
DIFFERENTIALS AND INTEGRATION

L. COLLINS

Abstract. In this short set of notes, we detail the relationship between dif-
ferentials and integration for the purposes of single variable calculus, without
going into the more general theories of measures or differential forms. The
primary goal is to provide curious A-level students with a rigorous formulation
which justifies the methods behind the techniques they use for integration.

1. Differentials

Recall that for a function f , the differential df is a function of two independent
variables x and dx, defined by

(1) df(x, dx) = f ′(x) dx.

In contrast to df , the variable dx here has no underlying meaning (for now), it is
just an independent variable, and we could equivalently write

df(x, h) = f ′(x)h.

Notice that using dx rather than h, we nicely get that df
dx = f ′(x). (For this to

make sense, the derivative f ′(x) is defined separately first, say, as the unique real
number such that

f(x+ dx) = f(x) + f ′(x) dx+ o(dx),

or as the limit of (f(x+ dx)− f(x))/dx as dx → 0. What’s important here is that
df
dx is not “just another notation” for the derivative, but df and dx have separate
meanings unto themselves.)

Remark 1.1. The intuition behind the differential is to calculate the approximate
change of a function near a specific value, by approximating the function with a
line there. In other words, when dx is “small”, we have

f(x+ dx) ≈ f(x)︸︷︷︸
old value

+ df(x, dx)︸ ︷︷ ︸
approx change

= f(x) + f ′(x) dx,

which is a straight line if we treat x as constant and dx as the variable. E.g., with
f(x) = x2, we have

(x+ dx)2 ≈ x2 + 2x dx,

so when x = 2 (say), we have

(2 + dx)2 ≈ 4 + 4 dx.

Indeed, 2.012 = 4.0401, and our approximation gives us 4+4(0.01) = 4.04 (refer to
figure 1). The derivative is the slope (or gradient) of our approximation line.
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Figure 1. Plot of x2 and 4 + 4 dx on the same axes, notice that
for points close to x = 2, they are very close.

We will abuse notation slightly and write d(f(x)) instead of df(x, dx), where it
is understood that the second variable is always denoted by prepending a d to the
independent variable. This is so that we may write things like

d(sin2 x) = 2 sinx cosx dx instead of d(sin2)(x, dx) = 2 sinx cosx dx.

The use of dx as an independent variable here is indicative of the fact that, if we
want, we may think of x as a function of some other variable, say t. In that case,
we would also have

(2) d(x(t)) = x′(t) dt,

and substituting this for the independent variable dx in (1), we obtain

df
(
x, d(x(t))

)
= f ′(x(t)) d(x(t)) = f ′(x(t))x′(t) dt.

The chain rule guarantees that this is the same as the differential of f(x(t)), i.e.,
the chain rule is the statement that

d(f(x(t))) = df
(
x(t), d(x(t))

)
or without notational abuse, d(f ◦ x)(t, dt) = df

(
x(t), dx(t, dt)

)
.

Example 1.2. If f(x) = sin(x) and x(t) = t2 + 1, then

d(f(x)) = cosx dx and d(x(t)) = 2t dt,

thus

d(f(x(t))) = d(sin(t2 + 1))

= cos(t2 + 1) · 2t dt
= f ′(x(t)) d(x(t))).
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Figure 2. The area represented by
∫ 1

0
x2 dx.

In summary, we have that if x is an independent variable, then

d(f(x)) = f ′(x) dx

where dx is also an independent variable. But if instead, x depends on t, then the
same statement is true if we reinterpret x as x(t), and dx as the differential of x(t)
(rather than an independent variable):

d(f(x(t))) = f ′(x(t)) d(x(t)).

Therefore, we could say that

d(f(x)) = f ′(x) dx

is in a sense, always true, whether x, dx are independent variables or whether x is
a function of some other variable and dx denotes its differential.

2. Integration

Integral calculus has a completely different goal in mind to differential calculus:
that of finding the area under a curve. We denote the area bounded by the x-axis,
the curve y = f(x) and the lines x = a and x = b by∫ b

a

f(x) dx.

Notice f(x) dx looks suspiciously like a differential—this is not a coincidence—
more on that later. The usual way we define the area formally is using a Riemann–
Darboux sum, which essentially involves an approximation of the area by rectangles
from above and below, and letting the number of rectangles become infinitely large.
For instance, to find

∫ 1

0
x2 dx, the area under x2 between 0 and 1 (figure 2), we first

find the upper-rectangle sum

U(n) =

n∑
k=1

1

n
· f

(
k

n

)
=

1

n

n∑
k=1

k2

n2
=

1

n3

(
n3

3
+

n2

2
+

n

6

)
=

1

3
+

1

2n
+

1

6n2
,

depicted in figure 3. This will be an over-estimate to the “true” value of the desired
area A =

∫ 1

0
x2 dx, using n rectangles.
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Figure 3. Illustration of the upper-rectangle and lower-rectangle
sums with n = 6.

Analogously, we determine the lower-rectangle sum

L(n) =

n∑
k=1

1

n
· f

(
k − 1

n

)
=

1

n

n∑
k=1

(k − 1)2

n2
=

1

3
− 1

2n
+

1

6n2
,

and this will be an under-estimate to A, no matter the value of n. Thus for all n,
we have

L(n) 6 A 6 U(n),

i.e.,
1

3
− 1

2n
+

1

6n2
6 A 6

1

3
+

1

2n
+

1

6n2
.

As n becomes large, we can imagine the rectangles in figure 3 becoming thinner and
thinner, so that both the upper-rectangle and lower-rectangle sums get closer and
closer to the desired area. If we think about the expressions above, as n becomes
large, it is clear that the varying terms all become negligible, so the only sensible
value we can assign to A is that of 1

3 . In other words, we have∫ 1

0

x2 dx =
1

3
,

and we’ve integrated x2! This reasoning can be generalised to encompass a large
class of functions, the so-called (Riemann) integrable functions. To be integrable, a
function needn’t be differentiable (i.e., it doesn’t need to have a derivative, or look
“smooth”), it doesn’t even have to be continuous (i.e., it can have jumps). It just
needs the upper-rectangle and lower-rectangle sums to approach the same number.

So what does differentiation have to do with this? Enter:

3. The Fundamental Theorem of Calculus

As we’ve seen, the process of finding integrals (areas under curves) from first
principles is quite tedious. Simply integrating x2 relied on the fact that we can
evaluate sums like

∑
k2. How can we hope to find something like

∫ 2

1
log x dx or∫ π

−π x cosx dx? We’d have to evaluate some rather complicated sums.
Miraculously, we can bypass all this with the help of differentiation. The fun-

damental theorem of calculus (FTC) links the two ideas together. The gist of the
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Figure 4.
∫ 4

1
bxc dx

fundamental theorem is this: in order to find the integral
∫ b

a
f(x) dx, if we can find

another function F such that F ′ = f , then
∫ b

a
f(x) dx = F (b)− F (a).1

Remark 3.1. Indeed, in the case of our x2 example, we could have found our desired
area by simply noting that F (x) = 1

3x
3 does the job (i.e., F ′(x) = x2). Indeed,∫ 1

0

x2 dx = F (1)− F (0) =
1

3
− 0 =

1

3
.

We call F a primitive of f .
Remark 3.2. The fundamental theorem tends to make people think of integration as
the process of “reversing differentiation”, i.e., obtaining primitives. While in most
situations this is the easiest way to evaluate integrals, it isn’t always necessarily the
case. For one thing, primitives cannot always be found. Also, certain functions can
be integrated easily using other means, and the fundamental theorem needn’t be
involved. For instance, the integer part bxc gives the largest integer smaller than
x (e.g., b3.6c = 3). This is easily integrated, it’s basically made up of rectangles
already (see figure 4). We have

∫ 4

1
bxc dx = 1× 1 + 1× 2 + 1× 3 = 6.

Here is the more precise statement of the fundamental theorem. Usually the first
part is referred to as the FTC1, and the second part (which justifies our technique)
as the FTC2.
Theorem 3.3 (Fundamental theorem of calculus). Let f be a real-valued function
defined for all x ∈ [a, b]. Then

(i) If f is continuous, the function F (x) =
∫ x

a
f(t) dt is a primitive of f , and

(ii) if F (x) is any primitive of f(x), then
∫ b

a
f(x) dx = F (b)− F (a).

Examples 3.4. Since d
dx (

x4

4 + 1) = x3, then∫ 1

0

x3 dx =
(14
4

+ 1
)
−
(04
4

+ 1
)
=

1

4
.

Similarly, since (− cos)′ = sin, then∫ π

0

sinx dx = (− cosπ)− (− cos 0) = 2,

i.e., the area under each arc of a sine wave is 2.
1We will not prove it here, look at chapters 10 and 11 of these notes for some more intuition.

https://warwick.ac.uk/fac/sci/maths/people/staff/keith_ball/refresher_lecture_notes.pdf


6 L. COLLINS

4. Symbolic Integration

In this section, we discuss techniques for obtaining primitives, i.e., reversing
differentiation (this process is called symbolic integration). Because it will make
the theory more elegant, we will not think of the process as described in the last
section, where we found F such that F ′ = f , but rather, as finding F such that
dF = f(x) dx. Of course, this is equivalent, but now the differential operator d is
the centre of attention, and rather than being given a function f , we are given (what
we assume is) a differential df , and we want to “undo” the effect of the operator d,
obtaining f . We denote the primitive of df by

∫
df , so that∫

df = f,

and this way
∫

and d are opposites. Now, what we have just written here isn’t
entirely correct, since the differential operator d is not injective, thus it is fallacious
to speak of “the” primitive of df (since there are possibly many to choose from). In
particular, the differentials of f(x) and f(x) + c, where c is any constant, are the
same, so f(x) and f(x) + c are both primitives of df . But it turns out that if we
account for this constant difference, then primitives are uniquely determined.

Indeed, if f1 and f2 are both primitives of df , then d(f1 − f2) = df1 − df2 =
df − df = 0, so the differential of f1 − f2 is zero. It follows (by the mean-value
theorem) that f1 − f2 is a constant function, say equal to c for all x, so that we
have f1(x) = f2(x) + c for all x.

Thus we write ∫
df = f + c,

where c represents any constant, and this way, all other possible primitives are also
incorporated.

Examples 4.1. We can evaluate some primitives
∫
f(x) dx simply by recognising

f(x) dx as the differential of a known function. Here are a few examples:∫
cosx dx =

∫
d(sinx) = sinx+ c∫

x3 dx =

∫
d
(x4

4

)
=

x4

4
+ c∫

dx

x
=

∫
d(log x) = log x+ c∫

ex dx =

∫
d(ex) = ex + c

Other common primitives are given in the MATSEC booklet. They can be combined
with the following useful rules, which we will prove later.

i. (Logarithmic derivative)∫
f ′(x)

f(x)
dx = log f(x) + c.

ii. (The affine argument rule) If
∫
f(x) dx = F (x) + c, then∫

f(ax+ b) dx =
F (ax+ b)

a
+ c.

https://maths.mt/booklet.pdf#page=14
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Another important fact about (symbolic) integration is its linearity: for any
functions f, g and any real number a, we have∫

(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx, and

∫
a f(x) dx = a

∫
f(x) dx,

which follows from the linearity of the operator d.
What if we don’t recognise f(x) dx as the differential of some other function?

For instance, what is ∫
sinx cosx dx?

This is where the substitution theorem comes in handy.

5. Substitution

The substitution theorem is essentially a reformulation of our observation at the
end of the first section, on carefully interpreting statements about differentials so
that they are always true. In order to state it, we will need the following piece of
notation.

Notation. For any X, let ∫
x←X

f(x) dx

denote the expression obtained by replacing x with X after
∫
f(x) dx is evaluated.

For example, ∫
x←r2+3

x2 dx =

∫
x←r2+3

d
(x3

3

)
=

(r2 + 3)3

3
+ c.

Now we can state the theorem.

Theorem 5.1 (Substitution theorem). Let f(x) and u(x) be two differentiable
functions. Then ∫

f ′(u(x)) d(u(x)) =

∫
u←u(x)

f ′(u) du,

where
∫
x←X

f(x) dx denotes the expression obtained by replacing x with X after∫
f(x) dx is evaluated.

Proof. Recall that ∫
f ′(u) du =

∫
d(f(u)) = f(u) + c,

so replacing the independent variable u with the function u(x), we obtain∫
u←u(x)

f ′(u) du = f(u(x)) + c.

But also from section 1, we saw that d(f(u(x))) = f ′(u(x)) d(u(x)), so∫
f ′(u(x)) d(u(x)) =

∫
d(f(u(x))) = f(u(x)) + c.

Thus both equal f(u(x)) + c. �
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Examples 5.2. (i) The example we gave earlier,
∫
sinx cosx dx. We have∫

sinx cosx dx =

∫
sinx d(sinx) =

∫
u←sin x

u du =
sin2 x

2
+ c.

(ii) Another example,
∫
e2+cos 2x sin 2x dx.∫

e2+cos 2x sin 2x dx =

∫
e2+cos 2x d(− 1

2 cos 2x)

= −1

2

∫
e2+cos 2x d(cos 2x)

= −1

2

∫
e2+cos 2x d(2 + cos 2x)

= −1

2

∫
u←2+cos 2x

eu du = − 1
2e

2+cos 2x + c.

(iii) We can forgo the involvement of u and integrate directly. For instance:∫
x
√

2x2 + 1 dx =

∫ √
2x2 + 1 d( 12x

2)

=
1

4

∫ √
2x2 + 1 d(2x2)

=
1

4

∫ √
2x2 + 1 d(2x2 + 1)

=
1

4

(2x2 + 1)3/2

3/2
= 1

6 (2x
2 + 1)3/2 + c.

(iv) A few more examples:∫
cosx√

4− sin2 x
dx =

∫
d(sinx)√
4− sin2 x

= sin−1
(
sinx

2

)
+ c∫

log x

x
dx =

∫
log x d(log x) =

log2 x

2
+ c∫

dx√
9− 4x2

=
1

2

∫
d(2x)√

32 − (2x)2
=

1

2
sin−1

(2x
3

)
+ c

(v) Sometimes substitution requires little tricks to make the expression in the
differential appear everywhere. For instance:∫
x
√
2x− 1 dx =

1

4

∫
2x

√
2x− 1 d(2x)

=
1

4

∫
(2x− 1 + 1)

√
2x− 1 d(2x− 1)

=
1

4

∫
(2x− 1)

√
2x− 1 dx+

1

4

∫ √
2x− 1 d(2x− 1)

=
1

4

(2x− 1)5/2

5/2
+

1

4

(2x− 1)3/2

3/2

=
1

15
(2x− 1)3/2(3x+ 1) + c.

Notice we rewrote 2x as 2x− 1 + 1 to ensure the appearance of 2x− 1.
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Another interesting trick is the following:∫
x5

√
x3 + 1

dx =

∫
x3 · x2

√
x3 + 1

dx

=
1

3

∫
x3

√
x3 + 1

d(x3)

=
1

3

∫
x3 + 1− 1√

x3 + 1
d(x3 + 1)

=
1

3

∫
(x3 + 1)1/2 d(x3 + 1)− 1

3

∫
(x3 + 1)−1/2 d(x3 + 1)

=
1

3

(x3 + 1)3/2

3/2
− 1

3

(x3 + 1)1/2

1/2

=
2

9

√
x3 + 1(x3 − 2) + c.

The substitution technique also easily gives us a proof for the two rules from the
last section. Indeed, the logarithmic derivative rule is obvious:∫

f ′(x)

f(x)
dx =

∫
d(f(x))

f(x)
= log f(x) + c,

and the affine argument rule is also straightforward to obtain:∫
f(ax+ b) dx =

1

a

∫
f(ax+ b) d(ax)

=
1

a

∫
f(ax+ b) d(ax+ b)

=
1

a
F (ax+ b) + c.

6. Integration by Parts

The second most important formula for integration is the so-called integration
by parts formula. Given an integral of the form

∫
f(x) d(g(x)), it allows us to swap

the roles of f and g, so that we obtain
∫
g(x) d(f(x)). This essentially comes from

integrating the product rule for differentials.
Indeed, recall that

d(u(x) v(x)) = u(x) d(v(x)) + v(x) d(u(x))

or more concisely,
d(uv) = u dv + v du.

Integrating gives us

uv =

∫
u dv +

∫
v du,

and the form which we will find useful is∫
u dv = uv −

∫
v du.

Remark 6.1. Integration by parts is useful for integrating products of functions (it
comes from the product rule, after all). The difficulty comes in choosing which
function should be the u, and which one we should take as part of differential dv.
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A good rule of thumb is to pick u to be the first function one comes across
according to “ILATE”:
I: Inverse trigonometric functions
L: Logarithmic functions
A: Algebraic functions (i.e., xn)
T: Trigonometric functions
E: Exponential functions

Examples 6.2. (i) In this integral we take u = x (because of the A in ILATE)
and dv to be the rest, i.e., e−2x dx.∫

xe−2x dx = −1

2

∫
x d(e−2x)

= −1

2

(
xe−2x −

∫
e−2x dx

)
= −1

2

(
xe−2x +

e−2x

2

)
= −e−2x

4
(2x+ 1) + c.

(ii) The next example requires two iterations of the formula. Again we pick u
to be the algebraic expression, u = x2.∫

x2 sin 2x dx = −1

2

∫
x2 d(cos 2x)

= −1

2

(
x2 cos 2x−

∫
cos 2x d(x2)

)
= −1

2

(
x2 cos 2x− 2

∫
x cos 2x dx

)
= −1

2

(
x2 cos 2x−

∫
x d(sin 2x)

)
= −1

2

(
x2 cos 2x−

(
x sin 2x−

∫
sin 2x dx

))
= −1

2

(
x2 cos 2x− x sin 2x− cos 2x

2

)
=

1

4
(cos 2x+ 2x sin 2x− 2x2 cos 2x) + c.

(iii) It seems to be the case that something like
∫
xnf(x) dx requires n iterations

of the formula. With this in mind, let us try:∫
x99 log x dx =

1

100

∫
log x d(x100)

=
1

100

(
x100 log x−

∫
x100 d(log x)

)
=

1

100

(
x100 log x−

∫
x99 dx

)
= 1

10 000 x
100(100 log x− 1) + c.

This time we took u = log x rather than x99 in accordance with ILATE,
and that’s why we didn’t need to perform 99 iterations!



DIFFERENTIALS AND INTEGRATION 11

(iv) We can use integration by parts to obtain integrals of logarithms and inverse
trigonometric functions by treating dx as d(x). For instance,∫

log x dx = x log x−
∫

x d(log x)

= x log x−
∫

dx

= x log x− x+ c.

(v) Another one for good measure:∫
tan−1 x dx = x tan−1 x−

∫
x d(tan−1 x)

= x tan−1 x−
∫

x

x2 + 1
dx

= x tan−1 x− 1

2

∫
d(x2 + 1)

x2 + 1

= x tan−1 x− 1

2
log(x2 + 1) + c.

(vi) A final popular example, where the same integral shows up on the right-
hand side again.∫

ex sinx dx =

∫
sinx d(ex)

= ex sinx−
∫

ex d(sinx)

= ex sinx−
∫

ex cosx dx

= ex sinx−
∫

cosx d(ex)

= ex sinx−
(
ex cosx−

∫
ex d(cosx)

)
= ex sinx− ex cosx−

∫
ex sinx dx

At this point, it might feel like we’re stuck since we obtained the initial
integral again. But just like an equation like I = 2−I isn’t “stuck” (we can
easily solve this by taking I to the other side and getting 2I = 2 ⇒ I = 1),
we can apply the exact same approach here, and we get that

2

∫
ex sinx dx = ex(sinx− cosx)

=⇒
∫

ex sinx dx =
ex

2
(sinx− cosx) + c.

A final example to nicely conclude these notes is the famous integral
∫

dx
(1+x2)2 .

Noting that

d
( 1

f(x)

)
= −

d
(
f(x)

)
f(x)2

,
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we have ∫
dx

(1 + x2)2
=

∫
1 + x2 − x2

(1 + x2)2
dx

=

∫
dx

1 + x2
−
∫

x2

(1 + x2)2
dx

= tan−1 x− 1

2

∫
x

(1 + x2)2
d(x2 + 1)

= tan−1 x+
1

2

∫
x d

( 1

1 + x2

)
= tan−1 x+

1

2
· x

1 + x2
− 1

2

∫
dx

1 + x2

=
1

2

(
tan−1 x+

x

1 + x2

)
+ c.
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