
LESSON 1 4th December, 2020

1 Propositional Logic (i.e., 0th Order Logic)

Statements or propositions are sentences which can be decidedly assigned a truth-
value, i.e., true or false. Examples of statements include “Today is a rainy day” or
“1 + 1 = 5”, whereas examples of non-statements are “What time is it?”, “Edam
cheese”, “73” or “This statement is false”.1

For what we study here, it is not important how we are able to determine the
truth-value of a statement; we only care that it can be done. In practice, we
might require very different techniques in order to do so, depending on the nature
of the statement (e.g., we would use different techniques for checking whether or
not “Today is a rainy day” is true, than we would for checking “1 + 1 = 5”). Our
goal is to study what happens when we combine statements together, developing
a calculus which allows us to discover things about the truth-values of a com-
pound proposition, assuming we know the truth-values of its individual component
propositions.

For instance, suppose P and Q are both propositions, and that we know whether
they are true or false. This is the only information about them which we will allow
ourselves to use; we will not assume anything else about them. Given this, can we
say anything about the compound statement “If P , then Q”? What about “P and
not Q”?

Towards this goal, we now introduce the following connectives which allow us to
construct compound propositions from other ones.

Definitions 1.1 (Logical connectives). Let P and Q denote propositions.

(i) ¬P denotes the statement “not P ” called the negation of P , which is defined
to be true precisely when P is false, and vice-versa.

(ii) P ∧ Q denotes the statement “P and Q”, called the conjunction of P and
Q, which is defined to be true precisely when P and Q are both true, and
false otherwise.

(iii) P ∨Q denotes the statement “P or Q”, called the disjunction of P and Q,
which is defined to be false precisely when P and Q are both false, and true
otherwise.

1This last one is interesting. Why is it not a statement? Well, statements must be either
true or false; so let us suppose that it is true. We immediately see the contradiction that arises:
it claims itself to be false, so it cannot be true. Suppose therefore that it is false. In this case,
it makes a claim which is true — contradicting that it should be false. Thus we cannot say that
the statement is true, nor that it is false. The problem with this statement is that it talks about
itself; we need to be careful with how we deal with self-reference.

2



(iv) P → Q denotes the statement “if P , then Q” or “P implies Q”, called the
(material) implication of P and Q, which is defined to be false precisely
when P true and Q is false, and true otherwise.

(v) P ↔ Q denotes the statement “P if and only if Q” or “P iff Q” (for short),
called the bi-implication or biconditional of P and Q, which is defined to
be true precisely when P and Q are the same (i.e., both true or both false),
and false otherwise.

Examples 1.2. Let P = “1 + 1 = 2”, Q = “Pigs can fly” and R = “7 < 3”. These
are true, false and false respectively. We have:

(i) ¬P is “1 + 1 6= 2”, which is false, since P is true. ¬Q is “Pigs cannot fly”,
which is true, and ¬R is “7 > 3”, which is also true.

(ii) P ∧Q is “1 + 1 = 2 and pigs can fly”, which is false, since Q is false.

(iii) Q ∨ R is “Pigs can fly or 7 < 3”. This is false, since both are false. On the
other hand, Q∨P is “Pigs can fly or 1+1 = 2”. Since P is true, this is true.

(iv) Q → R is “If pigs can fly, then 7 < 3”. This is true since Q, i.e., “pigs can
fly” is false. On the other hand, P → Q is “If 1 + 1 = 2, then pigs can fly”
is false, whereas Q→ Q which is “If 1 + 1 = 2 then 1 + 1 = 2” is true.

(v) Q ↔ R is “Pigs can fly if and only if 7 < 3” is true, because Q and R are
both false. P ↔ ¬Q is “1 + 1 = 2 if and only if pigs cannot fly” is true.

1.1 Proof Theory

Our goal is to prove things about propositions. For instance, it turns out that if P
is true, then P ∨Q is always true. To prove something like this, we will introduce a
list of inference rules which completely capture the behaviour of our connectives.
When we write

P

Q
or P ` Q,

we mean that “if we assume P , then we can prove Q by applying our rules”. We
call P a hypothesis, and Q a conclusion. Sometimes we need to assume multiple
hypotheses to obtain a conclusion, in this case, we write

P1 , P2 , . . . , Pn
Q

or P1 , P2 , . . . , Pn ` Q

or sometimes
Γ

Q
or Γ ` Q,

where we use Γ to denote collection of hypotheses (say Γ = P1 ,P2 ,. . .,Pn). Notice
that the symbols ` and , do not live in the same “realm” as the logical connectives,
they are what we call meta-symbols, and cannot appear in propositions; they are
telling us about propositions. (If some of this is not clear, take a look at this very

3

https://ncatlab.org/nlab/show/metalanguage
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Propositional_calculus


good Wikipedia article for a more detailed explanation. In particular, the sections
“Explanation”, “Terminology” and “Basic Concepts” should be very helpful.)

We will use our new notation to write our inference rules, which are given below.
Each rule has a name associated with it, which we write to its right.

Truth and Falsehood

true
true-int

false

A
false-elim

Conjunction

A , B

A ∧ B ∧-int
A ∧ B
A

∧-elim1
A ∧ B
B

∧-elim2

Disjunction

A

A ∨ B ∨-int1
B

A ∨ B ∨-int2
A→ C , B → C , A ∨ B

C
∨-elim

Implication

A→ B , A
B

→-elim
Γ , A ` B

Γ ` A→ B →-int

Biconditional

A→ B , B → A
A↔ B ↔-int

A↔ B
A→ B ↔-elim1

A↔ B
B → A ↔-elim2

Negation

¬¬A
A

¬-elim
A→ B , A→ ¬B

¬A ¬-int

We can think of these rules as a “step” in a proof. We can combine them together
to make more interesting conclusions. For instance, we can show that Q ∧ P can
be obtained from P ∧Q.

1 P ∧Q

2 P (∧-elim1, 1)

3 Q (∧-elim2, 1)

4 Q ∧ P (∧-int, 3, 2)

This is called a Fitch proof. Notice how we present the argument: each line is
numbered, and we can apply the inference rules by referring to previous lines. The
third column justifies how each line is obtained. By constructing a proof like this,
we have show that we can prove Q∧P by assuming P ∧Q, i.e., that P ∧Q ` Q∧P .

4

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Fitch_notation


Let us give another example.

Example 1.3. We prove that P ∧Q ` P ∧ (Q ∨ P ).

1 P ∧Q (hypothesis)

2 P (∧-elim1, 1)

3 Q (∧-elim2, 1)

4 Q ∨ P (∨-int1, 3)

5 P ∧ (Q ∨ P ) (∧-int 2, 4)

High-level idea: Just as we did in the
first example, we can split the conjunc-
tion P ∧ Q using the two ∧-elim rules,
and then add whatever we want to the
solitary Q using ∨-int.

Then we can put things back together
using the ∧-int rule.

1.2 Subproofs

The scariest looking rule in our list is probably

Γ , A ` B
Γ ` A→ B →-int.

What is this saying? (A rule like this is called a deduction theorem). It basically
links our ability to prove things with them being true. Remember that

P → Q

by definition means that if P is true, then Q is also true. In contrast,

P ` Q

means that if we start from P , we can apply our rules and end up with Q. Does
this mean that Q is true? Well we hope so, otherwise the way our rules work
isn’t very helpful. In fact, the rule above actually guarantees that if P ` Q, then
P → Q. Indeed, what the rule says is that, if we assume a list of hypotheses Γ,
and adding A to that list allows us to prove B, then from Γ alone, we can deduce
that A→ B. In a Fitch proof, this looks like this:

...

10 A (subhypothesis)
...

14 B (some rule)

15 A→ B (→-int, 10–14)
...

We call the indented part a subproof. Lines deduced within a subproof can only be
used (i.e., combined using inference rules) within that subproof, but lines outside
a subproof can be used within it.

5

https://en.wikipedia.org/wiki/Deduction_theorem


We now give some more examples. Important results which can be quoted in the
exam are distinguished from other examples as theorems.

Example 1.4. We prove that ` A↔ A.

1 A (subhypothesis)

2 A→ A (→-int, 1–1)

3 A↔ A (↔-int, 2, 2)

High-level idea: We want to use ↔-int,
so we’re going to need an implication
A → A. But this is easily obtained by
taking A as a hypothesis and applying
→-int.

A very useful theorem is the following one.

Theorem 1.5 (Principle of explosion). For any two propositions P and Q, we have

P ∧ ¬P ` Q.

This result is also sometimes referred to as the bivalence property or ex falso
quodlibet. Here is the proof.

1 P ∧ ¬P (hypothesis)

2 P (∧-elim1, 1)

3 ¬P (∧-elim2, 1)

4 ¬Q (subhypothesis)

5 P (line 2)

6 ¬Q→ P (→-int, 4–5)

7 ¬Q (subhypothesis)

8 ¬P (line 3)

9 ¬Q→ ¬P (→-int, 7–8)

10 ¬¬Q (¬-int, 6, 9)

11 Q (¬-elim, 10)

High-level idea: The only rule which
seems promising here is ¬-int, since we
can use it to negate any hypothesis A
by concluding both P and ¬P from A
(just by copying both of them in the re-
spective subproofs).

If we let this hypothesis by ¬Q, the rule
gives us ¬¬Q, but this is equivalent to
Q by ¬-elim.

Example 1.6 (Modus tollendo ponens). We prove the disjunctive syllogism

p ∨ q,¬p ` q,

also known as modus tollendo ponens.

(In alternative formulations of the inference rules, this is sometimes given as the
rule for ∨-elim. There isn’t a unique set of deduction rules which one can state
for propositional logic; we just pick a set which is as small as possible and try to
prove everything else from them.)

6

https://en.wikipedia.org/wiki/Principle_of_explosion
https://en.wikipedia.org/wiki/Principle_of_bivalence
https://en.wikipedia.org/wiki/Disjunctive_syllogism


1 p ∨ q (hypothesis)

2 ¬p (hypothesis)

3 q (subhypothesis)

4 q (line 3)

5 q → q (→-int, 3–4)

6 p (subhypothesis)

7 p ∧ ¬p (∧-int 6, 2)

8 q (principle of explosion, 7)

9 p → q (→-int, 6–8)

10 q (∨-elim, 9, 5, 1)

High-level idea: We want to use
∨-elim to end up with a solitary q.
Since we have p ∨ q, it might be
simplest to use this in ∨-elim, then
we just need to prove p → q and
q → q.

Obtaining the latter is straightfor-
ward (take q as a subhypothesis,
copy it on the next line and apply
→-int). For the former, we know
that ¬p is true since it’s one of our
hypotheses, so assuming p should
allow us to deduce anything using
the principle of explosion (includ-
ing q).

We can actually do the proof without the principle of explosion with a little bit
more work.

1 p ∨ q (hypothesis)

2 ¬p (hypothesis)

3 p (subhypothesis)

4 ¬q (subsubhypothesis)

5 ¬p (line 2)

6 ¬q → ¬p (→-int, 4–5)

7 ¬q (subsubhypothesis)

8 p (line 3)

9 ¬q → p (→-int, 7–8)

10 ¬¬q (¬-int, 9, 6)

11 q (¬-elim, 10)

12 p → q (→-int, 3–11)

13 q (subhypothesis)

14 q (line 13)

15 q → q (→-int, 13–14)

16 q (∨-elim, 12, 15, 1)

We can show that ¬q implies both
p and ¬p (just by copying them
from their respective line num-
bers).

This will lead to ¬¬q by ¬-int.

Removing the double negation
with ¬-elim will complete the
proof that p → q.

(The idea here is quite similar to
the proof of principle of explosion
itself.)

7



Exercise 1.7. 1. Explain the difference between p → q and p ` q.

2. Construct a Fitch proof for the following.

(a) P ∨ false ` P

(b) P ` Q→ P

(c) P ` ¬¬P

(d) P ∨ (Q ∧ R) ` (P ∨Q) ∧ (P ∨ R)

(e) (P ∧ ¬Q) ∨ (¬P ∧Q) ` ¬(P ↔ Q)

(f) P → Q a` ¬Q→ ¬P

(g) ¬P ∧ ¬Q ` ¬(P ∨Q)

3. Epistemic logic is an extension of propositional logic by the pair of
unary connectives 2 (necessity) and 3 (possibility). We use this logic
to talk about what a person X knows. Intuitively, 2p means that X
believes that p is true, whereas 3p means that X believes that p is
possible.

Their behaviour is determined by these rules.

2(A→ B)
2A→ 2B

K
2A

22A
4

¬2A
2¬2A 5

A

23A
B

2A

3A
D

2A

¬3¬A dual1
3A

¬2¬A dual2

Notice that just because X knows something, doesn’t mean that it
is true. (In other words, 2A ` A is not a rule.)

(a) Translate each of the rules K, 4, 5, B, D, dual1 and dual2 into
English so that you understand them better. For instance, dual1
becomes

If X thinks that A is true, then he doesn’t believe that
A is not possible.

(b) Construct a Fitch proof for the following.

i. P ` 33P

ii. 2P ,2(P → Q) ` 2Q (Modus Ponens)

iii. 2(P → Q) ` 3P → 3Q

Now adding the rule A
2A G,

iv. 2A ∧2B ` 2(A ∧ B)

8



LESSON 2 11th December, 2020

Another very useful theorem is the following.

Theorem 1.8 (Law of the Excluded Middle). For any proposition P , we have

` P ∨ ¬P.

The proof is not very straightforward.

1 ¬(P ∨ ¬P ) (subhypothesis)

2 P (subsubhypothesis)

3 P ∨ ¬P (∨-int1, 2)

4 P → P ∨ ¬P (→-int, 2–3)

5 P (subsubhypothesis)

6 ¬(P ∨ ¬P ) (line 1)

7 P → ¬(P ∨ ¬P ) (→-int, 5–6)

8 ¬P (¬-int, 4, 7)

9 P ∨ ¬P (∨-int2, 8)

10 ¬(P ∨ ¬P )→ P ∨ ¬P (→-int, 1–9)

11 ¬(P ∨ ¬P ) (subhypothesis)

12 ¬(P ∨ ¬P ) (line 11)

13 ¬(P ∨ ¬P )→ ¬(P ∨ ¬P ) (→-int, 11–12)

14 ¬¬(P ∨ ¬P ) (¬-int, 10, 13)

15 P ∨ ¬P (¬-elim, 14)

High-level idea: Since
we have no hypotheses,
we must start with a
subhypothesis, but the
conclusion cannot con-
tain any →, so we try
to look at rules which
get rid of →’s: ¬-int
looks promising.

If we can conclude
¬¬(P ∨ ¬P ), we can
then use ¬-elim to fin-
ish.

Clearly ¬(P ∨ ¬P ) im-
plies itself, so if we can
also show it implies P ∨
¬P , we are done. This
is what we do in 1–9.

A very useful result is the following.

Theorem 1.9 (Law of Contrapositive). For any propositions P and Q, we have

P → Q a` ¬Q→ ¬P.

Two other very useful (dual) results are de Morgan’s laws.

Theorem 1.10 (de Morgan’s Laws). For any two propositions P and Q, we have

¬(P ∧Q) a` ¬P ∨ ¬Q and ¬(P ∨Q) a` ¬P ∨ ¬Q.

These allow us to switch between ∧ and ∨. There are four proofs required here,
` and a for both of them.

9

https://en.wikipedia.org/wiki/Law_of_excluded_middle

	Lesson 1, 4th December 2020
	Propositional Logic (i.e., 0th Order Logic)
	Proof Theory
	Subproofs

	Lesson 2, 11th December 2020
	Predicate Logic (i.e., 1st Order Logic)

