the vector with the arrow head and tail interchanged.

y

Ao

FIGURE 6: Illustration of scaling in R?

As a consequence of this scaling behaviour, we call single real numbers
scalars instead of numbers throughout. Thus the entries in a vector are
scalars, for example.

Notation. As mentioned in remark 1.6, we denote —1v by —v, and we also
introduce the difference between two vectors, denoted u# — v, defined by

u—v=u+(—v).

Remark 1.7. A relative vector is a vector which takes us from a position a to
a position b, that is, another vector v such that a +v = b. This vector v is
given by b — a, as illustrated in figure 7.

Sometimes positions are denoted using upper case letters such as A or B.
In this case, the vector from A to B is denoted by AB, thus

_— = ——

AB = OB — OA.

Example 1.8. The vector from position a = (1,3,2) tob = (—1,0,1) is
givenby b —a = (-1,0,1) — (1,3,2) = (—2,—3,—1). Indeed, if we add
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—

FIGURE 7: Relative vector from a to b in R2

(—=2,-3,—1) to a, we get
a+(-2,-3,-1) = (1,3,2) + (-2, —-3,—1) = (=1,0,1) = b,
so (—2,—3,—1) “takes us” from a to b, as expected.

Definition 1.9 (Zero vector). The vector 0 = (0) = (0,...,0) is called the
zero vector or the origin.

Note. 0 # 0. One is a vector with n entries, the other is a scalar.

Theorem 1.10 (Vector space properties in IR"). Let u, v, w be three vectors in
R", and let A, i € R be scalars. Then the following properties hold:

) u+(v+w)=Wu+v)+w ) wut+v=v+u

m) u+0=u V) v+ (—v) =0
V) A(pv) = (Au)v Vi) lo=wv
VII) AMu+v) =Au+ Av vi) 0v =0

1X) (A+u)v=Av+ v

Proof. These results all easily follow from the definitions, and properties of
real numbers, e.g. for I, we have

u+t (vt w) = (ui)u+ ((v3) + (wi))n
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= (uj)n + (vi + wi)n (by definition 1.1)

= (u; + (vi + w;i))n (by definition 1.1)

= ((ui +v;) +wi)n (by associativity of addition in R)
= (u; + i) + (Wi)n (by definition 1.1)

= ((t4)n + (vi)n) + (w;)n (by definition 1.1)
=(u+v)+w,

as required. Similarly for VIIiI, we have
0v = (0v;) = (0) = 0.

The proofs of the remaining properties are left as an exercise. O

Exercise 1.11. Try to visualise each of the “laws” in theorem 1.10
in terms of scaling and translation, as we illustrated in the various
tigures (figures 5 to 7). Construct figures which show the equalities
of each. Then, provide a proof for each of them.

Definition 1.12 (Basic Unit Vectors). Let d;, known as the Kronecker delta,
be defined by
1 ifi=k
Oik = .
0 otherwise.

Then we define the basic unit vectors ey fork =1,...,nin R" by

ex = (Gix)n,
that is, e, has a k entry in the ith position, and zeros everywhere else:

e — (1,0,0,...,0)
ey = (0,1,0,...,0)

e, = (0,0,0,...,1).

Similarly

In IR?, we denote e; and e; by i and j, so i = (1,0) and j = (0 1).
= (0,1,0), and

in R3, we denote ey, e; and e3 by i, jand k, so i = (1,0,0), j
k=(0,0,1).
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Definition 1.13 (Linear combination of vectors). Let v1,vs,...,vr € R”,
and let A1, Ay, ..., Ax € R be scalars. Then the vector

k
v = Z/\ivi = Mo1 + Aoy + - - -+ ATk
i=1

is said to be a linear combination of the vectors v1, v, ..., V.

Example 1.14. Letu = (1,2,3),v = (3,2,—1) and w = (1,0,7) be vectors in
R3. Then the vectors

u+3v=u+3v+ 0w = (10,8,0) and 3u+v—5w=(1,8,-27)

are examples of linear combinations of #, v and w.

Theorem 1.15. Every vector v € R" can be written as a linear combination of
the vectors ey, ey, . . ., ey,.

Proof. Letv = (v;) be any vector in R”. Then

v = (v1,02,...,04)
= (v1,0,...,0) +(0,v2,...,0) +---+(0,0,...,04)
=v1(1,0,...,0) +02(0,1,...,0) + - - - +v,(0,0,...,1)

n
=vie; + g€y + -+ Uply = Y Vkey,
k=1

as required. O

Remark 1.16. In particular, any vector u = (a,b) € R? can be expressed in
terms of 7 and j as
ai + by,

and similarly any vector v = (a,b,c) € R® can be written as ai + bj + ck.

1.2 Distances and Angles

So far we have encoded positions in R", as well as operations we can carry
out when interpreting them as directed line segments (vectors), but we
have not yet described the notion of distance between positions; i.e., we
do not yet have a way to express that (1,0) is closer to (1,2) than to (5,5),
for example.
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In the chapter on geometry, we defined the distance function (or metric)
d: R?> x R? — R, where for two points A = (ay,a;) and B = (b, bp) in R?,
we have

d(A,B) = /(a1 — b1 + (a2 — ba)?

which is inspired by Pythagoras. Here we do things in a different but
equivalent way which nicely generalises to R". We first define the length
of a vector in terms of the dot product.

Definition 1.17 (Dot Product). Let u = (u;), v = (v;) be vectors in R".
Then the dot product or scalar product of u and v, denoted u - v or (u, v), is the
scalar defined by

n
u-v= Zuivi = U101 + UV + - - - 4+ U, Vy.
i=1
Example 1.18. (1,2,3)-(4,5,6) =1-4+2-5+3-6 = 32.

Definition 1.19. The length (or magnitude or norm) of a vector v € R", de-
noted ||v|| or |v], is the scalar defined by

[oll = vo-o.
When a vector v has ||v|| = 1, then v is called a unit vector or a direction.

Example 1.20. 1|(1,2,3)]| = /(1,2,3) - (1,2,3) = VI + 2 1 # = V4.

For v = (x,y) € R? we have |[v] = \/x2+1y2 = /(x —0)2 + (y — 0)%.
With our old definition, this turns out to be the distance 4((0,0), (x,v))
from the tip of the vector v to its head.

Definition 1.21 (Distance). Let a and b be two positions in IR”. Then the
distance between a and b, denoted d(a,b), is the length of their relative
vector; i.e.,

d(a,b) = |[b — al|.

Remark 1.22. For A = (ay,a;) and B = (by, by) in IR?, we have
d(A,B) = |AB|| = ||OB — OA[| = ||(b1,b2) — (a1,a2) ||
= [[(b1 — a1, b2 — @) |

= /(o1 —m)> + (b2 — w22,

which shows that definition 1.21 agrees with our old definition for d(A, B).
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Exercise 1.23. 1. Find the distance between the following pairs of
vectors.
a) (1,2) and (3,4) b) (1,2,3) and (—1,0,1)
¢) iand jin R? d) i and jin R3

2. Show that in general for a,b € R",
d(u, b) = z(ai — bi)z.

3. Letc = (a,b) € R?> and r € R where r > 0. Show that the set
of points C = {x € R? : d(c,x) = r} correspond to a circle,
centred at (a,b) with radius r.

J

Definition 1.24 (Midpoint). Let u = (u;),v = (v;) € R". The midpoint of u
and v is the position m with coordinates

" — u; + v;
=\— )

i.e., the coordinates of m are the averages of the corresponding coordinates
of u and v.

Example 1.25. The midpoint of (1,3, —5) and (5, —3,2) is

m= (4,5, 52) = (3.0.-3)

Proposition 1.26. Let u,v € R" and let m be their midpoint. Then
d(u,m) =d(m,v),
i.e., the midpoint m lies “in the middle” of u and v.

Proof. This goes similarly to the proof for R? in geometry:

da,m) = (), (M5
= Jo= (5] = (=) | = ) ()]
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I3
—a((“5%) @) = dlmo),

as required. O

Notation (Scalar division). Let A € R, A # 0, and v € R". We adopt the
notation

v
A
or v/ A in-line, to stand for %v.

Definition 1.27 (Normalised vector). Let v € R" be a non-zero vector. The
normalised version or direction of v, denoted 9, is the vector v/||v||.

Proposition 1.28. Every normalised (non-zero) vector is a unit vector.

Proof. Letv € R" \. {0}. Then

2

HﬁHz—' vlf_ e v _wo _wo |
o]l lol ol o> v-2
and so ||9]| = 1, as required. O

=

Exercise 1.29. Do you believe the proof presented for proposition 1.28?

Are there any unjustified steps? Yes! The step HZ—H . L‘ = HZIZI]Z is not

I
obvious for the dot product (remember this is not ordinary multipli-
cation). Prove using the definition of the dot product thatif u,v € R"

and A,y € R, then (Au) - (pv) = (Au)(u - v). (In the case of the proof,
this was applied with A = 4 = 1 and u = v.)

Kl

Proposition 1.30. Every non-zero vector v € IR" can be written uniquely as Au
for some A > 0 and unit vector u € R", where A = ||v|| and u = 9.
Proof. Clearly v = ||v|| ¥ by definition of 9.

Now for uniqueness, suppose v = Au where u is unit, and 0 < A # ||v].
But then

by exercise 1.31 1(c)

[o]l = [[Aul] (Ml = Al = A # ]
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since u is unit, a contradiction. Therefore we must have A = ||v||, and so
suppose v = Au where u is unit but this time u # 9. Then

v=Au = |v||u
since A must be ||v||. But it follows that u = v/||v|| = 9, a contradiction.
Therefore we must have A = ||v|| and u = 9, so uniqueness follows. O

N

Exercise 1.31. We assume that the easy results proved in these exer-
cises are known throughout the rest of the notes.

1. Prove the following for any u,v € R" and A € R.
a) 0-0=0 b) v-v = |v]?

o) [[Aol = |Al[l]l d) u-v = [Jul|[o](@-9)
2. Prove the following for any u#,v,w € R" and A € R.

A) u-v=v-w b)u-u=0<«= u=0
o u-(v+w)=u-v+u-w

d)u- (M) =A(u-v)=(Au)- v

e) llutol =ull>+2u-0+ 0|

f) (u+o)- (u—2o)=|u|?+][o|

3. Show, diagrammatically, that any unit vector # € R? has the
form
u = (cos6,sinf)

where 0 € [, 7] is the angle # makes with the x-axis.

4. Show that for any vector v € R", the ith component of v is
given by v; = (v, e;), and

n

v=1) (v,e)e.

k=1
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Proposition 1.32 (Cauchy-Schwarz Inequality). Let u,v € R". Then
|- o] < ullflo]]

Proof. We prove that u - v < ||ul|||v||, because then replacing u with —u

yields [[ul/[[o] = l|-ullllol] = (—u)-v = YL (-uwwi) = =1L wv; =
—u-v,so that —||u||||v|| < u-wv.

Clearly for any x,y € R, we have (x —y)? > 0, which expands to give
x? +y? > 2xy. If we suppose for now that u and v are unit vectors, by
definition we get

n n u +,U 1 n n
v=) uv; <y ——F— :2<;uiz+;vi2>

i=1 i=1

1
= 5l +[lo]*)
1
=51 +1) =1=[Julo].

So the result holds for unit vectors. If # and v are not unit (and not zero),
then their normalised versions are unit by proposition 1.28, so -9 < 1,
and thus (u - v)/||ul/||[v]| < 1. Finally if any of u, v are zero, the result is
immediate. O

The Cauchy-Schwarz inequality is a very useful inequality. We need it here
for the following definition, because it ensures that the inverse cosine of a
dot product of two unit vectors is always defined.

Definition 1.33 (Angle between two vectors). Let u,v € R". The angle
£ (u,v) between the vectors u, v is the real number £ (u,v) in [0, 7r] defined
by

A(u,v) =cos ! (i1-9).

Remark 1.34. Note that there is no geometric meaning for angles in R" for
n > 3, that is why we take this definition. Let us show that it agrees with
our usual understanding of an angle in R2,

Let u,v € R?. By proposition 1.30 and by exercise 1.31.3, we can write
u = ||u||(cos6,sin6) and v = ||v||(cos¢,sin¢)

where 0, ¢ € [—7, 7] are the angles u and v make with the x-axis.
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Sketching a quick diagram, we see that the angle between u and v is 6 — ¢.
Indeed, we have

u-v = ||ul|||v||(coscos ¢ + sinfsin¢) = ||ul|||v]| cos(0 — ¢),
so that cos(6 — ¢) = Talfor = # - 0, as required.

Definitions 1.35. Let u, v € IR" be two vectors.

(i) u and v are said to be in the same direction if i = 9, and in opposite
directions if . = —9. In either case, u and v are said to be parallel,
denoted u || v.

(ii) u and v are said to be perpendicular or orthogonal if u - v = 0.
Proposition 1.36. Let u,v € R" be two vectors. Then

(i) If u and v are in the same direction, the angle between them is 0.

(ii) If u and v are in opposite directions, the angle between them is 7t.

(iti) If u and v are perpendicular, the angle between them is 7.

Proof. These easily follow from definition 1.33. For (i), # = ¥ gives that
#-9 =14 4= |#a]|?> =1, so in this case £(u,v) = cos~!(1) = 0. For (ii),
wehaveit = —9,sonow &t -9 = i - (—#t) = —(di - 4) = —||&]|> = —1, and

therefore £ (u,v) = cos~'(1) = 7. Finally for (iii), we have

v v  wo 0
[ull Mol (ulllol (el

so £(u,v) = cos™1(0) = 5. O

0,

Exercise 1.37. 1. A triangle ABC has vertices A(0, —1,1), B(2,3, —2)
and C(3,1,0). Express the vectors AB, BC and CA in terms of
i, j and k, and hence find the lengths of the three sides.

2. Suppose u and v are orthogonal vectors in R”. Show that
e+ 2% = [lall* + [|w]|*
and explain why this is equivalent to Pythagoras’ theorem.

3. Intriangle ABC, A = (3,3,—-2),B = (—2,0,5)and C = (1,—-2,1).
If L and M are the midpoints of AB and AC respectively, show
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that LM is parallel to BC.
4. Simplify the expression ||b||?> + ||c||> — (b — ¢) - (b — ¢). By tak-
ing b = AC and ¢ = AB, deduce the cosine formula

a* = b? 4 ¢* — 2bc cos(BAC)

for triangle ABC shown in figure 8.

AN
A
b C

FIGURE 8: Triangle ABC

5. Suppose a, b, ¢ and d are positions of the vertices of a parallel-
ogram. Express d in terms of the other three vectors.

6. Suppose (1,2) and (4, 1) are opposite vertices of a square in R2.
Find the coordinates of the other two vertices.

7. The vectors 0, x, y, and x + y are the position vectors of vertices
of a parallelogram. Show that the sum of the squares of the
diagonals is equal to the sum of the squares of the sides, i.e.

I+ ylI? + [lx — yII* = 2]}x* + 2]l >

Deduce Euclid’s median formula: in a triangle ABC where M
is the midpoint of BC,

»_ AB*+AC* BC?

AM > T

8. Points on the perpendicular bisector of the line segment AB
satisfy the equation ||x — OA|| = ||x — OB||. Show that for R?,
this expands out to

2(a; — by)x +2(ay — by)y = a2 + ay* — b1* — by?
where x = (x,y), A = (a1,a2) and B = (b3, by).
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1.3 Matrix Operations

A matrix is, in some sense, a generalisation of a vector. Consider the set
(R?)? = (RxR)®> = (R xR) x (R xR) x (R x R).
This contains elements of the form ((a,b), (c,d), (e, f)). We will write these

elements instead as
a ¢ e
b d f)°

Such an object is what we call a 2 x 3 matrix, and the set of such matrices
is denoted R?*3. Let us give a general definition.

Definition 1.38 (Matrix). An m X n matrix is a rectangular array of real
numbers, called entries, arranged in m rows and n columns. The expres-
sion m x n is called the size of the matrix, and the set of all m x n matrices
is denoted R™*",

An m x n matrix can be expressed in general as

a1 a2 0 A

a1 dz -+ Ap
A =

Aml Am2 - Amn

or, similarly to vectors, concisely as
A = (a;j)mxn

where 4;; denotes the entry in the ith row and jth column, i and j being
called the row and column indices, respectively. As before, we relax this to
(aij) when the size is clear in context.

As we have seen already, matrices are denoted by single capital letters in
bold typeface, and their entries are denoted using the corresponding small
letter with two subscripts ranging over the rows and columns (i = 1,...,m
andj=1,...,n).

When m = n (i.e., size n x n) the matrix is said to be square, and the entries
a;; (that is, a11, ax, ..., a,,) make up the diagonal of the matrix. If a matrix
is not square, it is called rectangular.

We identify n-vectors (i.e., vectors in R") in the world of matrices with n x 1
matrices. So for example, the vector (x,y) corresponds to the matrix (;)
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Examples 1.39. Consider the following matrices.

1 2
A={3 4|, B=(1 2 -5 7 12), C=(4),
5 6
0O mT e ) 3 0
— 1 1 1 — _
D=13; -5 1| E_<5 1)’ *= (1)
0O 0 O

These matrices are, in order, 3 x 2,1 x5, 1x1,3x3,2x2and 3 x 1.
Matrices C, D and E are square, whereas A, B and x are rectangular.

The matrix x is equivalent to the vector (0,1,0), whereas the matrix B is not
a vector (1 x n matrices are sometimes called row vectors or covectors, but
they are not considered vectors). Notice that we still use lowercase letters
for vectors here.

The matrix C is a number (or scalar). We do not distinguish between scalars
and 1 x 1 matrices.

Definition 1.40 (Matrix Equality). Let A = (a;;)mxn and B = (bjj) yxk. Then
the matrices A and B are equal, denoted

A =B,
ifm=1{n=kanda; =bjforalli=1,..., mandj=1,...,n

Example 1.41. None of the matrices below are equal to each other.

1 2 1 20 1 2

3 4 340 3 5
Definition 1.42 (Matrix Addition). Let A = (a;;) and B = (b;;) betwom x n
matrices. Then the sum A + B is the m x n matrix given by

A+B= (aij + bl])

Matrices of different size cannot be added.

Example 1.43. Consider the matrices
12 3 4 -1 0
A= (0 5 —4> ’ b= (6 11 —13> ’
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Then their sum is

A+B:<1+4 2-1 3+0>:<5 1 3>.

0+6 5+11 —4-13 6 16 —17

Definition 1.44 (Scalar Multiplication). Let A € R be a scalar, and let A =
(a;j) be an m x n matrix. Then the scalar multiplication of A with A, denoted
AA, is the matrix given by

AA = ()\ﬂl])

Example 1.45. Consider the matrix

A (20).

10 0
5A“<—5 25)'

Remark 1.46. The operations of addition and scalar multiplication which
we defined here coincide with those defined earlier for vectors. What this
means is that if we treat a vector v € IR" as an n x 1 matrix, and apply the
definitions given here for addition and scalar multiplication, then the result
will be identical to what we expect using the original definitions.

Then the matrix 5A is

Notation. Just as we did with vectors, we denote the matrix —1A by —A,
and introduce the difference A — B between two matrices (of the same size),
defined by

A—B=A+(-B).

Now we introduce something which we has no vector analogue.

Definition 1.47 (Matrix Multiplication). Let A = (a;j) ;x4 and B = (b;;)axn
be two matrices. Then we define the product of A and B, denoted AB, to be
the m x n matrix given by

d
AB = (Z aikbkj>
k=1 m

Remark 1.48. This definition seems rather complicated, so let’s break it down.
Notice that the index of summation, k, varies the column index j of 4;;, and

Xn

19 PRELIMINARY VERSION 0.4



§1.3 | Matrix Operations Luke Collins

the row index i of bj;. Thus the ijth entry of AB is

d
Y aibyj = aibyj + apbaj + - - - + aigg;.
k=1

If we consider the rows of the matrix A to be the vectors ay, as, ..., a,; and
the columns of the matrix B to be the vectors by, by, ..., b,, then the ijth
entry turns out to be the dot product a; - b]-, that is,

S VA |
AB = ) by b - b,
' . |

a;-by a;-b, --- a;-b,

a, by ay-by --- ap-b,

ay-by ay-by - a,-b,

Thus we say that the each entry is obtained by doing “row times column”.
Notice the restriction that this places on the dimensions of the matrices A
and B: they need to be of size m x d and d x n, so that the dot product is
between two vectors of dimension d (that is, both have d entries).

When two matrices A and B are of size m x n and ¢ x k with n = / as
required for multiplication, we say that they are compatible, conformal or
that their inner dimensions match. Otherwise, the product AB does not exist.

Let us give some examples.

Examples 1.49. Take the matrices A, B, C, D, E, x from examples 1.39:

1 2
A=1|3 4], B:(l 2 -5 7 12), C:(4),
5 6
0O T e
0
D= |1 11 E = 23 =11
— |2 73 %z *7\s5 1)’ 0
0O 0 O
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The product AD does not exist, since A is of size 3 x 2 and D is of size 3 x 3.
DA on the other hand does exist, since D has size 3 x 3 and A has size 3 x 2:

0 mT e 1 2
D3y3A350 = % —% % 3 4
5 6

0 0 O

We know that the resulting product will have size 3 x 2 by definition (D3x3A3x2).
Now each ijth entry is the dot product of the ith row with the jth column:

37w+ 5e 47+ 6e

O W
S N

What follows immediately from this example is that matrix multiplication
is not commutative; i.e., in general, AB # BA. In fact, in this case, only one
of these products exists.

As another example, let’s find the product Dx. The product exists because
Dis3 x3and xis 3 x 1. The resultis 3 x 1.

O7re0 T
_ 1 1
r= 1 -5 (1] =]
0 0

O 0 O

Exercise 1.50. Find, if they exist, the products
a) AB b) CB ¢) BC d) AE

e) xB f) xC g) (DA)E h) D(AE)
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Remark 1.51. Observe that the 1 x 1 matrix C, when compatible with other
matrices, behaves as a scalar multiple. Thus in general 1 x 1 matrices are
treated as scalars and are considered “compatible” with all matrices (in the
sense of definition 1.44).

00

Definition 1.52 (Zero matrix). The matrix O = (0) = ( N > is called the
00

zero matrix.

Theorem 1.53 (Ring properties for matrices). Let A, B, C be three matrices.
Assuming that the matrix dimensions are such that the operations can be per-
formed, we have the following:

) A+(B+C)=(A+B)+C 1) A+B=B+A

m) A+O=A V) A+(—-A)=0

v) A(BC) = A(BC) Vi) A(B+C)=AB+BC
vil) (A+B)C =AC+BC

Proof. Just as in theorem 1.10, these results easily follow from the defini-
tions. The only hard one is v, where we have

A(BC) = (a;j) ((bij)(cij))

d

= (lll']‘) <k2 b,-kckj> (by definition 1.47)
=1

d
<ai€ ) bgkckj)> (by definition 1.47)
k=1
o d
2 Z aigbgkck]) (by linearity of X)

aigbgk> ck]) (by linearity of X)

)
= <Z Z ﬂigbgka]'> (finite sums can be interchangedl)

s
= Z ai£b€j> (cij) (by definition 1.47)
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= ((aij) (bij)) (cij) = (AB)C,
as required. Proofs of the remaining properties are left as an exercise. [

Definition 1.54 (Matrix Transpose). Let A = (a;j)uxn. The transpose of A,
denoted AT, is the n x m matrix given by

Al = (aji)nxm~

Example 1.55. If A, B and x are given by

1 2 -1
5 6 2 1

then we have

AT:G z 2) BT:<(1) ‘f) x'=(-1 0 1).
2

Now we introduce a special matrix which behaves analogously to the num-
ber 1 in the set of real numbers. The number 1 is called the multiplicative
identity in R, because it does nothing to numbers under multiplication (pre-
serving their “identity”):

Analogously we have the additive identity 0 € R, since 0 does not change
numbers under addition:

x+0=0+x=x.

For matrices, the additive identity is simply the zero matrix O, which ex-
hibits the desired behaviour

A+O0O=0+A=A

for any matrix A (of compatible size), as seen in theorem 1.53 111. What we
would like to try and obtain here is a multiplicative identity for matrices.
Note that this is not as simple a task as determining an additive identity,

ISee proposition A.12.
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tirstly because multiplication of matrices is not defined as simply as addi-
tion, and secondly because multiplication is not commutative; so even if
we find some identity matrix I which satisfies AI = A, it needn’t satisfy
IA = A.

Here is the definition.

Definition 1.56 (Identity matrix). The identity matrix is the n x n matrix
denoted I, or simply I, defined by

where §;; denotes the Kronecker delta (definition 1.12).

Thus the first few identity matrices are

1 000
1 00
1 0 0100
Il - (1)/ IZ - (0 1) s I3 - 8 é Sl) s 14 - 0010l
00 01

with ones on the diagonal and zeros everywhere else.

Observe that if A is an m x n matrix where m # n, then it is impossible
to have I,A = AI, = A for the same 7, simply because only one of these
products can exist (because of their size). Refer to example 1.57, and verify
the computation yourself.

Example 1.57. Suppose A = (} 22). Then we have
1 00
1 2 3 1 2 3 1 0\ /1 2 3
AI3_(4 5 6) 8 (1) (1) _(4 5 6)_<0 1)(4 5 6>_IZA'

Let us now prove that I behaves as desired in the general case.

Theorem 1.58. Let A = (a;;) be an m x n matrix. Then
AL, =1,A =A.

Proof. Recall I, = (6;;). Thus

n
Al, = (Z aikék]-)
k=1
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= (3001 + -+ a5(_1)0(j-1); + 450 + (1) 8(j1); -+ Aindig)
= (a0 + - - - + ayj_1)0 + a;1 + a;(j41)0 + - - - + 4;,,0)
= (aij) = A,

and by a similar reasoning we get I,,A = A. O

Note that since in the general case, different I's are required on the left and
the right of a matrix A to act as a multiplicative identity, we call I such that
IA = A the left identity, and I such that AI = A the right identity. It is easy
to see that a matrix A has the same left and right identity if and only if the
matrix A is square.

The final operation we introduce is the analogue of division for matrices.
Before we give a definition however, let us again consider the real numbers
first. What does it mean to divide? In an infantile treatment of arithmetic,
division is introduced as a distinct operation from multiplication, just as
subtraction is thought of being distinct from addition. But the way we
actually treat subtraction in more formal considerations is the addition of
some “inverse element”, i.e., x — y is shorthand for x + (—y), where —y is
a number such that

y+(=y) = (~y) +y=0.
We call —y the additive inverse of y. (Note that 0 on the right-hand side is
the additive identity).

Likewise, x + y or 5 denotes x - y~1, where y~! is a number such that

yy =y ly=1

We call y~! the multiplicative inverse, and this time we have = 1 on the right
hand side, since 1 is the multiplicative identity. In the general case, when
we have some binary operation * defined on a set X, an element i € X is
an identity if

X*ki=1%X=X

for all x € X, and the inverse element x ! € X of x is an element such that

In the context of matrices, the additive inverse of A is —A = (—1)A, since
A+ (—A) = (—A) + A = 0. Again, multiplication will prove to be the
more challenging case. In fact, we will focus solely on 2 x 2 matrices for
Now.
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First of all, if A is m x n with m # n, we cannot have one matrix A~! such
that
AA T =A"1A =],

simply because of the sizes: if A~! exists it will have to be n x m and on
the left we get A"'A = I,,, whereas on the right we get AA~! = I,,,. There
is a study of left and right inverses, however we will not get into it here,
and focus solely on square matrices where everything is n x n (everything
meaning the matrix, its inverse, and I). Thus, we have the following defi-
nition.

Definition 1.59 (Matrix Inverse). Let A be an n x n (square) matrix. An
n x n matrix A~! such that

AAl=ATTA =1,

is said to be an inverse of A. If A has an inverse, then it is said to be invertible.
Otherwise, A is said to be singular.

. 51 -2 1 -1 4
Exercise 1.60. Suppose A = ( 21 2 ) and B = ( 2 -1 6 )
201 2 2 -7

Work out AB and BA. What do you conclude?

Now clearly for 1 x 1 matrices, being essentially numbers, the inverse of
the matrix A = (a) is simply A~ = (1), aslong as a # 0. Indeed,

AA! = (a) <1> )=,

a
and similarly we get A~'A = 1.
Theorem 1.61. Let A be a square matrix. Then if A~ exists, it is unique.
Proof. Suppose B and C are two inverses of A. Then
AB=BA =1 and AC=CA =1
In particular, AB = AC, so
B(AB) = B(AC) = (BA)B=(BA)C — IB=IC =— B=C,

thus any two inverses of A are equal, proving that A~! is unique. O
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The following theorem is helpful because it saves us having to check that
both AA~! =T and A~'A = I; one of them is enough to prove inverse.

Theorem 1.62. Suppose A and B are square matrices such that AB = 1. Then
BA =1

Proof. We give an incomplete proof, because we assume B! exists.” In-
deed,

AB=1 — (AB)B"'=1IB"!
ABB ') =B
Al =B!
A=B"!

BA =BB!

BA =1,

Frell

as required. O

Combining theorems 1.61 and 1.62, we have the following.

Corollary 1.63. If A and B satisfy AB = 1, then A and B are each other’s unique
inverse.

Proof. Indeed, if AB = I, then BA = I by theorem 1.62, and thus
AB=BA =1

This gives us that A is an inverse of B, and that B is an inverse of A. Unique-
ness then follows from theorem 1.61. O

Now let us go to 2 x 2 matrices. We have the following.

Theorem 1.64. Suppose ad — bc # 0. Then the 2 x 2 matrix A = (*4) is

invertible. Moreover,
1 d b
Al = .
ad — bc (—c a >

21t can be shown that B~1 always exists whenever AB = I, but we need more tools
before we can do so. It is given as an exercise in future sections.
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Proof. We have

(o) mw () = 00 (5 0)
(

which by corollary 1.63 completes the proof. O

Note. Just as we required a # 0 for 1 x 1 matrices to be invertible, here we
require ad — bc # 0. This special number, ad — bc, is called the determinant
of the matrix A, which we denote by |A| or by det A. There are analogous
numbers for general n x n matrices which we explore later, together with
their algebraic and geometric significance.

Example 1.65. Suppose X = (2 3!). Then

o (G ) s () a5 )

Example 1.66. We solve the equation AX 4+ B = C for X, where

2 7 1 4 10 29
= 5) =) = (0 7)

Indeed,
AX+B=C — AX=C-B
— A 'AX=A"1(C-B)
— X=A!YC-B).
Therefore

ARG DI
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1 /=3 =7\ (9 25

o3\ \—4 2)\1 -1

_ 1 /-34 -—68

T34\ -34 -102

(1 2

1 3)
Remark 1.67. Most of the algebra we carry out to solve matrix equations is
analogous to the algebra with real numbers which we are used to. The two
main differences are the lack of division, where we instead use inverses,
and the lack of commutativity. Notice that in the second implication of
example 1.66, we multiplied both sides by A~!. In particular, we multiplied
on the left. This is different than multiplying on the right! So in general,
if we have the equation LHS = RHS, we can premultiply by a matrix to get

ALHS = ARHS, or postmultiply to get LHSA = RHSA. But we cannot do
A1LHS = RHS A or LHSA = ARHS.

Notation (Matrix Power). For any square matrix A, we define the matrix
power A" by the following recursive definition.

AA"Y ifn >0
A" = I ifn=20
(A~H=" ifn <0,

so for example, A3 =AAA, A =Tand A 2=A"1A"1

Exercise 1.68. 1. Calculate

1 8 4 3 0 12
2 9 5 |+127 3],
-3 13 10 3 3 14

giving your answer in the form kA, k € IN.
2. Consider the following matrices with their sizes given below:

A B C D E F
4x3 3x3 4 x4 2x5 3 x2 4x1

Determine the size of:
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a) AB b) BAT c) D'E
d) FFCAB e) (BE+E)T f) F'CF
3. Calculate:
U =g 2 1 1 8 7 3 2
1 -6 1 9
1 1 O 1 2
a) |3 -2 4 5
3 1 -4 -3 5
¢ 2 61 -6 2 3 5 -1
7 2 7 4
1
2
b) [3[(6 7 8 9 10)
4
5

4. Given the matrices A = (%§§>’B = ( 7 §>IC = (§3) and

D= (4911 ), find where possible:

a) AB b) BA c) CB

d) ABC—B e) AD+D fy ¢!

g) BC+BC! h) DC i) 4A3

j) D'A k) B'A ) (AT—A)
m)AAT n) B'TAT — AB’ o) D'D

p) (AAT)T q 3(A—AT) r) B'AB

5. A matrix A is said to be symmetric if AT = A and skew-symmetric
if AT = —A. Let A be any n x n square matrix. Prove that:

a) The matrix S = 1(A + AT) is always symmetric.
b) The matrix V = 3 (A — A") is always skew-symmetric.

c) Any square matrix can be split as the sum of a symmetric
and a skew-symmetric matrix. (Hint: use S and V).
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6. Given that
-1 4 1 6 —42 -32
A= 2 -4 7 and B=|3 —-12 -9 |,
-3 6 -9 0 6 4

find AB and deduce A1.

7. Theorem 1.64 gives us the implication

ad —bc #0 = (?Y) has an inverse.

Prove that the converse is also true, that is, if the matrix (7 5)

has an inverse, then it must be that ad — bc # 0. This way, we
get that for any 2 x 2 matrix A, “A is invertible” is equivalent to
|A| # 0. [i.e, we getad —bc #0 <= (2!) has an inverse.]

8. Prove that for any two invertible square matrices A and B, if
the product AB exists, it is invertible, and (AB) ! = B~1A~L.

9. Invert the following matrices.
) 3(3 ) D (47) 9 (Go) d (3 %)
10. Explain why (}2) is singular.

11. Given the matrices A = (3 %), B = (3) and C = (1), solve
the equation Ax + B = 10C.

12. Consider the matrices A = (12),B= (7 2)andC = (§ ).
Find the inverses A=, B~!, C~! and the product ABC. Hence
verify that (ABC)~! = C"!B~'A~!, and prove that the result
holds in general for any three invertible matrices A, B and C
(of the same size).

13. A diagonal matrix is a square matrix with entries in the diag-
onal, and zeros everywhere else. Prove that, in general, the
product of two diagonal matrices (where it exists) is another

3

. : . (300
diagonal matrix. Hence invert the matrix < 0-20 |-
001

. .. 1-12
14. The matrix A is given by (g % 53).

a) Find A% and A3. Express A® + AA + ul as a single 3 x 3
matrix.
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b) Find values of A and u such that A®> + AA + ul = O, where
O is the 3 x 3 zero matrix. Hence, express A lasa single
3 x 3 matrix.

15. A matrix P(k) is given by P(k) = (% ,25) fork € R.

a) Determine the values of k for which P(k) has no inverse.
What is such a matrix called?

b) Find, in terms of k, the inverse matrix P! (k) for when k
is not equal to any of the values found in part (a).

2 Computational Methods

In this section we demonstrate how matrices can help us to solve systems
of linear equations in multiple variables, and then explore the notions of
determinants and inverses for matrices larger than 2 x 2.

2.1 Systems of Linear Equations

A system of linear equations (or a linear system) is a collection of linear equa-
tions involving the same set of variables. For example,

5x =2y =7

7x+3y =4
is a linear system involving the variables x and y. The use of the word “sys-
tem” indicates that the equations are to be considered collectively, rather

than individually. This is also why we use a curly bracket ({) to group the
equations together notationally.

A solution to a linear system is an assignment of the variables, x and y in this
case, such that all the equations are simultaneously satisfied. A solution to
the system above is given by the assignment x =1 = —y.

Notice that the system above can be written as

{(5, —2)- (x,y) =7
(7,3) - (x,y) = 4

where - denotes the dot product of vectors. Even more concisely, the defini-
tion of matrix multiplication (and matrix equality) gives us that the system
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is equivalent to the matrix equation

5 =2\ (x\ (7
7 3 y) \4)°
We call the matrix A = (5 3?) the matrix of coefficients, the vector x = (x,y)

the solution vector, and b = (7,4) the vector of constant terms. Thus this
system is simply a matrix equation of the form Ax = b.

Indeed, this is true in general for any linear system of equations:

System <= Ax=0Db

(= (N0 -6)

ax+by+cz=ua a b c ¥ &
g§x+hy+ iz=1v g h i z i
ax+by+cz+dw=un i b c d X N
ex+ fy+gz+hw=p e f & h||y p
, ) = | . - = ,
ix+ jy+kz+ lw=1y ij ok 1]z Y
mx +ny+oz+pw =9 memoo-p w 0

We can also have a different number of equations from variables, e.g.:
u
2
w|  \B/)’
x
ax+ by =« a b
cx+dy=p < |c d <x> =
e f Y

ex+ fy=-1

au+ b+ cw+dx =« <g b ¢ d)
=
eu+ fo+gw+hx =p e f g h
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and in general,

anxi + apxa 4+ -+ aypxn = by

Ay X1+ anXo + - - 4 AypXny = ba
— (aij)mxn(xi)n = (bi)m-

A1 X1 + QX2 + - - - + Apn Xy = bm

However for now we focus on the case where the number of equations is
equal to the number of variables (and therefore we have a square n x n
matrix of coefficients).

What is the advantage of representing linear systems in this way? The
answer is simple: it reduces the problem of solving the system to finding
the matrix inverse, since

Ax=b — x=A"'p,

assuming that the matrix of coefficients A is invertible. For 2 x 2 matrices,
this is equivalent to requiring that |A| # 0 (by exercise 1.68.7). Indeed, let
us try and solve the system

5x =2y =7
7x+3y =4

which we gave initially, by inverting the matrix of coefficients. Since this
can be written as

5 =2\ (x\ (7

7 3 y) \4)’
we have

(-G 3) st 90
N % ( 37 77++25 44)
&

)= (5):

_ 1
2

O

and indeed the solutionis x =1 = —y.
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Remark 2.1. We will prove later that each system of n linear equations in
n variables (thus n x n matrix of coefficients) has a unique solution if and
only if the determinant of its matrix of coefficients is non-zero.

-32 0 ~7 —14 —
Example 2.2. Consider the matrices A = (—71 ! —73) and B = ( 1;47 %jf 26).
We find the product AB and hence solve the system

—3x +2y =3
—x+ y—3z=-1.
7x +7z2=0

Indeed, we have

-3 2 0 -7 —-14 -6 7 00
AB=|-1 1 -3 14 21 9 ] =|07 0] ="7L
7 0 7 7 14 5 00 7

Now observe that the system we have is Ax = b, where x = (x,y,z) and
b = (3,—1,0). Thus we can find the solution vector x since x = A~'b, and

AB=71 = 1AB=1 = A(}B) =1

and thus A~! = %B. Therefore

L (-7 14 -6\ [3 1
x:A’lb:(%B)b:§ 14 21 9 ||-1]=(-3],
7 14 5 0 -1

and thus the solutionisx =1,y = —3and z = —1.
Exercise 2.3. 1. Solve the following systems of equations by in-
verting the matrix of coefficients.

2x =5y =-21 5x  +4y =40

a) b)
4x +3y =23 3x —9y=-33
3x —6y=-3 x +9y=34

S g d) /
5v —6y=7 4x —5y=13
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) 6x —3y=3 ‘ 6x +4y =65
e
4x —3y=-5 6x +8y =286
9x +8y =42 —9x 48y =4
8) / h) Y
3x —-2y=0 3x +b5y =237
) 30 3 ) 1 [k 2 12
2. The matrix A = | -6 4 1 | has inverse el =5 k+€+1 5¢
1 -2 -1 4% -6 -—12

Find the values of k and /, and hence or otherwise, solve the
system of equations

—u +w=2
—6u—+4v+w=>5.
—u+20+w==~6

Ans: x=1, y=2, z=3
3. Consider the matrix M = ( 55 —?;2 %)

a) Determine constants A, i such that M®> = AM + ul.

b) Hence, determine M~! and solve the system of equations

x  +4y =5
5 -2y —-z=3
—5x +z=-5
Ans: x=y=1, z=0
Notation. |l 712 | is shorthand for |(g}! 42)| = det(gl! 2.

4. Consider the lines /1, C IR?> whose respective equations are
ax + by = k and cx + dy = m. Show that ¢; and /, are parallel
if and only if

a b

c d

-o

5. (Cramer’s Rule). Let A = (?%) and b = (a, B). Prove that the
solution x = (x, y) of the system of equations corresponding to
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the equation Ax = b is given by the equations

a b
B d

X =

‘ /det(A) and y=

‘CZ g / det(A).

2.2 Elementary Row Operations

Elementary row operations are simple operations one can carry out on the
rows of a given matrix. There are three such operations.

I. Row switching.
Interchanging row i with row j, denoted by writing R; <> R;.

For example,

123 - 45 6
45 6| —22%2 11 2 3
7 89 7 8 9

II. Row scaling.
Multiplying row i by a non-zero scalar A € R, denoted by writing

AR; — R;.
1
4
7
111. Row adding.
Replacing row i by the sum of itself with a scalar multiple of another
row j, where j # i, denoted by writing R; + AR; — R;.

For example,

2 3 _— 1 2 3
5 6] —27%2 420 25 30].
8 9

7 8 9

For example,

R3+(*3)R1~)R3

1 2 3 1 2
4 5 6 4 5
7 89 4 20

We focus on these three operations in particular because it turns out that
carrying out an elementary row operation on a matrix A can be achieved
simply by pre-multiplying by some other matrix E. Such matrices, that is,
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matrices which carry out elementary row operations when multiplied on
the left, are called elementary matrices.

Definitions 2.4 (Elementary Matrices). An elementary matrixis an n X n ma-
trix E which falls under one of the following definitions.

(i) The swap matrix Sy is an n X n matrix defined by
Sie = (3ij(1 = 6) (1 = 8i¢) + Gudje + i),

where J;; denotes the Kronecker-delta.

(i) The row-scaling matrix is an n x n matrix Ly(A) defined by

Li(A) = (6j(1 4 (A —1)dy)).

(iii) The row-adding matrix is an n x n matrix Rgs(A), k # ¢, defined by

Rio(A) = (8 + Adixdje).-

We then have that these matrices behave as we wish them to:
Theorem 2.5 (Elementary Row Operations). Let A be an n x n matrix. Then
(i) The resulting matrix after applying the row operation R; <> R; to A is given
(ii) Let A € R be a non-zero scalar. The resulting matrix after applying the row
operation AR; — R; to A is given by L;j(A)A.
(iii) Let A € R be a scalar. The resulting matrix after applying the row operation
R; 4+ AR; — R; to A is given by R;;j(A)A.

The proof of this fact is a straightforward expansion of the definitions each
of the matrices, and the definition of matrix multiplication (1.47), similar to
that of theorem 1.58. We leave it as an exercise.

Remark 2.6. Even though the matrices given in definitions 2.4 may seem
complicated when expressed in terms of é’s, they are actually equivalent
to the matrices obtained by applying the corresponding elementary row
operation to the identity matrix.
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For example, a 4 x 4 Sp4 matrix (which corresponds to R, <+ Ry) is simply
the 4 x 4 identity matrix with rows 2 and 4 interchanged:

0 0
1
ol’
00

—_ o O

Soy =

o OO

0
0
1

a 3 x 3 L(6) matrix (which corresponds to 6R, — Ry) is simply the 3 x 3
identity matrix with row 2 multiplied by 6:
1 00
L) =06 0],
0 0 1
and a 5 x 5 Rs3(—2) matrix (which corresponds to Rs + (—2)R3 — Rs) is
simply the 5 x 5 identity matrix with —2 times row 3 added to row 5:

10 0 00
01 0 0
Rs3(—2)=[0 0 1 0 0
00 0 10
00 -2 01

Exercise 2.7. Prove, using the definitions in definitions 2.4 and the
definition of matrix multiplication (1.47), show that

a) Sijfl = Si]‘ b) Li()\)il = Li(l/}\)

2.3 Determinants

We have already seen that the determinant of the 2 x 2 matrix A = (95 is
given by

a b
c d

In exercise 1.68.7, we have seen that the determinant of a matrix being non-
zero is equivalent to the matrix being invertible. Moreover, in exercise 2.3.4,
we arrived to this conclusion with geometric intuition about lines in two
dimensions (IR?).

Al =

‘:ad—bc.

For 3 x 3 matrices, the determinant also exists, but before we get to intro-
ducing it, we need some definitions.
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Definition 2.8 (Submatrix). Let A = (a;;) be an n X n matrix. We associate
an (n — 1) x (n — 1) matrix with each entry a;; of A, called the submatrix of
a;j in A, denoted by A;;, obtained simply by deleting row i and column j
from A. In other words, we have

Are = (A(ig[i2K) (i+[20)) (1=1)x (1—1)/

where [¢] denotes the Iverson bracket.?

Example 2.9. Suppose A = (%gg).Then
O o d 1 0 3
Ap=|4 O 6 :<‘; g), Ap=|0O O O :G S)
7 0O 9 7 0O 9
1 2 0O
and A33: 4 5 [ = (i é)
O 00

In addition to the submatrix, we associate a sign (4 or —) with each entry in
a matrix A. These signs follow a chequerboard-like pattern, starting from
+ in the top-left corner:

+ - + 0o m Q0
- + - B
O m 0

+ - 4+

Indeed, it is not hard to see that the sign corresponding to the entry a4;; is
+if i +jis even, and — if i 4 j is odd. So we can nicely express the sign
corresponding to the entry a;j simply as (—1)""/. Now we are ready to give
the most important definition before going on to introduce the determinant:

3The Iverson bracket is a notation defined by

9] = {1 if ¢ is true

0 otherwise,

where ¢ is a statement which can be true or false. In this case, we as using it to add 1 to the
matrix indices i and j so that we “skip over” the column/row we are deleting.
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Definition 2.10 (Cofactor). Let A = (a;;) be an n x n matrix. The cofactor
corresponding to the entry a;;, denoted co(a;;), is defined by

CO(Lli]') = (—1)i+j det(Ai]-).

In other words, the cofactor of 4;; is the determinant of the submatrix A;;
paired with the entry’s corresponding sign (as in the chequerboard-like pat-
tern above).

Example 2.11. Again, suppose A = (é é §> . Then

1 2 0O 1 2
co(ay) = (1?0 O O|= ‘7 8':—(1-8—2-7):—(—6):6,
7 8 O
and
O 2 3 5 3
co(az) = (-1)*"0 5 6 :+‘5 6‘:2-6—3-5:—3.
OO0 O

Now we are ready to introduce the determinant for 3 x 3 matrices, and,
shortly after, for any n x n matrix. The definition we give is due to Laplace.

Definition 2.12 (3 x 3 Determinant). The determinant of the 3 x 3 matrix
A = (a;j) is defined by
3
|A‘ = E A1k CO(Ellk) =an co(an) +an CO((112) + a3 CO({Jllg).
k=1

In other words, we are defining the determinant of a 3 x 3 as the sum of
entries of the first row, each multiplied by their corresponding cofactor.

Example 2.13. Again take A = (% § §>' We find |A].

Al =

o oo o o o O o o
=1+ 5 6]|+2- -4 O 6]|]+3-[+|4 5 0O
g 8 9 7 0O 9 7 8 U
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4 6
79

‘56

45
s o2 Sl

7 8
=5.9-6-8—2(4-9-6-7)+3(4-8-5-7)
= —3-2(—6)+3(=3) =0.

Although we have not yet proved that it is the case for 3 x 3 matrices, a zero
determinant is in fact equivalent to having a non-invertible matrix. Thus
we have that A is not invertible.

Example 2.14 (General formula). Here we will derive a general formula for
the 3 x 3 determinant, in the style of {‘g Z = ad — be for 2 x 2 matrices.
Memorising it is not recommended!

a b c O 0O 0O O 00 O 0O O
d e fl=al|+|0O e f||+b|—|d O fl|+c|+|d e O
g h i O h i g 0O i g h O
_ e fl 14 f d e
=al, b’g i+c‘g L

=aei —afh —bdi+bfg+ cdh — ceg.

We can now give the general definition of the determinant.

Definition 2.15 (Determinant). Let A = (a;;) be an n x n matrix. Then the
determinant of A, denoted det(A) or |A|, is the number defined by

an ifn=1

det(A) = ¢ &
&) Y ajjco(aj) otherwise.
j=1

Notice that is a straightforward generalisation of the 3 x 3 case, which
works for both smaller and larger matrices. Indeed, for n = 1,2 and 4,
the definition gives

ja] = a

a b 0 O 0 O
Fae s W) )

:a‘d}—b‘c‘:ad—bc
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a b c d o000 O 0 00
e f g h| o f g h e O g h
kR ST Bl Rl PR e R
m n o p U n o p m O o p
O 00O O 00O
e f O h e f g O
u I PR VA Rl el P
m n 0O p m n o U
f g h e g h e f h e f g
=al|j k I|=b|i k I|+c|i j Il|—=d|i j k
n o p m o p m n p m n o
O 0O 0O O 0O O
U o p m n U

= dgjm — chjm — dfkm + bhkm + cflm — bglm — dgin + chin
+ dekn — ahkn — celn + agln + dfio — bhio — dejo + ahjo
+ belo —aflo — cfip + bgip + cejp — agjp — bekp + afkp.

As is clear from the 4 X 4 case, large determinants become too laborious to
work out by hand. Indeed, as is illustrated, a 4 x 4 determinant requires
four 3 x 3 determinants to be worked out, each of which in turn require
three 2 x 2 determinants to work out, meaning that a 4 x 4 determinant
requires twelve 2 x 2 determinants to be worked out. (It’s not hard to see
that in general, an n x n determinant requires the computation of % 2 x 2
determinants.)

It seems strange that the definition of the determinant specifically involves
the first row of the matrix A (notice only a,; appears in the definition). Is
there something inherently important about the first row of a matrix? It
turns out that the answer is no: we can perform the sum of entries times
their cofactor in any row and the result will be the same determinant! This
is stated below.

Theorem 2.16 (Laplace Expansion). Let A = (a,'j) be an n X n matrix, n > 2,
and pick any row i € {1,...,n}. Then

det(A) = Zalj CO(IZZ']').
j=1
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The proof of this result requires elementary row operations, so we revisit it
later.

Example 2.17. Here we illustrate the advantage of this result. Suppose we
wish to evaluate the determinant

W 01 © =
N O OoN
NN W
—_ = O

It would be a lot easier if we were allowed to expand the determinant along
the second row instead of the first row as we have been doing so far, be-
cause that would give

123 4 02 3 4 10 3 4
0020 0000 0000
592 1=% 109 2 1|7 "5 o2 1
3211 02 1 1 301 1
1 2 0 4 1 2 3 0O
Ll Poool,l.pooo
5 9 O 1 5 9 2 O
3 2.0 1 3 2 10
12 4
— 25 9 1| =-..=130.
32 1

Thus thanks to theorem 2.16, we can evaluate this 4 x 4 determinant by
working out one 3 x 3 determinant instead of four!

Remark 2.18. In general, by expanding along the row with the most zeros
we optimise the amount of computations. Always be aware to allocate the
correct signs to the cofactors—remember the chequerboard pattern!

Another immediate consequence of this result is the following:
Proposition 2.19. Let A be an n x n matrix. If a row of A consists entirely of

zeros, then |A| = 0.

Proof. (the idea: expand along the row consisting solely zeros.) Suppose
row i is the row consisting entirely of zeros, i.e. 4;; = Oforallj =1,...,n.
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If n = 1, then there is only one row/column and a;; = a1 = 0, so that
det(A) = det(a11) = a11 = 0. If n > 2, then by theorem 2.16

n n
det(A) = ) _ajjco(a;j) = )_0-co(a;j) =0,
=1 =1

as required. O

It also turns out that we have the following result which we prove later
using elementary row operations.

Theorem 2.20. Let A be an n X n matrix. Then

det(A) = det(A").

Remark 2.21. Consequently, to find the determinant of a matrix A, we can
also choose to find the determinant of the transpose, which involves ex-
panding along some row in A'. But this is equivalent to expanding along
some column of A. In other words, we can also find the determinant of A by
expanding along a column, which might be useful if some column contains
more zeros than any row.

Example 2.22. We evaluate the following determinant by expanding along
the third column, since it contains two zeros:

1 2 —-17
2 —4 0 5
1 9 0 6
2 -6 9 7
Indeed,
1 2 -17 0O 0 00 1 2 O 7
2 -4 0 5 2 —4 0 5 2 —4 0 5
19 0 6" "Y1 9 o6l 1 9 O 6
2 —6 9 7 2 6 O 7 OO0 OO0
2 4 1 2 7
— 111 9 6/-9]2 -4 5

[

6 1 9
+4 ‘+52 _6D
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