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1 Groups
These notes are a brief summary of the main results on groups. The results on

number theory (residue groups, Euler’s theorem, Fermat’s little theorem, etc.) as

well as those on lattices (posets, Hasse diagrams) are omitted.

1.1 Basics

Recall that a nonempty set G together with a binary operation · : G × G → G is
said to form a group (G, · ) if the following properties are satisfied:

Closure. For all x, y ∈ G, x · y ∈ G.

Associativity. For all x, y , z ∈ G, x · (y · z) = (x · y) · z .

Identity. There exists 1 ∈ G such that for all x ∈ G, 1 · x = x · 1 = x .

Inverses. For all x ∈ G, there exists x−1 ∈ G such that x · x−1 = x−1 · x = 1.

Throughout the notes, we shorten the notation x · y to xy , and we relax the
ordered pair notation (G, · ), referring to the corresponding structure simply as
“the group G”.

Certain groups satisfy the following additional property:

Commutativity. For all x, y ∈ G, x · y = y · x .

Such groups are called abelian.

Examples 1.1. The following are some examples of groups.

(i) The set of integers Z is a group under the usual addition operation +,

Moreover, this group is abelian. Similarly, the rational numbers Q, real

numbers R and complex numbers C are abelian groups under addition.

(ii) The set of integers Z is not a group under the usual multiplication operation

×, since only 1 has an inverse. Neither are Q, R or C under this ×, since 0
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1.2 | Lagrange’s Theorem and Normal Subgroups Luke Collins

has no inverse. If we remove zero, we get that Q∖{0}, R∖{0} and C∖{0}
are abelian groups under ×.

(iii) The finite set Zn = {0, . . . , n − 1} is an abelian group under + modulo n,
and Zp∖{0} is an abelian group under × modulo n, when p is prime. When
n is not prime,

• Groups which are abelian, that is, groups which have the additional property
that all of their elements commute: for all g1, g2 ∈ G, g1 · g2 = g2 · g1.

• The cyclic group Cn = {e, x, x2, . . . , xn−1} with operation

(xa, xb) 7→ xa+b mod n,

which is an abelian group generated by one element x , with the property

that xn = e (we write Cn = ⟨x : xn = e⟩). This group is isomorphic to the
groups (Zn,+ mod n) and Z/nZ.

• The infinite cyclic group C = {e, x±1, x±2, . . . } is the group generated by
the elements {x, x−1}, and xn ̸= e for all n ∈ N. We write C = ⟨x, x−1⟩.
This group is isomorphic to (Z,+).

• The dihedral group Dn = ⟨r, t : rn = t2 = e ∧ r t = tr−1⟩, which represents
the symmetries (rotations r and reflections t) of a regular polygon on n

vertices. In general, Dn has 2n elements, and is non-abelian for n ⩾ 3.

• The symmetric group Sn, which is the set of permutations on n elements,
or equivalently, the set of bijections from a set X with |X| = n onto itself.
In general, |Sn| = n!.

• The alternating group An, which is the set of even permutations on n ele-
ments. An even permutation is a permutation made up of an even number

of transpositions, i.e. it can be written as a product of an even number of

2-cycles. An is a subgroup of Sn. In particular, |An| = |Sn|/2 = n!/2.

1.2 Lagrange’s Theorem and Normal Subgroups

Suppose G is a group, and H ⊆ G. Then H is said to be a subgroup of G, written
H ⩽ G, if it forms a group in its own right. The simplest way to show that a
subset H ⊆ G is a subgroup is called the one-step test:

Theorem 1.2 (One-step test for subgroups). Let G be a group, and let H be a

subset of G. Then H ⩽ G if and only if for all x, y ∈ H, xy−1 ∈ H.

Proof. If H is a subgroup, then y−1 ∈ H for any y ∈ H. Moreover, for any x ∈ H,
xy−1 ∈ H by closure. This proves the ‘only if’ part. For the converse, associativity
is hereditary. If we take an arbitrary h ∈ H, then we have e = h · h−1 ∈ H, so
H contains the identity. Consequently for any y ∈ H, y−1 = ey−1 ∈ H, so
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H has inverses. Finally, for any x, y ∈ H, we have y−1 ∈ H, and consequently
xy = x(y−1)−1 ∈ H. This proves closure.

Every element of a finite group G satisfies gn = e for some n ∈ N (Proof :
otherwise the subgroup ⟨g⟩ is infinite). The smallest such n is called the order of
g, denoted |g| (or o(g) by Herstein and other authors).

Definition 1.3 (Coset). If G is a group, H ⩽ G and g ∈ G, then:

(i) the left coset of H with respect to g is the set g ·H = {g · h : h ∈ H}, and

(ii) the right coset of H with respect to g is the set H · g = {h · g : h ∈ H}.

A coset is some left or right coset of a subgroup in G. We often relax the notation

g ·H to gH, and similarly H · g to Hg for right cosets.

Let us define the relation g1 ∼ g2 on G for some H ⩽ G by g1 ∈ g2H. One can
easily show that this is an equivalence relation, and its equivalence classes are the

distinct left cosets of H. Thus by the properties of equivalence relations, we get

that:

• Any two left cosets are either identical or disjoint, and

• the distinct left cosets of H in G give a partition of G.

One may similarly define an equivalence relation for right cosets, and the same

results hold when we substitute ‘left’ for ‘right’. Other important facts about

cosets are given in exercise 1.4.

Exercise 1.4 (Cosets and Lagrange’s theorem).

1. Show that all cosets (left or right) of a subgroup H ⩽ G have the same size
as the set H.

[Hint: Show that for all g ∈ G, the function φg : H → gH defined by

φg : h 7→ gh is a bijection. Define a similar bijection for right cosets.]

2. (Lagrange’s Theorem) Prove that given a group G and H ⩽ G, then |H|
divides |G|.
[Hint: Use the result of question 1 above, and the fact that distinct left

cosets of H in G partition G.]

3. Let G be a finite group. Show that:

(i) For all g ∈ G, the order |g| of g divides |G|.
[Hint: Consider the subgroup ⟨g⟩ ⩽ G.]

(ii) If |G| is prime, then G must be cyclic.

(iii) For any g ∈ G, g|G| = e.

(iv) If g ∈ G and gn = e, then |g| divides n.
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(v) For any g ∈ G, |g| = |g−1|.

4. Show that if H,K ⩽ G, then H ∩K ⩽ G.

5. Show that there are only two groups of order 4.

In Lagrange’s theorem, the positive integer |G|/|H| is called the index of H in G,
denoted [G : H] or iG(H).

Note that in general, the set of left cosets and the set of right cosets are not the

same.1 Any two left cosets or any two right cosets are either equal or disjoint,

but this is not necessarily true for any two cosets (i.e. we cannot say that a left

coset and a right coset are either equal or disjoint).

Definition 1.5 (Quotient). Let A be a set, and let ∼ ⊆ A× A be an equivalence
relation on A. Then the quotient of A by ∼, denoted by A/∼ or A∼ , is the set of
equivalence classes of ∼.

For the equivalence class we defined previously, the quotient G/∼ is the set of
distinct left cosets of H. We will denote this set by G/H instead of G/∼, and call
it the quotient of G by H.

Definition 1.6 (Normal Subgroup). Let G be a group and let N ⩽ G. Then N is
said to be a normal subgroup of G, denoted N P G, if Ng = gN for any g ∈ G.

Observe that if G is abelian, every subgroup H is normal, since

gH = {gh : h ∈ H} = {hg : h ∈ H} = Hg.

The converse is not necessarily true however; that is, a normal subgroup is not

necessarily abelian. Indeed, G is a normal subgroup of G for any G. This does not

make G abelian!

Normal subgroups are nice because the quotient G/H is independent of whether

we work with left cosets or right cosets.

We have the following theorems about normal subgroups.

• If N P G, then the quotient G/N forms a group under the product

· : G/N × G/N → G/N,

defined by aN · bN = abN.

• Let G be a group, and let N ⩽ G. The following are equivalent:

1For example, take the symmetries of the triangle, D3 = {e, r, r2, t, tr, tr2}, where r3 = t2 =
e and r t = tr−1. Then H = ⟨t⟩ = {e, t} is a subgroup, and its left cosets are rH = {r, r t} =
{r, tr−1} = {r, tr2} and r2H = {r2, r2t} = {r2, r tr−1} = {r2, tr−1r−1} = {r2, tr}, but its right
cosets are Hr = {r, tr} and Hr2 = {r, tr2}. Thus {H, rH, r2H} ̸= {H,Hr,Hr2}.
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(i) N P G,

(ii) For all g ∈ G, gN = Ng,

(iii) For all g ∈ G, g−1Ng ⊆ N,

(iv) For all g ∈ G, g−1Ng = N,

(v) For all g ∈ G, there exists g′ ∈
G such that gN = Ng′,

(vi) For all a, b ∈ G, aNbN =

abN, where aNbN = {an1bn2 :
n1, n2 ∈ N}.

Example 1.7. Consider the integers under addition G = (Z,+). As a subgroup,
consider the multiples of 5, H = 5Z. Since the group G is abelian, it follows
immediately that any subgroup is normal. Now the quotient G/H = Z/5Z is the
set

{{0,±5,±10, . . . }, {±1,±6, . . . }, . . . {±4,±9, . . . }} = {5Z, 1+5Z, . . . , 4+5Z},

and (3 + 5Z) + (4 + 5Z) = (3 + 4) + 5Z = 2 + 5Z, for example.

1.3 Homomorphisms and Isomorphisms

Let (G, · ) and (H, ∗ ) be two groups with products · and ∗ respectively. A
homomorphism is a function φ : G → H such that for all g1, g2 ∈ G,

φ(g1 · g2) = φ(g1) ∗ φ(g2).

A homomorphism preserves the structure of multiplication of the group G in the

group H.

Examples 1.8. Let G = Z under addition, and H = {1,−1} under multiplication.
Define the function φ by φ(n) = (−1)n. This defines a homomorphism:

φ(m + n) = (−1)m+n = (−1)m × (−1)n = φ(m)× φ(n).

Another example, inspired somewhat by example 1.7, is the following. If we map

each a ∈ Z to a mod 5 in H = {0, 1, 2, 3, 4} under + mod 5, we get a homomor-
phism:

φ(a + b) = (a + b) mod 5 = (a mod 5) + mod 5 (b mod 5) = φ(a) + mod 5 φ(b).

Definition 1.9 (Isomorphism). Let G,H be two groups, and let φ : G → H be a
homomorphism. Then φ is said to be an isomorphism if it is injective.

If φ(G) = H, then G and H are said to be isomorphic, written G ≃ H.

Definition 1.10 (Kernel). Let φ : G → H be a homomorphism, and suppose
ẽ ∈ H is the identity in H. The kernel of φ, denoted ker φ, is the following subset
of G,

ker φ = {g ∈ G : φ(g) = ẽ},

i.e. all members of G mapped to the identity element of H.
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Exercise 1.11 (Important properties of homomorphisms). Suppose (G, · ) and
(H, ∗ ) are groups, and let φ : G → H be a homomorphism. Show that:

1. If e ∈ G and ẽ ∈ H are the identities, then φ(e) = ẽ.

2. For all g ∈ G, φ(g−1) = [φ(g)]−1.

3. φ(G) ⩽ H.

4. ker φ P G.

5. φ is injective if and only if ker φ = {e}.

Now let G be a group, and suppose we have a normal subgroup N P G (think of
5Z P Z). The natural homomorphism, usually denoted σ, is the homomorphism
σ : G → G/N, defined by σ : g 7→ Ng. Furthermore, its kernel consists of the
elements of N, that is, ker φ = N. This homomorphism has an important role in

the so-called first isomorphism theorem:

Theorem 1.12 (First Isomorphism Theorem). Let φ : G → H be a homomorphism
from the group G to the group H. Then the image of G under φ is isomorphic to

G/ ker φ, i.e.

φ(G) ≃
G

ker φ
.

This theorem is often visualised with the following commutative diagram:

G

G/ ker φ

φ(G)

σ

φ

≃

Example 1.13. Again, let us think of the recurring example of Z and 5Z. First
in example 1.7 we saw that Z/5Z = {5Z, . . . , 4 + 5Z}, and we later saw in
examples 1.8 that φ : Z → {0, . . . , 4} is a homomorphism from the group Z to
({0, . . . , 4},+ mod 5). What is ker φ? It is not hard to see that it contains precisely
the multiples of 5, 5Z, since these are mapped to 0 by φ.

What the first isomorphism is asserting is that these two groups are isomorphic,

which makes sense. Indeed, if we simply remove the suffix “ + 5Z” from each
element of the quotient group, their behaviour is identical.

Perhaps one of the more surprising results we encounter in modern group theory

is Cayley’s theorem:
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Theorem 1.14 (Cayley’s Theorem). Every group G is isomorphic to a subgroup

of Sn, that is, to some group of permutations.

In other words, all the groups which one may construct from the four axioms are

equivalent (in the isomorphic sense) to a group of permutations. This is quite a

disappointment, since historically, the axioms were formulated as an attempt to

generalise the notion of a group of permutations (which was already an extensively

studied mathematical object). But as we can see from the theorem, this was a

failed attempt. Not all hope is lost however—the axiomatic viewpoint of group

theory allows us to think much more abstractly about groups. This is after all, the

reason that groups are still presented axiomatically, and not simply as substructures

of Sn.

2 Vector Spaces
Here we provide a summary of the important definitions and results on vector

spaces covered in the course.

2.1 Basics

A vector space V (F ), where F is a field, is an abelian group under vector addition

+, with identity 0. We also have closure under scalar multiplication, i.e. the unary

operation v 7→ λv, where λ ∈ F .

A linear combination of the vectors v1, v2, v3, . . . , vn in V (F ) is a sum of the form

α1v1 + · · ·+ αnvn for α1, . . . , αn ∈ F .

The set A = {v1, v2, v3, . . . , vn} ⊆ V is said to be linearly dependent if there exist
α1, α2, α3, . . . , αn, not all zero, such that

∑n
i=1 αivi = 0. Otherwise, we say A is

linearly independent.

The linear span of a finite set A = {v1, . . . , vn} of vectors is the set

span(A) = {α1v1 + · · ·+ αnvn : α1, . . . , αn ∈ F}.

If A is not finite, then

span(A) =
{∑
v∈A′
αvv : A

′ ⊆ A is finite, and αv ∈ F for all v ∈ A
}
,

i.e. span(A) is the set of all finite linear combinations of vectors in A. If the linear

span of a set B is the whole space V , we say that B spans V .

An important result which allows us to define dimension is the following.

Theorem 2.1 (Steinitz Replacement Theorem). If A ⊆ V is a linearly independent
set and B is a finite set such that span(B) = V , then |A| ⩽ |B|.
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An immediate consequence of the Steinitz replacement theorem: if the finite sets

B1 and B2 are both linearly independent and span V , then |B1| = |B2| (since by
Steinitz, |B1| ⩽ |B2| and |B2| ⩽ |B1|).

A finite set B which is linearly independent and spans the space V is called a basis

for V . The unique number |B| for any basis B of V is called the dimension of V ,
denoted by dim V . We say that V is n-dimensional.

These ideas can be extended to bases which are infinite, but we consider only

finite dimensional vector spaces here, i.e. vector spaces where bases are finite,

and dim V ∈ N.

2.2 Linear Maps and Matrices

Definition 2.2 (Linearity). Let U and V be finite dimensional vector spaces over a

field F , and let Λ: U → V be a map. Then Λ is said to be linear if for all x, y ∈ U
and α ∈ F ,

Λ(x+ y) = Λ(x) + Λ(y) and Λ(αx) = αΛ(x).

Now this is a bit of a long theorem, but be sure to read it and understand what it

is saying. The proof is easier than the statement!

Theorem 2.3 (Linear map⇔ matrix). Let U and V be vector spaces with dimU =
n and dim V = m, and let Λ: U → V be a linear map. Let BU = {u1, . . . ,un} be
a basis for U, and let BV = {v1, . . . , vm} be a basis for V .

For each basis vector ui , compute the image Λ(ui) and write it in terms of BV as

Λ(ui) = λ1iv1 + · · ·+ λmivm. Now let x ∈ U, and write x = α1u1 + · · ·+ αnun in
terms of BU . Then the image Λ(x) is given by

Λ(x) =

λ11 · · · λ1n
...

. . .
...

λm1 · · · λmn


α1...
αn

 =
 | |
Λ(u1) · · · Λ(un)
| |


α1...
αn

 .
In other words, the entries β1, . . . , βm of the resulting column vector of the matrix

product above are the coefficients of the image

Λ(x) = β1v1 + · · ·+ βmvn

in terms of the basis BV .

In other words, every linear map Λ from an n-dimensional vector space to an m-

dimensional one corresponds to an m× n matrix, denoted [Λ], whose columns are
the images of the basis vectors of the domain under Λ.

We therefore use terms about linear maps and matrices interchangeably. For

example, the “kernel” of a matrix M is the kernel of the corresponding linear map

v 7→Mv.
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Example 2.4. Instead of the usual maps from Rm to Rn, let us look at a more
interesting one which maybe explains this result a bit better.

Consider the set of quadratic polynomials, U = {ax2+bx+c : a, b, c ∈ R}. Check
that this forms a vector space under usual addition and scalar multiplication of

polynomials. Similarly, consider the set of linear polynomials V = {ax + b : a, b ∈
R}.

Verify that BU = {1, x, 2x2 − 1} is a basis for U, and that BV = {2, 1 − x} is a
basis for V . Now consider the linear map Λ: U → V , defined by

Λ(ax2 + bx + c) = (a − 2b + c)x + (a + b − 2c).

Verify that this is linear. How do we represent Λ as a matrix? First, we find

the images of the basis vectors BU . These are Λ(1) = x − 2, Λ(x) = −2x + 1,
Λ(2x2−1) = x+4. We have to write these in terms of BV though, as the theorem
states. If we mess around with comparing coefficients, we get that

Λ(1) = x − 2 = − 12(2)− 1(1− x)
Λ(x) = −2x + 1 = − 12(2) + 2(1− x)
Λ(2x2 − 1) = x + 4 = 5

2(2)− 1(1− x)

In other words, in terms of BV , we have

Λ(1) =

(
−1/2
−1

)
, Λ(x) =

(
−1/2
2

)
, Λ(2x2 − 1) =

(
5/2

−1

)
.

Thus the matrix representation [Λ] is

[Λ] =

(
−1/2 −1/2 5/2

−1 2 −1

)
.

So if we have the polynomial

x =

12
5

 = 1 + 2x + 5(2x2 − 1)
(in terms of BU), its image under Λ is

[Λ]x =

(
−1/2 −1/2 5/2

−1 2 −1

)12
5

 = (
11

−2

)
where the image is in terms of BV , i.e. Λ(x) = 11(2)− 2(1− x) = 2x + 20. One
can check that this is correct by finding Λ(1 + 2x + 5(2x2 − 1)) directly from the
definition of Λ.

Proposition 2.5. If the columns of a matrix M are linearly independent, then

kerM = {0}.
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2.3 Subspaces

A subset U of the vector space V is a subspace if U itself is a vector space. To

prove that U ⩽ V , i.e. that U is a subspace of V , we must have:

– Closure and inverse law under vector addition (+)

– Closure under scalar multiplication (λ · )

Alternatively, we can use the following result: U ⩽ V (F ) if and only if for all
x, y ∈ U and α, β ∈ F , αx+ βy ∈ U.

2.4 Change of Basis

Suppose Be = {e1, . . . , en} and Bf = {f1, . . . , fn} are two bases of a vector space
V . The transition matrix from Bf to Be, denoted ePf , is an n×n which changes the
representation of vector v = β1f1+· · ·+βnfn in terms of Bf into the representation
v = α1e1 + · · ·+ αnen in terms of Be.

The transition matrix ePf is given by

ePf =

 | |
f1 · · · fn
|e |e

 ,
where the columns are the basis vectors fi written in terms of the basis Be.

Example 2.6. Consider the vector space U from example 2.4. An easy basis for

this vector space is Be = {1, x, x2}. We opted to use Bf = {1, x, 2x2 − 1} there.
How do we translate something in terms of Bf into something in terms of Be?

We simply express the basis vectors of Bf in terms of Be:

1 = 1 + 0x + 0x2

x = 0 + 1x + 0x2

2x2 − 1 = −1 + 0x + 2x2.

Putting these as the columns, we get

ePf =

1 0 −1
0 1 0

0 0 2

 .
Indeed, if a polynomial is given as xf = 3− 2x + 5(2x2 − 1) in terms of Bf , then

xe = ePfxf =

1 0 −1
0 1 0

0 0 2

 3−2
5

 =
−2−2
10

 .
Indeed, it is not hard to check that the given polynomial is −2− 2x +10x2, upon
expansion.
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Proposition 2.7 (Change of Basis). Let Be and Bf be two bases for V . Then

fPe = ePf
−1.

Example 2.8. Consider the map T : R3 → R3. Using the standard basis Be =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} for R3, T carries out the following:

T (x, y , z) = (x + y , y + z, z + x).

Rather than using the standard basis, we wish to interpret vectors in the domain

using the basis Bf = {(1, 0, 1), (1, 0,−1), (0, 1, 1)}, and vectors in the codomain
using basis Bg = {(2, 0, 1), (1, 2, 3), (1, 1, 2)}. In other words, we want that, for
example, T (1, 2, 3) is interpreted as

T (1(1, 0, 1) + 2(1, 0,−1) + 3(0, 1, 1)) = T (3, 3, 2),

where now (3, 3, 2) is equivalent to (1, 2, 3) but in terms of Be rather than Bf ,

and we may apply the definition to get T (3, 3, 2) = (6, 5, 5). But now this output

in terms of the standard basis too: we want to write it as (α, β, γ) so that it

is interpreted with respect to Bg as α(2, 0, 1) + β(1, 2, 3) + γ(1, 1, 2). Solving

some simultaneous equations, we find that in terms of Bg, the resulting vector is

(6, 11,−17).

Thus what we want is a modified operator T so that T (1, 2, 3) = (6, 11,−17),
without having to manually change bases before and after.

We can obtain the desired representation of T in a similar method to that of

example 2.4, or else we can do the following. Write T as a matrix in terms of the

standard basis first. Let us denote this representation by e[T ]e. So

e[T ]e =

 | | |
T (e1) T (e2) T (e3)

| | |

 =
1 1 0

0 1 1

1 0 1

 .
Now if we are given a vector x in terms of the basis Bf , we can transform it into

the standard basis by doing x 7→ ePfx first, and then apply e[T ]e. This composition

gives us a new matrix, which we will call e[T ]f = e[T ]e ePf . This now interprets

input vectors in terms of Bf , not Be. Let’s work it out:

e[T ]f =

1 1 0

0 1 1

1 0 1

1 1 0

0 0 1

1 −1 1


︸ ︷︷ ︸

ePf

=

1 1 1

1 −1 2

2 0 1

 .

But just as we remarked before, this will give us outputs y in terms of the standard

basis, whereas we want them in terms of Bg. If we do y 7→ gPey, this gives us the
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desired representation. Now

gPe = (ePg)
−1 =

2 1 1

0 2 1

1 3 2

−1 =
 1 1 −1
1 3 −2
−2 −5 4

 ,
so we get the desired representation g[T ]f = gPe e[T ]e ePf , which when worked

out, yields

g[T ]f =

0 0 2

0 −2 5

1 3 −8

 .
Indeed, we have 0 0 2

0 −2 5

1 3 −8

12
3

 =
 6

11

−17

 ,
as desired.

2.5 The Dimension Theorem

An important theorem about dimension is the so-called dimension theorem.

Definition 2.9 (Image). The image of a linear map Λ: U → V , denoted Im(Λ),
is the set Im(Λ) = {Λ(u) : u ∈ U} ⊆ V .

Theorem 2.10 (Dimension Theorem). Let Λ: U → V be a linear map defined on
an finite dimensional vector space U. Then

dimU = dim(ker Λ) + dim(ImΛ).

If dim(ker Λ) ̸= 0, then Λ is said to be singular.

Example 2.11. Consider the map T : R2 → R3, defined by

T (x, y) = (3x + y , x + y , x + 3y)

(standard basis). We wish to determine ker T and whether or not T is singular.

For ker T , we determine which vectors v send T (v) to 0. A simple calculation

shows that the only solution to this is x = y = 0, hence ker T = {0} and thus
dim(ker T ) = 0 (note that the empty set is a basis for {0}). Hence the map T is
nonsingular.

Example 2.12. Consider the map T : R3 → R3, where (x, y , z) 7→ (3x, y + z, 0).
Thus

[T ] =

 | | |
T (e1) T (e2) T (e3)

| | |

 =
3 0 0

0 1 1

0 0 0

 .
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Let the columns of this matrix be denoted c1, c2 and c3. Observe that the third

column of [T ] can be written as a linear combination of the others (0c1 + 1c2),

and hence the set {c1, c2, c3} is linearly dependent. The two remaining vectors
form a linearly independent set {c1, c2}, since it is impossible to find αi ’s not all
zero such that α1c1 + α2c2 = 0.

Now each vector in R3 can be expressed as x = (x, y , z), and by matrix multi-
plication, T maps this vector to xc1 + yc2 + zc3 ∈ ImT . In general, any vector
transformed by T can be expressed as a linear combination of its columns, so

the columns of a matrix representing a linear transformation span its image, i.e.

ImT = span{c1, c2, c3}.

Now if we trim the columns of the matrix to a set of linearly independent vectors

(as we have done for [T ] obtaining {c1, c2}) we obtain a basis for ImT , and hence
we can determine the dimension of the image (i.e. the number of vectors in a

basis), i.e. the rank. Thus the rank of T is 2, since |{c1, c2}| = 2.

In general, the rank of a transformation is the number of linearly independent

columns in its matrix representation. It turns out that this result holds if we

consider rows instead of columns (“row rank = column rank”).

Now by the dimension theorem, we can determine the nullity (dim ker) of T also:

dim(ker T ) = dim(R3)− dim(ImT ) = 3− 2 = 1

Hence the kernel of T has dimension 1, i.e. ker T ̸= {0}. In fact, one may deduce
that any vector of the form (0, a,−a) for any a ∈ R is mapped to 0 by T .
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