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1 Introduction

In these notes, we solve Legendre’s differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 (1)

using the method of power series, and then we subsequently define Legendre
polynomials and explore some of their properties.

1.1 Overview of the Power Series Method

Most differential equations have solutions which cannot be described using
elementary functions (i.e. polynomials, trigonometric functions, logarithms,
and so on; functions we commonly work with). In fact, even the solutions
of the simple differential equation y′′ + xy = 0, known as Airy’s equation,
cannot be written in terms of elementary functions.

We can however write its solutions using power series:

y = A

∞∑
n=0

(−1)n
∏n−1

k=0(3k + 1)

(3n)!
x3n +B

∞∑
n=0

(−1)n
∏n−1

k=0(3k + 2)

(3n+ 1)!
x3n+1, (2)

for any A,B ∈ R.
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§1.1 | Overview of the Power Series Method Luke Collins

Even though the solutions look complicated in this case, all we care about
is the fact that they can be represented as power series; i.e. functions of the
form

∑∞
n=0 anx

n where a0, a1, . . . are the coefficients.

Example 1 (Simple Harmonic Motion). Consider the equation

y′′ + y = 0. (3)

Suppose the solution can be written as a power series, say, y =
∑∞

n=0 anx
n.

Then differentiating term by term, we get that the first and second derivatives
of y are given by the power series

y′ =
∞∑
n=0

annx
n−1 and y′′ =

∞∑
n=0

ann(n− 1)xn−2. (4)

Substituting these in equation (3), we have

∞∑
n=0

ann(n− 1)xn−2 +
∞∑
n=0

anx
n = 0,

then by replacing n with n+2 everywhere in the first series, we get that both
series have the same power of x in their general term:

=⇒
∞∑

n=−2

an+2(n+ 2)(n+ 1)xn +
∞∑
n=0

anx
n = 0.

Now expanding out the first few terms of the first series, we can combine the
two summations since the bottom indices match:

=⇒ a0(0)(−1)x−2 + a1(1)(0)x
−1 +

∞∑
n=0

an+2(n+ 2)(n+ 1)xn +
∞∑
n=0

anx
n = 0

=⇒
∞∑
n=0

an+2(n+ 2)(n+ 1)xn +
∞∑
n=0

anx
n = 0

=⇒
∞∑
n=0

(an+2(n+ 2)(n+ 1) + an)x
n = 0.
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Since this series must be zero (for any value of x), each of the coefficients
must be zero; i.e. we must have

an+2(n+ 2)(n+ 1) + an = 0

=⇒ an+2 = −
an

(n+ 2)(n+ 1)
.

Thus the first few coefficients are

a0, a1, a2 = −
a0
2
, a3 = −

a1
3 · 2

, a4 =
a0

4 · 3 · 2
, a5 =

a1
5 · 4 · 3 · 2

, a6 = −
a0
6!
, . . . ,

so the solutions are given by

y(x) = a0 + a1x−
a0
2!
x2 − a1

3!
x3 +

a0
4!
x4 +

a1
5!
x5 − a0

6!
x6 − · · ·

= a0

(
1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

)
+ a1

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
= a0 cosx+ a1 sinx.

Example 2 (Hermite’s Equation). Consider the equation

y′′ − x2y = 0 (5)

Suppose the solution can be written as a power series: y =
∑∞

n=0 anx
n.

Then the first and second derivatives are given by y′ =
∑∞

n=0 annx
n−1 and

y′′ =
∑∞

n=0 ann(n− 1)xn−2. Substituting these in equation (5), we have

∞∑
n=0

ann(n− 1)xn−2 − x2
∞∑
n=0

anx
n = 0

=⇒
∞∑
n=0

ann(n− 1)xn−2 −
∞∑
n=0

anx
n+2 = 0

=⇒
∞∑

n=−4

an+4(n+ 4)(n+ 3)xn+2 −
∞∑
n=0

anx
n+2 = 0 (n← n+ 4)

=⇒ 0 + 0 + 2a2 + 6a3x︸ ︷︷ ︸
terms for n = −4, . . . ,−1

+
∞∑
n=0

an+4(n+ 4)(n+ 3)xn+2 −
∞∑
n=0

anx
n+2 = 0

=⇒ 2a2 + 6a3x+
∞∑
n=0

(an+4(n+ 4)(n+ 3)− an)xn+2 = 0
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Just as in the last example, we have that all coefficients must be zero. In
particular, 2a2 = 0, which means that a2 = 0, similarly 6a3 = 0, so a3 = 0,
and

an+4(n+ 4)(n+ 3)− an = 0 =⇒ an+4 =
an

(n+ 4)(n+ 3)
.

Thus we have the coefficients

a0, a1, a2 = a3 = 0, a4 =
a0
4 · 3

, a5 =
a1
5 · 4

, a6 = a7 = 0, a8 =
a0

8 · 7 · 4 · 3
, . . .

so the solutions are given by

y(x) = a0 + a1x+
a0
4 · 3

x4 +
a1
5 · 4

x5 +
a0

8 · 7 · 4 · 3
x8 +

a1
9 · 8 · 5 · 4

x9 + · · ·

= a0

(
1 +

x4

4 · 3
+

x8

8 · 7 · 4 · 3
+ · · ·

)
+ a1

(
x+

x5

5 · 4
+

x9

9 · 8 · 5 · 4
+ · · ·

)

= a0

∞∑
n=0

x4n∏n
k=1 4k(4k − 1)

+ a1

∞∑
n=0

x4n+1∏n
k=1(4k + 1)4k

,

where this time, the power series do not correspond to functions we can
immediately recognise. In fact, these two power series are used to define
what are known as Hermite functions.1

Remark 3. The general power series method to solve

a(x)y′′ + b(x)y′ + c(x)y = 0

is to let y(x) =
∑∞

n=0 anx
n, then y′ and y′′ are as in (4). Substitute these into

the equation, and simplify to get the left-hand side as a single power series.
Since the series must be zero independently of x, then each coefficient must
be zero, which gives a recurrence relation for the coefficients an. This gives
two linearly independent solutions for y(x).

The power series method always works so long as for all x ∈ R, a(x) ̸= 0.
If a(x) = 0 for some values of x, then the so-called Frobenius method can
be used, where we instead take y = xr

∑∞
n=0 anx

n with a0 ̸= 0 and proceed
similarly.

1It is not uncommon in mathematics to define functions by differential equations. For
example, cosx can be defined as the unique solution of y′′ + y = 0 (equation (3)) with
y(0) = 1 and y′(0) = 0 (since these conditions force a0 to be 1 and a1 to be 0).
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Exercise 4. Verify, using the method of power series, that the solutions of
Airy’s equation y′′ + xy = 0 are given by

y = a0

(
1− 1

3!
x3 +

4

6!
x6 − 7 · 4

9!
x9 + · · ·

)
+ a1

(
x− 2

4!
x4 +

5 · 2
7!

x7 − · · ·
)

as is stated in equation (2).

The two linearly independent power series solutions which arise from this
differential equation are called Airy’s functions, denoted Ai(x) and Bi(x).

2 Legendre’s Equation

Now we use the power series method to solve Legendre’s equation

(1− x2)y′′ − 2xy′ + ξ(ξ + 1)y = 0, (6)

where ξ ∈ R is a constant.

As usual, suppose y =
∑∞

n=0 anx
n. Then the first and second derivatives are

given by y′ =
∑∞

n=0 annx
n−1 and y′′ =

∑∞
n=0 ann(n−1)xn−2, and substituting

these in equation (6), we have

(1− x2)
∞∑
n=0

ann(n− 1)xn−2 − 2x
∞∑
n=0

annx
n−1 + ξ(ξ + 1)

∞∑
n=0

anx
n = 0

=⇒
∞∑
n=0

ann(n− 1)xn−2 −
∞∑
n=0

ann(n− 1)xn −
∞∑
n=0

2annx
n

+
∞∑
n=0

anξ(ξ + 1)xn = 0

=⇒
∞∑

n=−2

an+2(n+ 2)(n+ 1)xn −
∞∑
n=0

ann(n− 1)xn −
∞∑
n=0

2annx
n

+
∞∑
n=0

anξ(ξ + 1)xn = 0

=⇒ 0 + 0 +
∞∑
n=0

an+2(n+ 2)(n+ 1)xn −
∞∑
n=0

ann(n− 1)xn

−
∞∑
n=0

2annx
n +

∞∑
n=0

anξ(ξ + 1)xn = 0
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=⇒
∞∑
n=0

(an+2(n+ 2)(n+ 1)− ann(n− 1)− 2ann+ anξ(ξ + 1))xn = 0

=⇒
∞∑
n=0

(an+2(n+ 2)(n+ 1) + (ξ + n+ 1)(ξ − n)an)xn = 0,

and since the coefficients must be zero, we have

an+2 = −
(n+ ξ + 1)(ξ − n)
(n+ 2)(n+ 1)

an,

so the power series coefficients of y are

a0, a1, a2 = −
(ξ + 1)ξ

2 · 1
a0, a3 = −

(ξ + 2)(ξ − 1)

3 · 2
a1,

a4 =
(ξ + 3)(ξ − 2)(ξ + 1)ξ

4 · 3 · 2 · 1
a0, a5 =

(ξ + 4)(ξ − 3)(ξ + 2)(ξ − 1)

5 · 4 · 3 · 2
a1, . . . ,

and the solutions are given by

y = a0 + a1x−
(ξ + 1)ξ

2!
a0x

2 − (ξ + 2)(ξ − 1)

3!
a1x

3 + · · ·

= a0

(
1− (ξ + 1)ξ

2!
x2 + · · ·

)
+ a1

(
x− (ξ + 2)(ξ − 1)

3!
x3 + · · ·

)
= a0 y0(ξ, x) + a1 y1(ξ, x),

where

y0(ξ, x) = 1− (ξ + 1)ξ

2!
x2 +

(ξ + 3)(ξ − 2)(ξ + 1)ξ

4!
x4 − · · ·

=
∞∑
n=0

(−1)n
∏2n−1

k=0 (ξ − k(−1)k)
(2n)!

x2n, (7)

and

y1(ξ, x) = x− (ξ + 2)(ξ − 1)

3!
x3 +

(ξ + 4)(ξ − 3)(ξ + 2)(ξ − 1)

5!
x5 − · · ·

=
∞∑
n=0

(−1)n
∏2n−1

k=0 (ξ − (−1)k(k + 1))

(2n+ 1)!
x2n+1. (8)
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§3 | Legendre Polynomials Luke Collins

Exercise 5. Use the power series method to show that the solutions of the
special case (1 − x2)y′′ − 2xy′ + 2y = 0 of Legendre’s equation are given by
y(x) = a0x+ a1(1− x tanh−1 x).

3 Legendre Polynomials

Observe that the two linearly independent functions y0(n, x) and y1(n, x)
from equations (7) and (8) terminate, that is, consist of finitely many terms,
if n is an even/odd non-negative integer respectively.

Indeed, if n ⩾ 0 is even, then after finitely many terms, the bracket (ξ−n) =
(n − n) = 0 appears in all numerators in the series expansion of y0(n, x),
making them all zero. This does not happen for y1(n, x) if n is even, since
in y1 we get the bracket (ξ + n) = (n+ n) = 2n. For example,

y0(4, x) = 1− 10x2 +
35

3
x4 + 0x6 + 0x8 + · · · = 1− 10x2 +

35

3
x4

y1(4, x) = x− 3x3 +
6

5
x5 +

2

7
x7 +

1

7
x9 +

1

11
x11 +

28

429
x13 + · · · .

If, on the other hand, n is odd, then the same happens for y1(n, x) since the
bracket (ξ − n) appears in every numerator after finitely many terms, but it
does not happen for y0(n, x). For example,

y0(5, x) = 1− 15x2 + 30x4 − 10x6 − 15

7
x8 − x10 − 20

33
x12 + · · ·

y1(5, x) = x− 14

3
x3 +

21

5
x5 + 0x7 + 0x9 + · · · = x− 14

3
x3 +

21

5
x5.

Observe that in either case, the polynomial which terminates has degree n.

Definition 6 (Legendre Polynomial). Let n be a non-negative integer. The
Legendre polynomial of order n is the polynomial Pn(x) of degree n satisfying
the Legendre equation y′′ − 2xy′ + n(n+ 1)y = 0 and Pn(1) = 1.

In view of the observations above, the Legendre polynomial is given by

Pn(x) =

{
a0 y0(n, x) if n is even

a1 y1(n, x) if n is odd,
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§4 | Properties of Legendre Polynomials Luke Collins

where the constant a0 (or a1) is chosen appropriately so that Pn(1) = 1.
(Indeed, if yi(n, 1) ̸= 1, then we simply divide by yi(n, 1)). Thus

Pn(x) =


y0(n, x)

y0(n, 1)
if n is even

y1(n, x)

y1(n, 1)
if n is odd.

Example 7. We determine the Legendre polynomials P5(x) and P6(x).

Indeed, by equation (8), we have y1(5, x) = x − 14
3
x3 + 21

5
x5, and therefore

y1(5, 1) = 1− 14
3
+ 21

5
= 8

15
. Thus P5(x) =

1
8/15

y1(5, x) =
15
8
(x− 14

3
x3+ 21

5
x5) =

1
8
(63x5 − 70x3 + 15x).

By equation (7), we have y0(6, x) = 1− 21x2 + 63x4 − 231
5
x6. Consequently,

y0(6, 1) = 1−21+63− 231
5

= −16
5
. Hence P6(x) =

1
−16/5

y0(6, x) =
1
16
(231x6−

315x4 + 105x2 − 5).

Exercise 8. Determine the Legendre polynomials P8(x), P9(x) and P10(x).

4 Properties of Legendre Polynomials

Here we illustrate some of the nice properties which Legendre polynomials
exhibit.

4.1 Rodrigues’ Formula

Theorem 9 (O. Rodrigues, 1816 [1]). Let n be a non-negative integer. Then

Pn(x) =
1

n! 2n
dn

dxn
(x2 − 1)n.

Proof. Let ϕ(x) denote the right-hand side. It suffices to show that ϕ(x) is
a polynomial which satisfies the Legendre equation (6), and that ϕ(1) = 1.

That ϕ(x) is a polynomial is obvious, being a constant multiple of repeated
derivatives of a polynomial, and can easily be shown by induction. Now for

8
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ϕ(1) = 1, one only need observe that (x2 − 1)n = (x+ 1)n(x− 1)n, and then
by Leibniz,2

ϕ(x) =
1

n! 2n

(
n∑

k=0

(
n

k

)
dk

dxk
(x+ 1)n

dn−k

dxn−k
(x− 1)n

)

=
1

n! 2n

(
(x+ 1)nn! +

n∑
k=1

(
n

k

)
dk

dxk
(x+ 1)n

dn−k

dxn−k
(x− 1)n

)
, 3

so that when x = 1, ϕ(1) = 1
n! 2n

(2n n! +
∑n

k=1 0) = 1.4

Finally to show that ϕ(x) satisfies the Legendre equation, let ψ(x) = (1−x2)n.
Then ψ′(x) = −2nx(1 − x2)n−1, and multiplying both sides by (1 − x2) we
get (1− x2)ψ′ = −2nx(1− x2)n = −2nxψ, so that

(1− x2)ψ′ + 2nxψ = 0.

Differentiating n+ 1 times, by Leibniz, we have

(1− x2)ψ(n+2) + (n+ 1)(−2x)ψ(n+1) +
(n+ 1)n

2
(−2)ψ(n)

+ 2nxψ(n+1) + 2n(n+ 1)ψ(n) = 0,

which simplifies to

(1− x2)ψ(n+2) − 2xψ(n+1) + n(n+ 1)ψ(n) = 0

=⇒ (1− x2)(ψ(n))′′ − 2x(ψ(n))′ + n(n+ 1)ψ(n) = 0

Now observe that ψ(n) = n!2n(−1)nϕ(x). Denote n!2n(−1)n by k. Then we
have

(1− x2)(kϕ)′′ − 2x(kϕ)′ + n(n+ 1)(kϕ) = 0

=⇒ (1− x2)k(ϕ)′′ − 2xk(ϕ)′ + n(n+ 1)(kϕ) = 0

=⇒ (1− x2)ϕ′′ − 2xϕ′ + n(n+ 1)ϕ = 0,

so ϕ(x) satisfies Legendre’s equation.

2Leibniz rule for the nth derivative of a product: (f ·g)(n) =
∑n

k=0

(
n
k

)
f (k)g(n−k) (proof

by induction).
3Here we use the intuitive fact that dn

dxn (x+ 1)n = n!, easily proved by induction.
4Another intuitive fact provable by induction: if x = 1, then dn−k

dxn−k (x − 1)n = 0 for
1 ⩽ k ⩽ n.
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Exercise 10. Use Rodrigues’ formula to obtain the fourth order Legendre
polynomial P4(x).

Exercise 11. Prove the following results by induction to fill in the missing
details of the proof.

(i) Leibniz rule: (f · g)(n) =
∑n

k=0

(
n
k

)
f (k)g(n−k).

(ii) dn

dxn (x+ 1)n = n!.

(iii) If x = 1, then dn−k

dxn−k (x− 1)n = 0 for 1 ⩽ k ⩽ n.

4.2 Orthogonality

Sturm-Liouville theory is the study of second order differential equations of
the form

(py′)′ + qy = −λωy,

where p, q, ω are non-negative functions of x in some interval, and λ is a
constant. The Legendre equation is of this form since (1− x2)′ = −2x, so it
is equivalent to

((1− x2)y′)′ + n(n+ 1)y = 0, (9)

and for x ∈ [−1, 1], p(x) = 1− x2 is non-negative.

If one considers the space of all real-valued functions on [−1, 1] with the usual

inner product ⟨f, g⟩ =
∫ 1

−1
f(x)g(x) dx, then we have the following.

Theorem 12. The Legendre polynomials are orthogonal, that is,∫ 1

−1

Pm(x)Pn(x) dx = 0

for n ̸= m. When n = m, we have
∫ 1

−1
[Pn(x)]

2 dx = 2/(2n+ 1).

Proof. Consider first m ̸= n. Since these satisfy Legendre’s equation, we
have

((1− x2)P ′
m)

′ +m(m+ 1)Pm = 0 (10)

((1− x2)P ′
n)

′ + n(n+ 1)Pn = 0 (11)

10
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using the Sturm-Liouville form. Doing Pn(10)−Pm(11) and simplifying yields

[(1− x2)(P ′
mPn − PmP

′
n)]

′ + (m− n)(m+ n+ 1)PmPn = 0.

Now integrating both sides, we get∫ 1

−1

[(1− x2)(P ′
mPn − PmP

′
n)]

′ dx+ (m− n)(m+ n+ 1)

∫ 1

−1

PmPn dx = 0,

and since the fist integral is clearly zero, we get
∫ 1

−1
PmPn dx = 0 whenm ̸= n.

Now for the result when n = m, we use Rodrigues’ formula. Indeed,∫ 1

−1

[Pn]
2 dx =

1

(n!)2 22n

∫ 1

−1

dn

dxn
(x2 − 1)n

dn

dxn
(x2 − 1)n dx︸ ︷︷ ︸

In

, (12)

and proceeding by parts (
∫
uv′ dx = uv −

∫
vu′ dx), the integral In becomes

dn

dxn
(x2 − 1)n

dn−1

dxn−1
(x2 − 1)n

∣∣∣∣1
−1

−
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dn+1

dxn+1
(x2 − 1)n dx

and the first term vanishes by exercise 13(ii) with k = 1, so

In = −
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dn+1

dxn+1
(x2 − 1)n dx.

We can similarly integrate by parts again to obtain that

In =

∫ 1

−1

dn−2

dxn−2
(x2 − 1)n

dn+2

dxn+2
(x2 − 1)n dx,

and similarly by induction, we can integrate by parts a total of n times to
get that

In =

∫ 1

−1

(x2 − 1)n
d2n

dx2n
(x2 − 1)n dx = (2n)!

∫ 1

−1

(x2 − 1)n dx︸ ︷︷ ︸
Jn

(13)

by exercise 13(i). Now we substitute t = (x+ 1)/2 to transform the integral
Jn into

Jn =

∫ 1

0

tn(1− t)n dt.

11
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Integrating this by parts yields the reduction formula 2(1 + 2n)Jn = nJn−1.
This can be solved to give that

Jn =
(n!)2

(2n+ 1)!

which when substituted back into equations (12) and (13) gives the desired

result that
∫ 1

−1
[Pn(x)]

2 dx = 2/(2n+ 1).

Exercise 13. Prove the following results by induction to fill in the missing
details of the proof.

(i) d2n

dx2n (x
2 − 1)n = (2n)!.

(ii) If x = ±1, then dn−k

dxn−k (x
2 − 1)n = 0 for 1 ⩽ k ⩽ n.

(iii) Suppose that u(n−k)(a) = u(n−k)(b) = 0 for 1 ⩽ k ⩽ n. then∫ b

a

(u(n)(x))2 dx =

∫ b

a

u(x)u(2n)(x) dx.

(iv) If Jn =
∫ 1

0
tn(1− t)n dt, then 2(1 + 2n)Jn = nJn−1 and J0 = 1.

[Hint: integration by parts]

(v) If J0 = 1 and 2(1 + 2n)Jn = nJn−1, then Jn = (n!)2/(2n+ 1)!.

Exercise 14. State the polynomials P4(x) and P5(x). Manually verify that∫ 1

−1
P4(x)P5(x) dx = 0 and that

∫ 1

−1
(P4(x))

2dx = 2
9
.

4.3 Generalised Fourier Series (Fourier-Legendre)

Exercise 15. (i) Find constants ci ∈ R so that the quadratic function
f(x) = a + bx + cx2 is equivalent to the combination of Legendre
polynomials c0P0(x) + c1P1(x) + c2P2(x).

In applications, it is often necessary to express a given real-valued function
f : [−1, 1]→ R in terms of Legendre polynomials, as done in exercise 15. By
Sturm-Liouville theory, one can show that any square integrable5 function

5Meaning that
∫ 1

−1
[f(x)]2 dx exists.

12
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f on [−1, 1] with finitely many discontinuities can be expressed as a sum of
Legendre polynomials:

f(x) ∼
∞∑
n=0

cn Pn(x), (14)

where the relation ∼ becomes equality at points where f is continuous, but
where f is discontinuous, we have

∞∑
n=0

cn Pn(x) =
1

2

(
lim
ξ→x−

f(ξ) + lim
ξ→x+

f(ξ)

)
. (15)

This series is called a generalised Fourier series, or in particular, the Fourier-
Legendre series of f .

It is not hard to formally determine the coefficients cn in the general case
thanks to the orthogonality property of the Legendre polynomials. Indeed,
let us focus on the uncountably many points where f(x) is continuous, so
that the relation (14) is an equality. Multiplying both sides by Pm(x) and
integrating, we get∫ 1

−1

f(x)Pm(x) dx =
∞∑
n=0

cn

∫ 1

−1

Pn(x)Pm(x) dx =
2cm

2m+ 1
,

by orthogonality (theorem 12). Thus we get that

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx.

Here we are of course assuming that f(x) can be written as such a series in
the first place. For a full proof, we direct the reader to section 4.7 of [2].

Example 16 (Polynomials). Let f : [−1, 1]→ R be the polynomial of degree
d with coefficients an:

f(x) =
d∑

n=0

anx
n.

Clearly f is square integrable and continuous everywhere, so we can express
f as

∑∞
n=0 cnPn(x) for all x ∈ [−1, 1]. In this case, just as in exercise 15, we

do not need to use the integral formula for cn, one can obtain ci explicitly by
solving linear equations arising from comparing coefficients, and then simply
take ci = 0 for i ⩾ d+ 1.

13
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Example 17. Take α ∈ [−1, 1], and consider the function f : [−1, 1] → R
defined by

f(x) =

{
0 if −1 ⩽ x < α

1 if α < x ⩽ 1.

Clearly f is square integrable and has only one discontinuity (at x = α), so
we have that f has Fourier-Legendre coefficients

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx

=
2n+ 1

2

(∫ α

−1

0 · Pn(x) dx+

∫ 1

α

1 · Pn(x) dx

)
=

2n+ 1

2

∫ 1

α

Pn(x) dx

=
1

2

∫ 1

α

(P ′
n+1 − P ′

n−1) dx (assuming n ⩾ 1, using exercise 20(iv))

=
1

2
(Pn+1(1)− Pn−1(1) + Pn+1(α)− Pn−1(α)) =

Pn+1(α)− Pn−1(α)

2

since Pn(1) = 1 for all n. When n = 0, we have

c0 =
1

2

∫ 1

−1

f(x)P0(x) dx =
1

2

∫ 1

−1

f(x) dx =
1

2

∫ α

−1

0 dx+
1

2

∫ 1

α

dx =
1

2
(1−α).

Thus we have that

f(x) =
1

2
(1− α)P0(x) +

1

2

∞∑
n=1

(Pn+1(α)− Pn−1(α))Pn(x),

for all x ∈ [−1, 1] at which f(x) is continuous. Now let us verify equation (15)
for f(x) at the discontinuity x = α. Clearly we have limx→α− f(x) = 0 and
limx→α+ f(x) = 1, so we expect that the series above converges to 0+1

2
= 1

2
.

Let SN denote the result of taking N terms in the series obtained above.
Indeed, when x = α, we have

Sn =
1

2
(1− α)P0(α) +

1

2

N∑
n=1

(Pn+1(α)− Pn−1(α))Pn(α)

14
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=
1

2
(1− α) + 1

2

N∑
n=1

Pn+1(α)Pn(α)− Pn(α)Pn−1(α)

=
1

2
− 1

2
PN+1(α)PN(α) (method of differences)

and as N →∞, we have that PN(x)→ 0 (see the asymptotic form of Pn(x)
in section 4.6), so that SN → 1

2
, as expected.

Exercise 18. Let f : [−1, 1]→ R be defined by

f(x) =

√
1− x
2

.

(i) By multiplying both sides of the equation

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x)t
n

by f(x) and integrating both sides with respect to x, show that

1

2t

(
1 + t− (1− t)2

2
√
t

log

(
1 +
√
t

1−
√
t

))
=

∞∑
n=0

tn
∫ 1

−1

f(x)Pn(x) dx.

(ii) Expand the left-hand side of the equation given in (i) as a Maclaurin
series in power of t to obtain

4

3
− 4

∞∑
n=1

tn

(4n2 − 1)(2n+ 3)
=

∞∑
n=0

tn
∫ 1

−1

f(x)Pn(x) dx.

(iii) By comparing coefficients of tn, deduce the values of
∫ 1

−1
f(x)Pn(x) dx

for n = 0 and for n ⩾ 1.

(iv) Hence deduce that f(x) can be written as the Fourier-Legendre series

f(x) =
2

3
P0(x)− 2

∞∑
n=1

Pn(x)

(2n− 1)(2n+ 3)
.

15
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4.4 The Generating Function

A generating function is a clothesline
on which we hang up a sequence of
numbers for display.

Herbert Wilf

Recall that a generating function for a sequence (an)n∈N is simply the power
series

G(an;x) =
∞∑
n=0

anx
n.

If G(an;x) happens to be the Maclaurin series expansion of some function g,
then g is also called the generating function of (an).

In our case, we are after a function G(x; t) whose coefficients in the Maclau-
rin series expansion are the Legendre polynomials. It can be shown, using
complex analysis, that the desired function is 1/

√
1− 2xt+ t2, i.e.

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x)t
n.

The proof is available in section 4.2 of [2].

Exercise 19. Find the first five Legendre polynomials P1(x), . . . , P5(x) by
using Maclaurin’s theorem for f(t) = 1/

√
1− 2xt+ t2.

4.5 Recurrence Relations

The Legendre polynomials satisfy some recurrence relations which can easily
be obtained from the generating function. Indeed, differentiating the gener-
ating function G(x; t) with respect to t yields

∂G

∂t
(x; t) =

x− t
(1− 2xt+ t2)3/2

,

or, written differently,

(1− 2xt+ t2)
∂G

∂t
+ (t− x)G = 0.

16
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Now, since G =
∑∞

n=0 Pn(x)t
n, we have ∂G

∂t
=
∑∞

n=0 nPn(x)t
n−1. Proceeding

in a manner similar to the method of power series, we have

(1− 2xt+ t2)
∞∑
n=0

nPn(x)t
n−1 + (t− x)

∞∑
n=0

Pn(x)t
n = 0

=⇒ P1(x)− xP0(x) +
∞∑
n=1

[(n+ 1)Pn+1 − (2n+ 1)xPn(x) + nPn−1(x)]t
n = 0,

comparing the coefficient of t0 gives that P1(x)−xP0(x) = 0, that is, P1(x) =
xP0(x), and since P0(x) = 1 we get P1(x) = x, as expected. The general
coefficient of tn for n ⩾ 1 simplifies to give the second-order recurrence
relation

(n+ 1)Pn+1 − (2n+ 1)xPn(x) + nPn−1(x)

for the Legendre polynomials. Thus we may compute the Legendre polyno-
mials using the following formula:

Pn(x) =


1 if n = 0

x if n = 1
1
n
[(2n− 1)xPn−1(x) + (n− 1)Pn−2(x)] if n ⩾ 2.

(16)

Exercise 20. (i) Use equation (16) to obtain P5(x).

(ii) By differentiating G(x; t) with respect to x instead, show that

(1− 2tx+ t2)
∂G

∂x
−Gt = 0. (17)

(iii) Use equation (17), noting that G =
∑∞

n=0 Pn(x)t
n, to show that for

n ⩾ 1,
P ′
n+1 − 2xP ′

n + P ′
n−1 = Pn, (18)

using the power-series method in a similar way used to obtain (16).

(iv) Using equations (16) and (18) or otherwise, show that for n ⩾ 1,

P ′
n+1 − P ′

n−1 = (2n+ 1)Pn. (19)

(v) Use equation (19) to show that P ′
n+1(x) =

∑⌊n/2⌋
k=0 (2(n− 2k) + 1)Pn−2k(x).

17
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4.6 Other Properties

The following facts about the Legendre polynomials are often useful, their
proofs may be found in [2, 3, 4].

• The Legendre polynomials have definite parity, that is, they are odd or
even according to the relation

Pn(−x) = (−1)nPn(x).

• For n ⩾ 1, we have ∫ 1

−1

Pn(x) dx = 0,

which is easily seen since by orthogonality, we have
∫ 1

−1
Pn(x) dx =∫ 1

−1
1 · Pn(x) dx =

∫ 1

−1
P0(x)Pn(x) dx = 0. As a consequence, the mean

value of a function f(x) over [−1, 1] expressed as a sum of Legendre
polynomials is simply the leading Fourier-Legendre coefficient c0.

• (Askey-Gasper Inequality) For any non-negative N and x ∈ [−1,∞),
we have

N∑
n=0

Pn(x) ⩾ 0.

• (Laplace’s Integral) For any non-negative n and x ∈ C, we have that

Pn(x) =
1

π

∫ π

0

(x+
√
1− x2 cosϕ)n dϕ.

• (Mehler-Dirichlet formula) Applying the integral substitution x = cos θ
in Laplace’s integral and applying Cauchy’s integral theorem yields

Pn(cos θ) =

√
2

π

∫ θ

0

cos 2n+1
2
ψ

√
cosψ − cos θ

dψ.

• (Asymptotic form) For θ ∈ (0, π), we have

Pn(cos θ) = J0(nθ) +O( 1
n
) =

√
2

πn sin θ
sin

(
2n+ 1

2
θ +

π

4

)
+O( 1

n
),

(where J0 is the zeroth Bessel function of the first kind). Consequently,
for x ∈ [−1, 1] we get limn→∞ Pn(x) = 0.

18
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Exercise 21. (i) Show that all roots of Pn(x) are real and lie in (−1, 1).6

(ii) Prove that for x ∈ [−1, 1] and n ⩾ 1,

(1− x2)1/4|Pn(x)| <
√

2

nπ
.

A proof of this fact can be seen in [3].
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