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1 Introduction
In these notes, we solve Legendre’s differential equation
(1 —a?)y" =22y +n(n+ 1)y =0 (1)

using the method of power series, and then we subsequently define Legendre
polynomials and explore some of their properties.

1.1 Overview of the Power Series Method

Most differential equations have solutions which cannot be described using
elementary functions (i.e. polynomials, trigonometric functions, logarithms,
and so on; functions we commonly work with). In fact, even the solutions
of the simple differential equation y” + xy = 0, known as Airy’s equation,
cannot be written in terms of elementary functions.

We can however write its solutions using power series:

3k+1 3k+2) .
y_AZ " BZ 3n—|—§). )x“l’ (2)

for any A, B € R.
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Even though the solutions look complicated in this case, all we care about
is the fact that they can be represented as power series; i.e. functions of the
form > a,z™ where ag,ay,... are the coefficients.

Example 1 (Simple Harmonic Motion). Consider the equation
y' +y=0. (3)

Suppose the solution can be written as a power series, say, y = » . a,z".
Then differentiating term by term, we get that the first and second derivatives
of y are given by the power series

y = Z anpnz" ! and 3y = Z apn(n — 1)z" 2, (4)
n=0 n=0

Substituting these in equation (3), we have

i apn(n — 1)z" 2 + i a,x" =0,
n=0 n=0

then by replacing n with n+2 everywhere in the first series, we get that both
series have the same power of x in their general term:

— Z ani2(n+2)(n+ 1)z" + Zanx” = 0.

n=—2 n=0

Now expanding out the first few terms of the first series, we can combine the
two summations since the bottom indices match:

= ao(0)(— 1)z > + a1 (1)(0)z~" + Z Unio(n+2)(n+ 1)2" + Z apz™ =0

n=0 n=0
- Z anto(n+2)(n+1)z" + Zanx” =0
n=0 n=0

— i(anﬂ(n +2)(n+1) +a,)z" =0.

n=0
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Since this series must be zero (for any value of x), each of the coefficients
must be zero; i.e. we must have

anro(n+2)(n+1)+a, =0
an

— an+2:_(n+2)(n—|—1)‘

Thus the first few coefficients are
ap aq ag aq ag
ap,A1,00 = ——,03 = ———, Ay = s = ————, 06 = ———, - - .,
OO T ™M T 4327 T 5.4.3.277° 6l

so the solutions are given by

y(x)—a0+a1$—§$—§$ +4‘ +ax—ax—---
(1—54-5—54‘ )+a1<$—§+a—ﬁ+"')

= agcosx + a;sinz.

Example 2 (Hermite’s Equation). Consider the equation

y' —ay =0 (5)

Suppose the solution can be written as a power series: y = » > a,z".
Then the first and second derivatives are given by y' = > 7 ja,nz" ! and
Y’ =3  amn(n — 1)z" 2. Substituting these in equation (5), we have

azn(n — 1)z —x a,r" =
Z Z

— Zann(n —1)a" % — Z a2 =0
n=0 n=0

— Zan+4 (n +4)(n + 3)z" " Zan = (n<n+4)
n=—4

— 0+0+2a2+6a3x+2an+4 ’I’L+4)(n+3 n+2 Zanx
terms forn—74,...,fl n=0 n=0

= 2ay + 6asx + Z(an+4(n +4)(n+3) —a,)z"t?* =0
n=0
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Just as in the last example, we have that all coefficients must be zero. In
particular, 2as = 0, which means that ay = 0, similarly 6az = 0, so a3 = 0,
and

Qp,
pian+4)(n+3)—a,=0 = apq = CETICEE
Thus we have the coefficients
ag, a1 a2:a3:0a4:&a5—£a6—a7 0,a8 = 2o )
Y ’ 4.3’ 5-4 ’ 8-7-4-3
so the solutions are given by
. Qo 4 aq 5 Qo S aq 9
y(@) =aotaw+ e e e g T ogs

xt a8 xd x?
=ap |1+ + + ) ta |+ + + -

4-3 8-7-4-3 5-4 9-8-5-4

i x4” i $4n+1
= o n + ap ) ,
i 4k(4k — 1) " = [T (4k + 1)4k

where this time, the power series do not correspond to functions we can
immediately recognise. In fact, these two power series are used to define
what are known as Hermite functions.!

Remark 3. The general power series method to solve
a(z)y” + b(z)y + c(z)y =0

is to let y(z) = >~ a,a™, then y’ and y” are as in (4). Substitute these into
the equation, and simplify to get the left-hand side as a single power series.
Since the series must be zero independently of x, then each coefficient must
be zero, which gives a recurrence relation for the coefficients a,,. This gives
two linearly independent solutions for y(x).

The power series method always works so long as for all z € R, a(z) # 0.
If a(z) = 0 for some values of x, then the so-called Frobenius method can
be used, where we instead take y = 2"y~ a,z" with ag # 0 and proceed
similarly.

Tt is not uncommon in mathematics to define functions by differential equations. For
example, cosz can be defined as the unique solution of ¢y’ + y = 0 (equation (3)) with
y(0) =1 and ¢'(0) = 0 (since these conditions force ag to be 1 and a; to be 0).

4
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Exercise 4. Verify, using the method of power series, that the solutions of
Airy’s equation 3" + zy = 0 are given by

1 4 7-4 2 5-2
y:ao(l—ax?’qtaxﬁ—wxg%—---)—I—a1 (:L’——.I4+—l'7—---)

as is stated in equation (2).

The two linearly independent power series solutions which arise from this
differential equation are called Airy’s functions, denoted Ai(z) and Bi(x).

2 Legendre’s Equation

Now we use the power series method to solve Legendre’s equation
(1 —a?)y" =22y + £(E+ 1y =0, (6)
where £ € R is a constant.

As usual, suppose y =y~ a,z™. Then the first and second derivatives are
oo

given by y' = Zn:(() c)Lnn:L'"_l and y” = Y07 ja,n(n—1)z""2, and substituting
these in equation (6), we have

(1— 2% Z apn(n — 12" — 2z Zanmc”_l +E(E+1) Zanaj” =0
n=0 n=0 n=0

= Z apn(n —1)z" 2 — Z apn(n —1)z" — Z 2a,nx"
n=0 n=0 n=0
+) a4+ 12" =0
n=0
— Z apia(n+2)(n+ 1)z" — Z apzn(n —1)z" — Z 2a,nx"
n=—2 n=0 n=0

+Y b€+ 1)a" =0
n=0

hE

== O+0+Zan+2(n+2)(n+1)x”—

n=0 n

— i 2a,nx" + i a6+ 1)a" =0
n=0 n=0

apyn(n —1)z"

Il
o

5
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— Z(amg(n +2)(n+1)—an(n—1) —2a,n+a§(+1))z" =0
n=0

— Z(an+2(n +2)(n+1)+ (E+n+1)(€ —n)ay)z" =0,

and since the coefficients must be zero, we have

" __(n+§+1)(§—n)a
T+ 2)n+1)

so the power series coefficients of y are
€+ (E+DE-Y
2.1 7 3.2

_ (E+3)(E—-2)(E+1)¢ do. a5 — (E+4)(E-3)(E+2)(E-1)
4-3.2-1 e 5-4-3.2

o, A1, Q2 = — ay,

A1y ..,

and the solutions are given by

E+DE o (E+D(E-1)

TR TR
:a()(l_(f_;ll)f 7t ..)+a1(x—%x3+--->
:aoyo(g,x)-i-(llyl(g,x)v

Yy =ag+axr —

where

yo(&x) =1 - (5;_'1)5332 L (E£3)(E 2!2)(5 8 4

Hkno (§ k( ) )ZEQn, (7)

M

n=0
and

(E.7) = o (5+2;('£— D sy E+DE-IE+DE=D 5
D' IS (€= (CDME+1) a0

(2n + 1)!

§M8
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Exercise 5. Use the power series method to show that the solutions of the
special case (1 — z?)y” — 22y’ + 2y = 0 of Legendre’s equation are given by
y(x) = apx + a;(1 — ztanh ™' z).

3 Legendre Polynomials

Observe that the two linearly independent functions yo(n,z) and yi(n,x)
from equations (7) and (8) terminate, that is, consist of finitely many terms,
if n is an even/odd non-negative integer respectively.

Indeed, if n > 0 is even, then after finitely many terms, the bracket (( —n) =
(n —mn) = 0 appears in all numerators in the series expansion of yo(n, z),
making them all zero. This does not happen for y;(n,z) if n is even, since
in y; we get the bracket (£ +n) = (n+n) = 2n. For example,

35 35
y0(4,x):1—10x2+§$4+0x6+0x8+~-~:1—10x2+—3x4

6 2 1 1 28 .
Ag)— 33+ 2P L 20T L 209 11 13,
yi(4,7) =2 — 3z +5£U +7:E +733 +11x +429x +

If, on the other hand, n is odd, then the same happens for y; (n, x) since the
bracket (£ —n) appears in every numerator after finitely many terms, but it
does not happen for yo(n, x). For example,

15 ¢ 4, 20

y0(5,x):1—15x2+30x4—10$6—7x —x —§$12+~-~
14 21 14 921
91(5735):3?—3233—1-33354—03:74—03:9—1—...:$—§x3+€x5.

Observe that in either case, the polynomial which terminates has degree n.

Definition 6 (Legendre Polynomial). Let n be a non-negative integer. The
Legendre polynomial of order n is the polynomial P,(x) of degree n satisfying
the Legendre equation y” — 22y’ +n(n+ 1)y = 0 and P,(1) = 1.

In view of the observations above, the Legendre polynomial is given by

Pu(z) aopyo(n,x) if n is even
n\T) =
a1 y1(n,x) if n is odd,

7
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where the constant ag (or a;) is chosen appropriately so that P,(1) = 1.
(Indeed, if y;(n, 1) # 1, then we simply divide by y;(n, 1)). Thus

Yo ((n, f; if n is even
YoM,

Pu(x)={"
nmr) e odd.
Y1 (n7 1)

Example 7. We determine the Legendre polynomials P;(z) and Ps(x).

Indeed, by equation (8), we have y(5,2) = x — 2% + 245, and therefore
y1(5,1) =1-H+2 =2 Thus Ps(z) = 8/%53/1(5,3:) = D(r—Hat+2a%) =
£(632° — 702° + 152).

By equation (7), we have yo(6,2) = 1 — 212? 4 632* — 2225, Consequently,
Yo(6,1) = 1-21463— 2% = — . Hence Py(z) = =57 yo(6, %) = 35(2312° —
31521 + 10522 — 5).

Exercise 8. Determine the Legendre polynomials Ps(z), Py(z) and Pjo(x).

4 Properties of Legendre Polynomials

Here we illustrate some of the nice properties which Legendre polynomials
exhibit.

4.1 Rodrigues’ Formula
Theorem 9 (O. Rodrigues, 1816 [1]). Let n be a non-negative integer. Then

1 d°
n!2n dzm

P,(x) = (2 —1)™.

Proof. Let ¢(z) denote the right-hand side. It suffices to show that ¢(z) is
a polynomial which satisfies the Legendre equation (6), and that ¢(1) = 1.

That ¢(x) is a polynomial is obvious, being a constant multiple of repeated
derivatives of a polynomial, and can easily be shown by induction. Now for
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#(1) = 1, one only need observe that (z> — 1)" = (x + 1)"(x — 1)*, and then
by Leibniz,?

n n k n—k
1 "\ /n\ dF danF
= o ((:L‘ + 1)"n! + Zl (k:) w(m + 1)”W(:€ — 1)") .3

so that when z =1, ¢(1) = - (2"n!+ > 7_,0) = 1.4

n!2n

Finally to show that ¢(x) satisfies the Legendre equation, let ¢ (z) = (1—xz?)™.
Then ¢'(z) = —2nz(1 — 2?)"!, and multiplying both sides by (1 — z?) we
get (1 — 22y = —2nz(1 — 23" = —2na1), so that

(1 — 2" + 2nwyp = 0.

Differentiating n + 1 times, by Leibniz, we have

W(_Qﬁb(n)

+ 2nzyp ™Y 4 2n(n + 1)p™ =0,

(1 — 22D 4 (n + 1) (=22)p ™ +

which simplifies to

(1 — 2™ — 2209t 4 n(n + )™ =0
= (1= 2?) (") = 2™ +nn+ 1™ =0

Now observe that ¢ = n!2"(—1)"¢(z). Denote n!2"(—1)" by k. Then we
have

/

(1 —a*)(ke)" — 22(ko) +n =
= (1 — 2%)k(¢)" — 22k(¢) +n(n+1)(k¢) =0
— (1 —2%)¢" —22¢' +n(n+1

so ¢(x) satisfies Legendre’s equation. O

2Leibniz rule for the nth derivative of a product: (f-g)™ = >oreo (Z)f(k)g("’k) (proof
by induction).
3Here we use the intuitive fact that (gﬂ—nn(a: + 1)™ = nl, easily proved by induction.

4Another intuitive fact provable by induction: if = 1, then ;g;%(x — 1" =0 for
1<k <n.
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Exercise 10. Use Rodrigues’ formula to obtain the fourth order Legendre
polynomial Py(z).

Exercise 11. Prove the following results by induction to fill in the missing
details of the proof.

(i) Leibniz rule: (f-g)™ =3"1_ () f®gn=H).
(i) L(z+1)" =nl
(iii) Ifx—lthendnk(x )" =0for 1 <k<n.

4.2 Orthogonality

Sturm-Liouville theory is the study of second order differential equations of
the form

(py') + qy = —wy,

where p, ¢,w are non-negative functions of z in some interval, and \ is a
constant. The Legendre equation is of this form since (1 — 2?)" = —2u, so it
is equivalent to

(1 =2)y) +n(n+1)y =0, 9)
and for x € [—1,1], p(z) = 1 — z* is non-negative.

If one considers the space of all real—valued functions on [—1, 1] with the usual
inner product (f, g) f f(z)g(z) dx, then we have the following.

Theorem 12. The Legendre polynomials are orthogonal, that is,

/_1 Po(x)P,(x)dz =0

1
for n # m. When n = m, we have f_ll[Pn(x)]z de =2/(2n +1).

Proof. Consider first m # n. Since these satisfy Legendre’s equation, we
have

(1=2)P)Y +m(m+1)P, =0 (10)
(1=2*)P) +nn+1)P, =0 (11)

10
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using the Sturm-Liouville form. Doing P, (10)—P,,(11) and simplifying yields
g g phtyingy
(1 —2*)(P.,P,— P,P)]'+ (m—n)(m+n+1)P,P, =0.

Now integrating both sides, we get

1

/_1 (1 —2*) (PP, — P,P))]) dv + (m —n)(m +n+ 1)/ P, P, dx =0,

1 ~1
and since the fist integral is clearly zero, we get [ _11 P, P, dx = 0 when m # n.

Now for the result when n = m, we use Rodrigues’ formula. Indeed,

/1 [P.)? dz = ! /1 @ (2% — l)rbﬂ(x2 — 1)"dx (12)
PR ~ (222 || dan dx™ ’

I’!L

J

and proceeding by parts ([ uv’dx = uv — [vu'dx), the integral I, becomes

dn ) dn—l

a1 g

2 —1)"

1 L g1 ) m-+1 )

and the first term vanishes by exercise 13(ii) with k = 1, so

1 dn—l ) m-+1 )

We can similarly integrate by parts again to obtain that

! dn72 2 n dn+2 2 n

1 dxn—Q

and similarly by induction, we can integrate by parts a total of n times to
get that

I, - / 21T 2y = (2n)!/ (@ —1)"de  (13)

2
1 dz?m 1

v~

JIn

by exercise 13(i). Now we substitute t = (x + 1)/2 to transform the integral
J, into

1
Jn:/ (1 — )" dt.
0

11
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Integrating this by parts yields the reduction formula 2(1 + 2n).J,, = nJ,_;.
This can be solved to give that

_ (n!)?
" (2n+1)!

which when substituted back into equations (12) and (13) gives the desired
result that [ [P, (z))?dz = 2/(2n + 1). O

Exercise 13. Prove the following results by induction to fill in the missing
details of the proof.

(i) Lo(22 — 1) = (2n)!.

dx2n

dnfk

dxn—Fk

(ii) If x = 41, then (2 =1)"=0for 1 <k <

n.
(iii) Suppose that u(™*) (a) = u**(b) = 0 for 1 < k < n. then
b b
/ (u'™(z))? dx :/ u(z) u®(z) d.

(iv) If J, = fol t"(1 —t)™dt, then 2(1 + 2n)J,, = nJ,—1 and Jy = 1.
[Hint: integration by parts]

(v) If Jo =1 and 2(1 + 2n)J, = nJ,_y, then J, = (n!)?/(2n + 1)!.

Exercise 14. State the polynomials P;(z) and Ps(x). Manually verify that

f_ll Py(x)Ps(x) dx = 0 and that f_ll(P4(x))2d:B = %.

4.3 Generalised Fourier Series (Fourier-Legendre)

Exercise 15. (i) Find constants ¢; € R so that the quadratic function
f(x) = a + br + cz? is equivalent to the combination of Legendre
polynomials coPy(x) + c1 Pi(z) + co P ().

In applications, it is often necessary to express a given real-valued function
f:[=1,1] — R in terms of Legendre polynomials, as done in exercise 15. By
Sturm-Liouville theory, one can show that any square integrable® function

®Meaning that f_ll[f(as)]2 dx exists.

12



§4.3 | Generalised Fourier Series (Fourier-Legendre) Luke Collins

f on [—1,1] with finitely many discontinuities can be expressed as a sum of
Legendre polynomials:

f(x) ~ ) en Pala), (14)

where the relation ~ becomes equality at points where f is continuous, but
where f is discontinuous, we have

- 1

> e pale) = 3 ( Jim 7€)+ Jim 1(©)). (15)
— 2 \¢—z— E—at

This series is called a generalised Fourier series, or in particular, the Fourier-

Legendre series of f.

It is not hard to formally determine the coefficients ¢, in the general case
thanks to the orthogonality property of the Legendre polynomials. Indeed,
let us focus on the uncountably many points where f(x) is continuous, so
that the relation (14) is an equality. Multiplying both sides by P,,(z) and
integrating, we get

/_11 f(2)Pr(z) dx = gcn /_11 Po(2)Po() dat = 2m

C2m+1]

by orthogonality (theorem 12). Thus we get that

+1 [t
. /_ f@)Py(a)d.

2n

Cp =

Here we are of course assuming that f(x) can be written as such a series in
the first place. For a full proof, we direct the reader to section 4.7 of [2].

Example 16 (Polynomials). Let f: [—1,1] — R be the polynomial of degree
d with coefficients a,,:

d
f(z) = Z anx".
n=0

Clearly f is square integrable and continuous everywhere, so we can express
fas > 2 e Py(x) for all z € [—1,1]. In this case, just as in exercise 15, we
do not need to use the integral formula for ¢,, one can obtain ¢; explicitly by
solving linear equations arising from comparing coefficients, and then simply
take ¢; =0 fori > d+ 1.

13
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Example 17. Take o € [—1,1], and consider the function f: [-1,1] - R
defined by

f(x):{o if—l<z<a

1 if a<z<l.

Clearly f is square integrable and has only one discontinuity (at x = «), so
we have that f has Fourier-Legendre coefficients

Cp = 2n2—1— ! /_11 f(z)P,(z)dx

Sha (/j0~Pn(q:)dx+/(:1~Pn(x)d:c)

on+1 1
- n2—i— /Pn(ar)da:

1 1

T2 / (Pry1 — Py da (assuming n > 1, using exercise 20(iv))
1 Poi(a) — P (o

_ §(Pn+1(1) — P, 1(1)+ Poyi(a) — Pyq(a)) = +1(a) _ 1(a)

since P,(1) =1 for all n. When n = 0, we have

1 1 a 1
00:% 1f(x)Po($)da:=%/1f($)d$:%/10d$+%/ dx:%(l—oz).

Thus we have that

[e.e]

1

flx) = %(1 —a)R(@) + 5 Y (Pusi(@) = Paa(@)) Pala),

n=1
for all x € [—1, 1] at which f(x) is continuous. Now let us verify equation (15)
for f(x) at the discontinuity x = «. Clearly we have lim,_,,- f(x) = 0 and
lim, ,,+ f(z) = 1, so we expect that the series above converges to Oizl = %
Let Sy denote the result of taking N terms in the series obtained above.

Indeed, when x = «, we have

Su = 51— 0)Po(0) + 5 3 (Pana(@) — Pur(0)) Pafa)
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N
1 1
=50 -a)+y > Popi(@)Po(@) = Po(a) Py ()
n=1
1 1
=5 §PN+1(04)PN(04) (method of differences)

and as N — oo, we have that Py(x) — 0 (see the asymptotic form of P, (x)
in section 4.6), so that Sy — %, as expected.

Exercise 18. Let f: [—1,1] — R be defined by

11—z

fa) =5

(i) By multiplying both sides of the equation

Vv1-— 2xt—i—t2 ZO

by f(x) and integrating both sides with respect to x, show that
1 (1—1)2 <1 + Vi >) /
—(1+t— lo E t"
2t ( oE  \1- J

(ii) Expand the left-hand side of the equation given in (i) as a Maclaurin
series in power of ¢ to obtain

e}

4 tn N
5_4;(4n2—1)(2n+3):;0t /_lf(gc)P

(iii) By comparing coefficients of ¢", deduce the values of f_ll f(x)P,(x)dx
for n =0 and for n > 1.

(iv) Hence deduce that f(z) can be written as the Fourier-Legendre series

2 = P,(x)
f(z) = 3h@) _2; 2n—1)(2n+3)

15
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4.4 The Generating Function

A generating function is a clothesline
on which we hang up a sequence of
numbers for display.

HERBERT WILF

Recall that a generating function for a sequence (ay,)nen is simply the power

series
D

G(ay; ) = Z anx".

n=0
If G(ay; x) happens to be the Maclaurin series expansion of some function g,
then ¢ is also called the generating function of (a,).

In our case, we are after a function G(z;t) whose coefficients in the Maclau-
rin series expansion are the Legendre polynomials. It can be shown, using
complex analysis, that the desired function is 1/v/1 — 2zt + ¢2, i.e.

\/1—2xt—|—t2 ZP

The proof is available in section 4.2 of [2].

Exercise 19. Find the first five Legendre polynomials P;(z),. .., Ps(z) by
using Maclaurin’s theorem for f(t) = 1/v/1 — 2zt + t2.

4.5 Recurrence Relations

The Legendre polynomials satisfy some recurrence relations which can easily
be obtained from the generating function. Indeed, differentiating the gener-
ating function G(x;t) with respect to ¢ yields

0 ity = — 2t
ot (1= 2t +t2)3/2)

or, written differently,

(1 —2xt+t2)% + (t—2)G = 0.

16
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Now, since G = Y07 P,(z)t", we have % = 3™ 'nP,(z)t"~!. Proceeding
in a manner similar to the method of power series, we have

(1 — 22t +t2) i nP,(z)t" '+ (t — z) i P, (z)t" =0

= Pi(x) —xzPy(z) + i[(n +1)Poi1 — 2n+ D)zP,(x) + nPy—1(x)]t" = 0,

n=1

comparing the coefficient of ¢y gives that P, (z) —xPy(z) = 0, that is, Py (z) =
xPy(x), and since Py(z) = 1 we get Pj(x) = z, as expected. The general
coefficient of t" for n > 1 simplifies to give the second-order recurrence
relation

(n+1)Py1 — 2n+ DxP,(z) + nP,_1(x)

for the Legendre polynomials. Thus we may compute the Legendre polyno-
mials using the following formula:

ifn=0
Po(r) = T ifn=1 (16)
% [(277, - 1)Z‘Pn_1(:(:) + (n - 1)Pn_2(l’)] lf n 2 2.

Exercise 20. (i) Use equation (16) to obtain Ps(z).

(ii) By differentiating G(z;t) with respect to z instead, show that

(1—2tx+t2)% — Gt =0. (17)

(iii) Use equation (17), noting that G = > 7 P,(z)t", to show that for
n=l,

T/L+]. _prr/f"Pr/L—l = Py, (18)

using the power-series method in a similar way used to obtain (16).

(iv) Using equations (16) and (18) or otherwise, show that for n > 1,

P, —P , =@2n+1)P, (19)
(v) Useequation (19) to show that P, ,(z) = ,EZ/OQJ (2(n —2k) + 1) Py_ok(x).
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4.6 Other Properties

The following facts about the Legendre polynomials are often useful, their
proofs may be found in [2, 3, 1].

e The Legendre polynomials have definite parity, that is, they are odd or
even according to the relation

Bu(=x) = (=1)"Py(2).

e For n > 1, we have

which is easily seen since by orthogonality, we have f_ll P,(x)dr =

f_11 1-P,(z)dx = f_ll Py(z)P,(z)dx = 0. As a consequence, the mean
value of a function f(z) over [—1,1] expressed as a sum of Legendre
polynomials is simply the leading Fourier-Legendre coefficient cy.

(Askey-Gasper Inequality) For any non-negative N and z € [—1, 00),
we have

(Laplace’s Integral) For any non-negative n and x € C, we have that

P,(x) = l/7r(a: + V1 —2a%cosp)" do

™ Jo

(Mehler-Dirichlet formula) Applying the integral substitution x = cos 6
in Laplace’s integral and applying Cauchy’s integral theorem yields

P,(cosf) = \/—/ 0375y
Vcosy — cos b

(Asymptotic form) For 6 € (0, 7), we have

2 2 1
P,(cos0) = Jo(nf) + O(2) = /wnsingsm< n2—l— 04 %) Lo,

(where Jj is the zeroth Bessel function of the first kind). Consequently,
for x € [—1,1] we get lim,, o P,(z) = 0.
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Exercise 21. (i) Show that all roots of P,(x) are real and lie in (—1,1).5
(ii) Prove that for x € [-1,1] and n > 1,

(1 - )P, ()] < @

A proof of this fact can be seen in [3].
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