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FEBRUARY MMXXI

1 Linear Transformations
Recall that all pairs (z,y) of real numbers are regarded as points in the
zy-plane, where the set of all such points is denoted by

R%2=R x R.

Here we will interpret the pair (x,y) in two ways: sometimes as the point
(x,y) in the plane just as before, which we will call the position (z,y); other
times as the directed line segment taking us from the origin (0,0) to the
point (z,y), which we call the vector (z,y).

The distinction between the two interpretations is rarely important, and
whenever the distinction is important, it is often clear from the context.

(4,5)

FIGURE 1: The position (4,5) FIGURE 2: The vector (4,5)
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FIGURE 3: Still the vector (4,5) FIGURE 4: A vector in R3

When vectors are translated in the plane (that is, when their tails do not
sit at the origin (0,0)), they still correspond to the same pair of coordinates
(x,y), since what the pair of numbers represent in this case is the displace-
ment or movement from the tip of the arrow to its head. Thus if a vector is
translated, we treat the tip as the “new origin”, and read off the coordinates
at the head of the arrow, thus obtaining the same pair (z,y). This pair of
numbers is not telling you the coordinates of the position of the arrowhead,
but rather, by how much you need to move in the z- and y-directions to go
from the tail of the vector to its tip.

These ideas easily extend to the ordered triples (z,y,z) of real numbers,
corresponding to points or vectors in three dimensional space

RR=RxRxR

and beyond, but for the scope of the MATSEC intermediate, we will focus
mainly on two dimensional space.

1.1 Vector Operations

Let us start by introducing two important operations on vectors. We will be
denoting vectors using single letters in bold typeface, such as v = (z,y) for
example. In writing, you are encouraged to underline vectors to distinguish
them from numbers, e.g., writing v, for v.

Definition 1.1 (Vector Addition). Let uw = (z1,y1) and v = (x2,y2) be two
vectors in R?. Then the sum w + v is defined by

U+”g(331+962,y1+y2)-
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FIGURE 5: Illustration of the parallelogram law in R?

Ezample 1.2. If u = (3,4) and v = (3,—1), then

w+tv=(3+34+(-1)=(6,3).

Remark 1.3. Observe that the vector sum w4+ v corresponds to the position
obtained when translating the vector v such that its tail is at the head of
the vector w, or vice-versa; as shown in figure 5. This is a consequence of
the fact that, as we’ve already mentioned, we think of vectors away from the
origin as representing movement, and not position. This way, u + v is the
vector taking us to where we end up if we move along w, and then carry out
the displacement represented by the vector v. Because of this behaviour,

addition is sometimes referred to as the parallelogram law.

Notice also that u + v = v 4+ u, i.e., vector addition is commutative. This
is obvious from the definition since x1 + x9 = z9 + x1 and similarly for y;
and yo, but it is good to ponder the geometric meaning of w4+ v = v+ u: it
doesn’t matter if we start from w or from v (see figure 5).

Definition 1.4 (Scalar Multiplication). Let A € R, and let v = (x,y) be a
vector in R2. Then the scalar multiplication of v by A, denoted \v, is the

vector given by
def

v = (Az, \y).

Ezxample 1.5. If w = (1,2), then bu = (5,10) and (—3)u = (-3, —6).
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FIGURE 6: Illustration of scaling in R?

Remark 1.6. The reason we call this operation scalar multiplication is that
the result of \v is a scaled version of v by a factor of A (see figure 6).
When A\ < 0, then the direction of v is reversed. In particular, —1v, which
we denote by —w, corresponds to the vector with the arrow head and tail
interchanged.

As a consequence of this scaling behaviour, we call single real numbers scalars
instead of numbers throughout this chapter. Thus the entries in a vector are
scalars, for example.

Notation. As mentioned in remark 1.6, we denote —1v by —wv, and we also
introduce the difference between two vectors, denoted uw — v, defined by

u—v=u+(—v).

This ends up being the same as subtraction componentwise.

Ezample 1.7. If u = (1,2) and v = (3, —5), then

u—v=(1-3,2-(-5H)) =(-2,3).

Definition 1.8 (Zero vector). We denote the vector (0,0) by 0 and call it
the zero vector or the origin.

Note. 0 # 0. One is a vector, the other is a scalar.
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The two operations of addition and scalar multiplication turn R? into a
structure we call a vector space. Vector spaces are characterised by having
the following properties.

Theorem 1.9 (Vector space properties in R?). Let u, v, w be three vectors
in R?, and let X\, € R be scalars. Then the following properties hold:

1) u+(v+w)=(ut+v)+w I ut+v=v+u

m) u+0=u v) v+ (—-v)=0
V) A(pw) = (Ap)v vi) lv=w
Vi) Au+v)=Au+ v v 0v =0

IX) (A+p)v=Av+pv

Proof. These results all easily follow from the definitions, and properties
inherited from real numbers, e.g. for 1, if we write u = (z1,¥1), v = (z2,y2)
and w = (z3,y3), then

u+ (v+w) = (21,91) + (T2, 92) + (73, 3))
r1,91) + (22 + 23,92 + ¥3) by definition 1.1
1+ (xa +x3),y1 + (y2 + y3)) by definition 1.1

(

= ( ( )
= ( ( )
((x1 +x2) + 23, (y1 + y2) +y3)  (ordinary + in R)
= ( ( )
= ( ( )
= (

x1 + x2,y1 + Y2) + (23,y3) by definition 1.1
(x1,11) + (33273/2)) + (x3,93) by definition 1.1
u+v)+

as required. Similarly for vii1, we have
Ov = (0z2,0y2) = (0,0) = 0.

The proofs of the remaining properties are left as an exercise. O

Remark 1.10. Notice that a lot of these facts seem obvious, but this is because
we are using the same conventions (namely the symbol + and juxtaposition)
which we usually use for addition and multiplication of numbers. If we denote
vector addition using a different symbol, say u ® v, and scalar multiplication
using A\ ® v, then it is clearer that what we are saying requires proof; e.g., v
becomes

AO(pov) =) oOv
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and IX is
A+p)ov=A0v)® (LOv).

Mathematicians like to use the same symbol for various different things (this
is usually called overloading the symbol). We tend to do this when the two
ideas that the symbols represent share a number of features. For instance,
even though + for numbers and + for vectors are technically distinct opera-
tions, they do have various things in common (theorem 1.9 is basically a list
of those things), so it makes sense to use it for vectors. Also, if we write 143
and (3,2) + (1,6), you can’t really mistake one for the other, it’s obvious
which of the two operations we need to use in either case.

Exercise 1.11. 1. Watch: https://youtu.be/fNk_zzaMoSs.
2. Let u=(1,2), v =(3,-5) and w = (—1,—1).
(a) Work out w + v and 3u — 5v + fw.
(b) Draw a diagram which illustrates that u + v = v + w.
(c¢) Determine constants a and b such that au + bv = w.
(d) Determine constants x and y such that 3(z,y) — bu = 2w.
3. Complete the proof of theorem 1.9.

4. Let w = (x1,y1) and v = (z2,y2), and define their dot product
u-v byu~vd:ef:n1m2—|—y1y2.

(a) Prove that u-v =v-u.
(b) Prove that u- (v+w) = u-v+u-w and u-(Av) = A(u-v).
(¢) (Cauchy—Schwarz inequality). Prove that
(u-v)? < (u-u)(v-v).
(d) By choosing appropriate vectors in the inequality in (c),

prove that for any a,b € R, we have a + b < v/2vVa2 + b2.
Hence or otherwise, deduce that for any =,y > 0,

T o4 Y <2
r+vy r+y

Is this bound sharp? (i.e., is there an assignment of z and
y for which we have equality instead of <7)
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FIGURE 7: The function f: (z,y) — (x + v, 2y) applied to some points in R?

1.2 Linear Transformations

A transformation is simply another word for a function. In this chapter,
we will deal with functions from R? to R?, i.e., functions whose inputs are
points in R?, and whose outputs are also points in R?. For example,

f(z,y) = (v +y,2y)

is such a transformation. See how it is applied to some points in the plane
in figure 7. If we use vector notation, writing u = (z,y), then we also write

f(w) for f(z,y).

The use of the word transformation is indicative of the fact that we like to
think of f “moving” points from their starting position to their destination
(see figure 8).

Another nice way to think of a transformations is as a process which does
something to the plane as a whole, as opposed to individual points. We can
try to visualise this by applying the transformation to the grid lines in our
diagrams. In other words, if we transform each point which makes up the
grid lines, we get new grid lines which should give us a better picture of what
f “does” to the whole plane. See figure 9, as well as and this interactive web
page:
https://www.desmos.com/calculator/8etkl7jmor.

Notice that the transformed points retain their old coordinates with respect
to these new grid lines. In other words, if we denote by [z,y] the point
obtained by travelling along the new grid lines rather than the usual ones,
then the image of (2,1) under f is [2, 1] (for instance), see figure 10.
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FI1GURE 8: The transformation f visualised as “moving” points in space

Y Y

FIGURE 9: The function f: (z,y) — (x + y,2y) applied to the grid lines

Yy Y

FIGURE 10: (2,1) and its image [2, 1]
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FIGURE 11: The image of the plane under the 22 transformation

It is not necessarily the case that grid lines remain straight. For instance, a
well known transformation is
2 2

(this is called the 22 transformation). When this is applied, the plane ends
up looking like what’s in figure 11. To get a better idea, it would be helpful
to look at the online version to see the transformation animated:

https://www.desmos.com/calculator/bd9c1z6bll.

Notice that it is still true that the image of (1,2) (say) ends up at [1,2],
where we instead have to travel along the curvy grid lines rather than the
old ones. These sorts of transformations are complicated to study generally:
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we will focus our attention on transformations where the grid lines remain
parallel, evenly spaced lines. These are called linear transformations.

We will not give this as the definition of “linear” though, we will instead give
a definition which it is easier to do maths directly with (it will be set to
you as an exercise to check that the definition we give is equivalent to “lines
remain lines” at a later stage). Here is our (and any standard textbook’s)
definition of linear:

Definition 1.12 (Linear). Let f: R? — R? be a transformation. Then f is
said to be linear if for all vectors w,v and scalars A\, we have

flutv)=flu)+flv) and  fhu) =X f(u)

Our initial example f(z,y) = (x 4+ y,2y) is an example of a linear transfor-
mation (indeed, lines remained lines when we applied it to the plane as a
whole in figure 9). Let us verify that it satisfies the definition. If w = (x1,y1)
and v = (z2,y2), then

flu+v) = f((z1,91) + (22, 92))

flz1+ 22,91 +y2)

((z1 +22) + (41 + 32), 2(y1 + 32))
= (z1+y1 + 22+ y2,2y1 + 2u2)

= (z1+y1,251) + (22 + 2, 2y2)

= f(u) + f(v),

and

fu) = f(Az1, Ayr) = (Az1 + Ayr, 2(Ayn)) = MA@+ y1, 201) = A f(u),
which proves that f complies with the definition.

By contrast, the 22 transformation has
9(1,1)=(0,2)  and  ¢(2,2) =(0,8).
Since (2,2) = 2(1,1), it should be the case (if g is linear) that
9(2,2) = 9(2(1,1)) =25 24(1,1) = 2(0,2) = (0,4),
which is false. This shows that g is not linear.

Before we give some more examples, let us prove a very important fact about
linear transformations.
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Theorem 1.13. Linear transformations do not move the origin.

Proof. Observe that 00 = 0(0,0) = 0. Moreover, Ov = 0 for any vector v
(theorem 1.9, viir). Thus, for any linear transformation f, we have

f(0) = £(00) = 0 f(0) =0,
ie., f(0)=0. O
In particular, this implies that translations, i.e., transformations of the form
flo)=v+1

where t is some non-zero vector, are not linear transformations.

FEzample 1.14. For instance, the transformation f(v) = v+ (1,2) or written
differently, f(z,y) = (z + 1,y + 2), is not linear.

On the other hand, rotations (about the origin) and reflections in straight
lines (which go through the origin) are linear transformations.! We will see
that this is the case in a moment. But before we continue, let us introduce
some notation.

Notation. For reasons which will become clear later, we will also write
points/vectors as columns, i.e., we will write v = (z,y) as (Z) This means
we have three different ways to write f(v), namely, as

f),  flzy) or f@

Make sure you feel comfortable with all three.

Exercise 1.15. 1. (a) Prove that scaling, ie., f(v) = Av, is a
linear transformation for all A € RR.

(b) When is a constant function f(v) = w linear? (u is a fixed
vector here.)

2. (a) Prove that f(z,y) = (3z + 2y, Tx — 8y) is linear.
(b) Prove that f(z,y) = (3z + 2, 7z — 8y) is not linear.

!Notice we need the conditions in brackets, otherwise the origin wouldn’t stay fixed by
the corresponding transformations.
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FIGURE 12: Basis vectors ¢ and j for R?

1.3 Basis Vectors and Matrices

Let 4 = (1,0) and j = (0,1), we call these the basis vectors for R?. Notice
that any point (z,y) can be written as

(z,y) =zi+yj

since 2% + yj = z(1,0) + y(0,1) = (x,0) 4+ (0,y) = (z,y). This seems like
a trivial observation, essentially ¢ represents a single unit of motion in the
z-direction, and j represents a single unit of motion in the y-direction. Thus,
all we'’re saying is that

(x,y) = x x (1 step in the z-direction) + y x (1 step in the y-direction),

which is obvious almost by definition of what we understand by the coordi-
nate pair (z,y). But then combining this with the definition of linearity, we
get that for any linear transformation f, we must have

= f(zi) + f(yJ)
=z f(2) +y f(9).

In other words, in order to know what f does to any point (z,y), all we need
to know is what f does to ¢ and j. This is quite remarkable. It should make
sense intuitively if we remember what linear means visually: that the grid
lines remain parallel and evenly spaced. If we have f(¢) and f(j), there is
only one way to continue the grid lines in such a way that they are parallel
and evenly spaced, and so we are able to infer what f does to the whole
plane (see figure 13).
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FIGURE 13: Given f(2) and f(j), there is only one way to continue the grid
lines, this gives us an image of what happens to every point in space, effectively
determining what f(v) is for any v

Example 1.16. Given that f is linear,

-0 Q- e

We can find this since by linearity,

(5 =or(o) s ()=o) =) = ()

Ezample 1.17. Given that f is linear, f(1,0) = (2,2) and f(0,1) = (2,2),
determine a general formula for f(z,y).

We have f(z,y) =z f(1,0)+y f(0,1) = 2(2,2)+y(2,2) = (22+2y, 22 +2y).
To summarise our observations, we have the following theorem.

Theorem 1.18. Let f: R? — R? be a linear transformation. If f(i) = (‘é)
and f(3) = (2), then for any vector (z,y) € R?, we have

f r\ (ar+by
y) \ex+dy)
Proof. We have

f@ = f(wi+yj) = f(i) + v [(5) —x(i) +y<2> - (ijzz)

as required. O
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Since f(¢) and f(7) determine f completely, we introduce the following no-
tation which “summarises” the behaviour f:

r=(r0 @)= (2 1)

This 2 x 2 grid of numbers is called a matriz. Acting on the left, we interpret
it as being the same as f. In other words,

€ )G =) () -(=5a)

by theorem 1.18. We call the act of evaluating the result of (‘cl 3) (;) matriz-
vector multiplication.

Example 1.19. We evaluate the matrix-vector product:

1 2 7T\ _ (1-7T+2-(=5)\ (-3

3 4 -5) \3-7+4-(-5)) \1)°
Understand what we’ve done here: we’ve found what the linear transforma-
tion for which f(i) = (é) and f(j) = (i) does to the point (_75)

Matrices are of interest in computer graphics, since they allow us to translate
the manipulation of a picture on a screen into the process of evaluating a
matrix vector product.

Exercise 1.20. 1. Suppose f(2) = (—2,3) and f(j) = (5, —7).
(a) Determine f(2,3), f(7,3) and f(5,2).
(b) Determine a general formula for f(z,y).
(c) Write f as a matrix.
2. The 22 transformation does g(i) = (1,0) and g(j) = (—1,0).

(a) What is the linear transformation f which agrees with it
at these points?

(b) Does it agree with it anywhere else? (i.e., are there other
points v such that f(v) = g(v) other than ¢ and 37)
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FIGURE 14: Rotation by 90° anti-clockwise

1.4 Finding and Interpreting 2x2 Matrices

Intuitively, we see that rotations, reflections and enlargements all keep the
grid lines of the plane parallel and evenly spaced, so these are linear trans-
formations. How can we find their matrices so that we can easily apply them
to things?

All we need to do is think about what happens to the L-shape corresponding
to the vectors ¢ and j. For instance, say we want to find the matrix R
corresponding to a rotation by 90° (anti-clockwise). If we draw a rough
sketch and think about where ¢ and j end up (figure 14), we get that R(i) =
((1)) and R(j) = (_01), so the matrix is

R= <R(i) R(j)> _ (g’ 01> .

Here is a tool which carries out transformations represented by 2 x 2 matrices:
https://maths.mt/matrices.?
Try out this matrix that we found and verify that it does indeed rotate the

plane by 90°.

Example 1.21. As another example, we compute the matrix T' corresponding
to a reflection in the line y = —xz. With reference to figure 15, the desired
matrix is easily seen to be

T= (T(z’) T(j)) = <_01 _01> :

2Warning: the red/blue vectors which appear in the tool are not where ¢ and j end
up, they are what’s called eigenvectors of the matrix. Just ignore them.
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FIGURE 15: Reflection in the line y = —x
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FIGURE 16: What M does to the plane

Ezxample 1.22. This time we interpret the geometric meaning of a given
matrix. Let
3.0
M = .
(6 %)
0

This tells us that M (i) = (3(/)2) and M(j) = (3/2). With reference to fig-
ure 16, we see that after applying the transformation, the plane is uniformly
enlarged by a scale factor of % Double check this using the visualiser tool.

Exercise 1.23. 1. Determine the matrices corresponding to the
following transformations.

(a) Clockwise rotation of 90° about the origin.
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