
LESSON 1 1st December, 2020

1 Hyperbolic Functions
In this chapter, we introduce the hyperbolic functions and discuss some of their
properties.

1.1 Remembering the circular functions
Recall that the trigonometric functions cos θ and sin θ are defined as the x- and
y-coordinates obtained when one travels a distance of θ along the unit circle
x2 + y2 = 1, starting from the point (1, 0). For this reason, it might be better
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Figure 1: The functions cos θ and sin θ

to call these the circular functions. In A-level, we saw that using the complex
exponential eiθ = cos θ + i sin θ, we may express

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
. (1)

The hyperbolic functions are analogues of the circular functions, used to study
points on the curve x2 − y2 = 1 (as opposed to x2 + y2 = 1). This is called
a hyperbola. Indeed, just as (cos θ, sin θ) describes the general points on the
circle, we have that (cosh θ, sinh θ) is the point obtained when we travel along
the right-half of the curve x2 − y2 = 1, starting from (1, 0) (see figure 2). But
we will not get into the details of this, and instead give our definitions of these
functions as follows:

coshx :=
ex + e−x

2
and sinhx :=

ex − e−x

2
. (2)

It shouldn’t be too hard to see that these are the analogues of (1) for hyperbolæ.
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Figure 2: The functions cosh θ and sinh θ, depicted as the general x- and
y-coordinates of (the right half of) the hyperbola x2 − y2 = 1

1.2 Osborn’s Rule
Osborn’s rule is an observation which allows us to translate identities we know to
be true about circular functions into identities about the hyperbolic functions.
The rule states the following.

Any identity in terms of cos and sin can be translated into one
about cosh and sinh simply by replacing cos by cosh and sin by
sinh, provided that the sign of any product involving two sines is
reversed.

Examples 1.1. (i) The Pythagorean identity cos2 θ+sin2 θ = 1. This becomes

cosh2 θ − sinh2 θ = 1.

(ii) The other Pythageorean identity cosec2 θ = 1 + cot2 θ becomes

− cosech2 θ = 1− coth2 θ,

since cosec = 1
sin and cot = cos

sin , so the corresponding squared terms both
contain a product of two sines. (The functions cosech and coth are defined
in the next section, but you can probably guess what their definitions are.)

(iii) The double angle identity sin 2θ = 2 sin θ cos θ becomes

sinh 2θ = 2 sinh θ cosh θ,

since there is no product of two sines.

(iv) The cosine compound angle identity cos(A+B) = cosA cosB−sinA sinB
becomes

cosh(A+B) = coshA coshB + sinhA sinhB.
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You should be able to prove these identities from the definitions. As an example,
we prove the double angle identity for sinh (i.e., examples 1.1(iii)):

rhs = 2 sinhx coshx = 2
(ex − e−x

2

)(ex + e−x

2

)
= 2
(e2x + 1− 1− e−2x

4

)
=
e2x − e−2x

2
= sinh 2x = lhs.

Remark 1.2. Observe from (1) and (2) that cos ix = coshx and sin ix = i sinhx.
Thus the occurrence of two sines in an identity introduces a factor of i2 = −1
when replacing the functions with their hyperbolic analogues. This is not a
precise proof of Osborn’s rule, but this should give you a feel as to why it is
true.

1.3 Other Hyperbolic Functions
Just as we do in trigonometry, we introduce four more functions defined in
terms of the hyperbolic sine and cosine, mainly because they will make results
in calculus look a bit simpler. We have

tanhx :=
sinhx

coshx
=
ex − e−x

ex + e−x
,

and

sechx :=
1

coshx
=

2

ex + e−x
, cosechx :=

1

sinhx
=

2

ex − e−x
,

and finally,

cothx :=
1

tanhx
=

coshx

sinhx
=
ex + e−x

ex − e−x
.

Example 1.3. Write down the hyperbolic identity which corresponds to the
trigonometric identity 1 + tan2 x = sec2 x, then prove it from first principles.

The corresponding identity is 1− tanh2 x = sech2 x. Here is the proof:

lhs = 1− tanh2 x = 1−
(ex − e−x
ex + e−x

)2
= 1− e2x − 2 + e−2x

e2x + 2 + e−2x
(remember this!)

=
e2x + 2 + e−2x − (e2x − 2 + e−2x)

e2x + 2 + e−2x

=
4

e2x + 2 + e−2x
=
( 2

ex + e−x

)2
= sec2 x = rhs.
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1.4 Hyperbolic Equations
Let’s solve some equations involving hyperbolic functions. The techniques here
are very similar to those used to solve trigonometric equations when appropriate
identities can be applied. But we can also just use the definitions.

Example 1.4. Solve 3 sinhx− coshx = 1.

Using the definitions, we have

3 sinhx− coshx = 1

=⇒ 3
(ex − e−x

2

)
−
(ex + e−x

2

)
= 1

=⇒ 3ex − 3e−x − ex − e−x = 2

=⇒ 2ex − 4e−x = 2

=⇒ ex − 1− 2e−x = 0 (×ex)
=⇒ e2x − ex − 2 = 0

=⇒ (ex − 2)(ex + 1) = 0

=⇒ ex = 2 or ex = −1 (contradiction)
=⇒ ex = 2

∴ x = log 2.

This technique can work for any equation of the form a sinhx+ b coshx = c. If
it happens that c = 0, we can actually simplify the equation since we can divide
by coshx and get

a sinhx+ b coshx = 0
÷ cosh x
=====⇒ a tanhx+ b = 0 =⇒ tanhx = − b

a

But can we apply tanh−1( · ) at this stage, just as we would when solving a
trigonometric equation? It turns out the answer is yes, and we will discuss the
inverses of hyperbolic functions in the next section.

Exercise 1.5. 1. Prove that the point (cosh θ, sinh θ) does actually
lie on the hyperbola

x2 − y2 = 1

since we took our definitions of cosh and sinh to be those in (2).

2. For each of the following trigonometric identities, state the corre-
sponding hyperbolic identity, and prove it from first principles.

(a) sin(x+ y) sin(x− y) = (sinx+ sin y)(sinx− sin y)

(b) sec2 x+ cosec2 x = sec2 x cosec2 x

(c) cos 2x =
1− tan2 x

1 + tan2 x
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3. Solve the following equations.

coshx+ sinhx = 1(a) coshx+ 3 sinhx = 5(b)

2ex coshx = 11(c) 3 sinhx = ex + 3(d)

cosh 2x+ sinh 2x = 2(e) cosh 2x+ sinhx = 2(f)

coshx− 3 cosh 3x+ cosh 5x = 0(g)

[hint: for the last two, don’t just substitute the definitions, think
of how you would solve them if they were trigonometric equations.]

4. If sinhx = 3
4 and x > 0, determine the values of sechx, tanhx,

cosh 2x and tanh 2x without finding x.

5. Simplify the expression 1/(cosh 3x+ sinh 3x), hence determine∫ log 2

0

dx

cosh 3x+ sinh 3x
.

6. Express 13 cosh 2x + 5 sinh 2x in the form R cosh(2x + α), hence
determine the maximum value of

5

26 cosh 2x+ 10 sinh 2x+ 9
,

and the value(s) of x at which the maximum is attained.

7. Solve the set of simultaneous equations

3 coshx− sinh y = 0

cosh y + sinhx = 3.

answers

3. (a) 0, (b) log 1
4 (5+

√
33), (c) 1

2 log 10, (d) log(3+2
√
3), (e) 1

2 log 2,
(f) log(

√
2− 1), log 1

2 (1 +
√
5), (g) log 1

2 (
√
5± 1).

4. sechx = 4
5 , tanhx = 3

5 , cosh 2x = 17
8 , tanh 2x = 15

17 .

5.
∫ log 2

0
e−3x dx = 7

24 .

6. 12 cosh(2x+log 3
2 ), max is 5

2·12+9 = 5
33 , occurs when 2x+log 3

2 = 0,
i.e., when x = − 1

2 log
3
2 .

7. x = log 1
2 (
√
5− 1), y = log 1

2 (7 + 3
√
5), or

x = log 1
4 (
√
17− 1), y = log 1

4 (13 + 3
√
17).
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Figure 3: Illustration of the solutions of the two equations in example 1.6 on
the hyperbola x2 − y2 = 1.

LESSON 2 8th December, 2020

1.5 Inverse Hyperbolic Functions
We can easily solve the equations x = cosh y, x = sinh y and x = tanh y to
obtain expressions for the inverses of each of the hyperbolic functions.

If we look at figure 2, it is not hard to see that sinh is injective, so it has a
well-defined inverse. On the other hand, cosh is not injective, but if we restrict
its domain to [0,∞), we get that cosh � [0,∞) is injective, and we call its inverse
the principal value of cosh−1. In summary, we have

sinh−1(x) := log(x+
√
x2 + 1)

(principal value of ) cosh−1(x) := log(x+
√
x2 − 1) (defined for x > 1)

tanh−1(x) :=
1

2
log
(1 + x

1− x

)
(defined for |x| < 1)

How the relevant domain restrictions come about should be clear from the
derivation of these expressions (exercise 1.7.1). You don’t have to remember
these, they are all given on page 3 of the exam booklet. What’s not given
is the “other value” of cosh−1(x), namely − log(x +

√
x2 − 1), which equals

− cosh−1(x).

Example 1.6. Solve the equations sinhx = 3 and cosh 2x = 5.

The solution to the first equation is x = sinh−1(3) = log(3 +
√
10).

The second equation becomes 2x = ± cosh−1(5) = ± log(5 + 2
√
6), so the two

solutions are x = ± 1
2 log(5 + 2

√
6).

The solutions we obtained here can be visualised on the hyperbola x2− y2 = 1,
as show in figure 3. What we found are the values of θ such that all points
(cosh θ, sinh θ) have y-coordinate 3 (in the first equation) and x-coordinate 5 (in
the second).
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1.6 Calculus of Hyperbolic Functions
It is straightforward to verify from the definitions that we have the derivatives

d

dx

(
coshx

)
= sinhx and

d

dx

(
sinhx

)
= coshx,

and consequently, we get the primitives∫
coshx dx = sinhx+ c and

∫
sinhx dx = coshx+ c.

Similarly, we obtain the following:

•
d

dx
tanhx = sech2 x

•
d

dx
cothx = − cosech2 x

•
d

dx
sechx = − sechx tanhx

•
d

dx
cosechx = − cothx cosechx

•
∫

tanhx dx = log(coshx) + c

•
∫

cothx dx = log(sinhx) + c

•
∫

sechx dx = tan−1(sinhx) + c

•
∫

cosechx dx = log(tanh x
2 ) + c

Exercise 1.7. 1. (a) Solve x = sinh y for y, obtaining an expression
for the inverse sinh−1(x).

(b) Solve x = cosh y for y, obtaining two possible expressions for
cosh−1(x). Explain why the condition x > 1 is needed in
either case.

(c) Solve x = tanh y for y, obtaining an expression for tanh−1(x).
Why do we need |x| < 1?

2. Solve the equation

3 sinhx+ 2 coshx = 0

without using the definitions.

3. Prove the following (constants of integration omitted).

cosh′ x = sinhx(a) sinh′ x = coshx(b)

tanh′ x = sech2 x(c) coth′ x = − cosech2 x(d)

sech′ x = − sechx tanhx(e) cosech′ x = − cosechx cothx(f)∫
tanhx dx = log(coshx)(g)

∫
cothx dx = log(sinhx)(h)∫

sechx dx = tan−1(sinhx)(i)
∫
cosechx dx = log(tanh x

2 )(j)
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4. Show, using appropriate substitutions, that∫
dx√
a2 + x2

= sinh−1
(x
a

)
(a)

∫
dx√
a2 − x2

= cosh−1
(x
a

)
(b)

5. Prove that y = tanhx is the unique solution to the differential
equation

y′ + y2 = 1

with y(0) = 0.

6. Consider the differential equation( y
A

)2
−
(dy
dx

)2
= 1.

(a) Prove that any solution satisfies y(x) > 0 for all x, or y(x) < 0
for all x.

(b) Hence, show that any solution has the form

y(x) = A cosh
( x
A

+B
)

where B is a constant.

7. Prove that the area under the curve y = coshx for x in the range
a 6 x 6 b is equal to its arclength.

1.7 The Graphs of Hyperbolic Functions
We can reason about what the graphs of the hyperbolic functions look like by
their definition. If we think of what happens when we add ex to e−x and divide
the result by 2, we get the graph of y = coshx, which we can see in figure 4. For
the graph of y = sinhx, we instead add ex to −e−x, and then halve the result.
This can be seen in figure 5.

Finally for y = tanhx, we can reason about what happens when we divide sinhx
by coshx. It will be helpful also to note that

tanhx = 1− 2

1 + e2x
,

from which we easily see that −1 < tanhx < 1 for all x.

We can deduce some properties about the hyperbolic functions from their graphs.
(Most of these we already deduces by other methods, but it’s good to list them
here and go through them with their graphs in mind):

• sinh, coth and tanh are continuous and differentiable everywhere on their
domain.
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Figure 4: We obtain the graph of ex + e−x visually by adding ex and e−x

pointwise, and then we divide the height at each point by 2 to get the graph of
y = coshx.
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Figure 5: We obtain the graph of ex − e−x visually by adding ex and −e−x

pointwise, and then we divide the height at each point by 2 to get the graph of
y = sinhx.
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y = tanhx1
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Figure 6: We obtain the graph of tanhx by dividing sinhx by coshx pointwise.
Note the asymptotes at y = ±1.
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Figure 7: Catenaries in the real world

• coshx > 1 for all x.

• sinhx ∼ coshx as x→∞, and sinh ∼ − coshx as x→ −∞.

• tanhx ∼ 1 as x→∞, and tanhx ∼ −1 as x→ −∞.

• y = coshx has one turning point, namely a minimum at (0, 1).

• y = sinhx has no turning points, it is a strictly increasing function with
an oblique inflexion point at x = 0.

Note. Take a look at this Wikipedia article if you are unfamiliar with the asymp-
totic notation f(x) ∼ g(x) which we use in some of the points above.

Remark 1.8 (Catenaries). When a chain or wire hangs loose from two positions
of equal height, it does so in such a way which minimises gravitational potential
energy. The resulting curve they form is called a catenary (from the Latin
catena, meaning chain), see figure 7.

Many people (including Galileo) instinctively suspect that catenaries have the
shape of a parabolic curves, but actually, their shape is that of a hyperbolic
cosine curve. Indeed, suppose a chain or wire hangs from two poles which are
at a distance of 2a from each other (we can think of the wire as living in the
xy-plane between −a 6 x 6 a). If we let y(x) be the height of the wire from
the ground for each −a 6 x 6 a, then the total gravitational potential energy
associated with the wire is given by

E = ρg

∫ a

−a
y(x)

√
1 + y′(x)2 dx,
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Figure 8: Catenary in a coordinate system represented by some function

where ρ is the density of the material that the wire is made of, and g is the
acceleration due to gravity (a constant ≈ 9.8ms−1). The integrand y

√
1 + (y′)2

here is just the height of the wire at x (i.e., y(x)) multiplied by the arclength over
an “infinitesimally small” interval (remember that the arclength of a curve y(x)
between x = a and x = b is given by

∫ b
a

√
1 + y′(x)2 dx). Thus, determining a

curve which minimises gravitational potential energy is equivalent to finding a
function y which minimises the integral. Now, an important theorem from the
area known as calculus of variations tells us that∫ b

a

L(y(x), y′(x)) dx is minimal ⇐⇒ L(y, y′)− y′ ∂L(y, y
′)

∂y′
= constant.

where L can be any function (usually called the Lagrangian of the problem). In
our case, we want that

y
√
1 + (y′)2 − y′ ∂

∂y

(
y
√
1 + (y′)2

)
= constant

=⇒ y
√
1 + (y′)2 − y (y′)2√

1 + (y′)2
= constant.

Denoting the constant by A, we can multiply the equation by
√
1 + (y′)2 to get

y(1 + (y′)2)− y (y′)2 = A
√
1 + (y′)2

=⇒ y = A
√
1 + (y′)2

=⇒
( y
A

)2
− (y′)2 = 1.

From exercise 1.7.6(b), we get that the solution to this equation is

y(x) = A cosh
( x
A

)
,

where it follows that B = 0 since y(a) = y(−a).

An inverted catenary is the most structurally stable of all possible arches, since
such an arch redirects the vertical force of gravity into compression forces press-
ing along the arch’s curve. The dome of the Basilica of Our Lady of Mount
Carmel in Valletta is an example of a catenary arch (figure 9).
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