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1. INTRODUCTION

A syllogism is a simple logical argument with two premisses and a conclusion,
whose origins trace back to antiquity, in the writings of Aristotle. A famous example
is the following.

All men are mortal.

All Greeks are men.

All Greeks are mortal.

Despite its simplicity, we have not yet developed enough logical theory to be able to
describe this in symbols. So far, we have seen the logical junctors =, A, V, —, <>; but
to formalise syllogisms, we need to upgrade our logical framework by introducing
two new symbols called quantifiers. The logical theory we have developed so far
is usually referred to as propositional or zeroth order logic. Equipped with the
two symbols we will describe in these notes, our theory graduates to the so-called
predicate or first order logic.

1.1. Predicates. A predicate captures the idea of a proposition with “holes”. For
instance, consider the propositions

(i) 4 is an even number,
(ii) 8is an even number,
(iii) 5 is an even number.
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We can identify these as different instances of the predicate
p(x) = “z is an even number”,

where z is a “hole” we plug things into; we call z a wvariable. Indeed, we would
write (i) as p(4), (ii) as p(8) and (iii) as p(5). Notice that for different values of
x, the predicate is sometimes true, and sometimes false. The distinction between
a proposition and a predicate is that a proposition has no variables; for instance,
“Today is a Monday” is a proposition, whereas “x is a Monday” is a predicate.

1.2. Quantifiers. Even though, in the general case, a predicate’s truth-value (i.e.,
whether it is true or false) depends on what we substitute for its variable, sometimes
we want to make claims such as “there is at least one z such that p(z) is true” or
“for every z, p(x) is false”. This leads us to our two new symbols. The first is the
so-called universal quantifier, /\,,, which we write as a prefix to a predicate p(x) as

Ny p(2),

and read as “for all x, p(z)”. For example, if we are talking about flowers in a
garden, and the predicate p(z) is “z has red petals”, then A p(z) is “for all =, =
has red petals”, or stated more simply, “all flowers have red petals”.

Next we have the existential quantifier, \/_, which we write as a prefix to a
predicate p(x) as

x?

V, p(z),

and read as “for some z, p(z)” or (equivalently) as “there exists at least one  such
that p(z)”. For instance, say we are talking about whole numbers, and that p(z)
is “x is prime and even”, then \/ p(x) is “for some z, = is prime and even”, or
simply, “some number is prime and even”.

Let us make a few observations:

(i) Notice that when we say “for all ” or “for some z”, we are being ambiguous
unless we specify what values z is allowed to take on. Notice in the examples
we gave, we always provided context about what x can be; e.g., whether x
is confined to flowers in a particular garden, or socks in a drawer, or the
whole numbers.

There is much more nuanced theory which goes into this (namely the
theory of sets), but we will not go into it here. For our purposes, we will
always assume that what z is allowed to be can be inferred from the context.

(ii) The symbols A, and \/,, resemble A and V: this is not unintentional. When
x ranges over a finite number of possibilities, then we can interpret these
quantifiers as repeated iterations of A and V respectively. For instance,
suppose we are talking about the chairs in a classroom, and suppose a(z)
is “z is made of wood” and b(x) is “z is new”. Then A, a(x), i.e., all the
chairs in this room are made of wood, is equivalent to saying “this chair is
made of wood A that chair is made of wood A---”. Similarly, \/ b(z), i.e.,
some chair in this room is new, is equivalent to saying “this chair is new V
that chair is new v .--.”

(i) When a predicate is quantified, i.e., when one of A, or \/, is placed in
front of a predicate p(z), the result is no longer a predicate, but becomes
a proposition. This is because there is no longer a variable which can be
substituted for. For example, if a(x) is “I rolled an = on the dice”, then we
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can substitute a value for z in a(z) (e.g., a(4) is “I rolled a 4 on the dice”),
but

V. a(z) is a(l) Va(2) Va(3) Va(4) vVad) Val6),
i.e., I rolled a1l orIrolled a2or, ..., orIrolled a 6,

which contains no variable. In this context, x is called a dummy variable,
because it appears in the notation \/, a(x) but there isn’t actually a variable
there.

2. BETH TABLEAUX

The Beth tableaux rules for quantifiers are quite straightforward. We outline
the reasoning behind them in the following points.

o If A\, »(x) is true, then p(z) is true for all z, so we can plug in anything we
want for z in p(z) and it will still be true. This leads to the rule

SiAp@) |

pn) |
where there is no restriction on n.

o If \/, p(x) is true, then there is some value & = n such that p(n) is true. We
don’t know what n is, so we can’t assume it is some value of our choosing.
In particular, we insist that n is not a letter which has already appeared in
the Beth tableau so far (this does not exclude the possibility that it equals
some of the other letters, but it doesn’t imply it either). Thus we have the
rule

SV, p@) || %

(WHERE n IS NEW)
pn) |

o If A\, p(x) is false, it means that it is not the case that p(x) is true for each
x, so in particular, there must be at least one z, say x = n, for which p(n)
is false. Therefore, just as in the previous rule, we insist that n is a new
variable name so that it is not identified with any which have appeared so
far in the Beth tableau, obtaining the rule

S| Ba(A, b))
| p)

e Finally, if \/, p(x) is false, then there does not exist an « such that p(z) is
true, in other words, p(x) is false for any = we choose. Thus we get the rule

) H Ea(V, p(x))
| )

(WHERE n IS NEW)

where there is no restriction on n.

Ezample. If a(z) V b(z) is true for some x, then at least one of a(z) is true, or one
of b(z) is true. In symbols,

V. (a(z) v b)) < (V, a(@)) v (V, b(z)).

As usual, we start by drawing two columns, placing the premiss on the left and the
conclusion on the right.
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V,(a v (V,b(x))

Now we seem to have a lot of options as to the rules we can apply here. As usual,
we want to avoid branching early on, but an additional good rule of thumb is to

use rules which require “new” variables before we use the rules with no restrictions.
Let’s start with 3o(- V - ):

Va(a
Now at this stage, we can invoke our law Xo(\/, -) on either of the two new lines,
but first notice that we can apply ¥1(\/, -), and that the latter insists that we have
a “new” variable n, so let’s use that first, in accordance with our rule of thumb:

V,(a a(2)) v (V, b(x))

V. a(@)

V. b(@)
Now we invoke ¥5(\/,, - ), and since that law poses no restrictions on the variable
we can use, let’s use the same letter n:

Va(a(@) V() | (V,a@)
V
V

<

V. b(@))
)
)

8
a
—
8

a(n) Vv b(n)

Finally, branching the V (i.e., using ¥1(- V -)), closes the tableau:

V. (a(z) v b(2)) (Vya@) v (\/ b(x))

\%
V. b(
a(n) Vv b(n)

which completes the proof. [



MEDIEVAL SYLLOGISMS 5

Ezample (Negation of Quantified Statements). If a(x) is not true for all x, then
there is some z such that a(z) is false, i.e., such that —a(x) is true. In symbols,

(A a(@) =<V, —a(z)
Similarly,
~(Vya(2)) =< A, ~a(@).

We provide Beth tableaux proving the first equivalence.

~(As (@) || V, a(@)

a(n)
l

Which proves the < direction, next we have

V. ma(@) || 2(A, a(@))
N a(z)
—a(n)
a(n)
a(n) l
for the > direction. Since both implications are valid, we conclude that the
equivalence is valid. O
Exercises. (i) Prove the reverse implication of the first example:

(Voa@) v (V, b)) < V,(a(@) Vo).
(ii) Prove the following analogous equivalence for the universal quantifier:
Na(a(@) Ab(z)) >< (A, ax)) A (A, b(2)).

(iii) Prove the analogous equivalence for negating existentially quantified state-

ments, i.e.,
—(V, a(@) >< A, —a(z).
(iv) Show that
Ne(p(z) = m(z)) ,, V, (s(z) Am(z)) <V, (s(x) A—p(z))

is valid.

3. ARISTOTELIAN PROPOSITIONS

In this section, we treat four specific instances of quantified statements which
are of historical significance. These are known as the Aristotelian propositions (or
sometimes, the categorical propositions). These are:

a. ALl S are P. (UNIVERSAL AFFIRMATIVE)
e. NoSis P. (UNIVERSAL NEGATIVE)
i. Some S is P. (PARTICULAR AFFIRMATIVE)
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0. Some S is not P. (PARTICULAR NEGATIVE)

Usually S is called the subject and P is called the predicate," and both are called the
terms of the proposition. The use of the vowels A, E, 1, O as labels for these four
propositions comes from the corresponding Latin words for “I affirm” (correspond-
ing to the first and third) and “I deny” (corresponding to the second and fourth);
we have affirmo, nego, affirmo, and nego.

Some more terminology: the adjectives universal/particular, when applied to an
Aristotelian proposition, are referred to as the quantity of that proposition; whereas
the adjectives affirmative/negative are referred to as its quality.

In modern symbols, if s(z) and p(x) are the subject and predicate respectively,
the four propositions are

a. N\ (s(x) = p(x)). (SaP)
e. No(s(z) = —p(x)). (SeP)
i Ve(s(x) Ap(x)). (SiP)
0. V,(s(z) A —=p(x)). (SoP)
We use the abbreviations SaP, SeP, SiP and SoP as shorthand names for these.
So for instance, if s(z) is “z is a (hu)man” and p(x) is “x is white”, then the
four corresponding Aristotelian propositions are:

a. All men are white. (SaP)
e. All men are not white. (SeP)
i. Some men are white. (SiP)
0. Some men are not white. (SoP)

3.1. Vacuous Truths. If t(z) is a term in an Aristotelian proposition, we say
that t(x) is occupied or non-empty if \/, t(x) is true, and empty otherwise (i.e., if
V., t(x) is false). Although, intuitively, a “for all” statement is generally a stronger
assertion than a “for some” one, the former does not necessarily imply the latter.
For example, the statement

“All dinosaurs alive today can fly”

(i.e., DaF) is true, since there are no dinosaurs alive today. In particular, it is less
strong than the statement

“Some dinosaur alive today can fly”

(i.e., DiF), which implies that some dinosaur alive today exists.

It might seem strange that the first statement is true, but perhaps this special
case is better understood when we represent the statements symbolically. If we
let 9(z) be “z is a dinosaur alive today” and f(z) be “z can fly”, then the two
statements we have are

Neo(x) = f(z)  and  V, 0(x) Af(z).
Here it is more clear, we see that since 0(x) is never true for any z, the “f...then”
in the first statement is automatically true for any z, which is why the for all
statement is true, without ever needing 9(z) to be true itself. On the other hand,
the second statement implies that 9(z) is true for at least one z.

LThis terminology is a bit confusing, but it is what was used historically. Nowadays, in most
contexts of logic, a predicate is any proposition a(z) in which a variable occurs, but in the context
of Aristotelian propositions, it refers specifically to the second term.



MEDIEVAL SYLLOGISMS 7

Conversion Type Conditions
. SeP — PeS
simple
SiP — PiS
. SaP  — PiS | S is occupied
accidental
SeP  — PoS | P is occupied

TABLE 1. Conversions between Aristotelian Propositions

We can also look at it this way: for any statement p, either p is true, or its
negation —p is. In the case of our “for all” statement, we saw in a previous exercise
that

(A 3() = (@) >< V, ~(0(x) = f(2)),
and it can easily be seen (by constructing a Beth tableau, say) that —(a — b) is
equivalent to a A —b, so we therefore have that

(A o) = (@) >V, 2(x) A ~f(=)
(i.e., "DaF >< DoF), which in words, translates to
“There is some z such that x is a dinosaur alive today, and x cannot fly”,

or more simply, “Some dinosaur alive today cannot fly”. This is clearly false, since
it implies the existence of a dinosaur alive today, so we are forced to say that its
negation “All dinosaurs alive today can fly” must be true.

Such “for all” statements are said to be vacuously true, since they are true solely
because the subject is empty.

3.2. Conversion. An Aristotelian proposition tells us something about its subject.
For instance, “All men are white” tells us something about men (i.e., about those
x which satisfy s(x) where s(x) is “z is a man”).

If we are given a true Aristotelian proposition about a term s(z), can we obtain
an Aristotelian proposition about its predicate p(x)? In other words, can we obtain
another Aristotelian proposition where the roles of the terms are interchanged? It
turns out the answer is almost always yes—we call this process conversion. Table 1
summarises the possible conversions for Aristotelian propositions. Simple conver-
sion simply interchanges the subject and predicate, whereas accidental conversion
applies only to universal (/) formulee and changes them to particular (\/,), with-
out changing their quality. Accidental conversion is subject to conditions on S and
P, as summarised in the table.

Ezercises. (i) Use Beth Tableaux to prove the validity of the simple conversion
rules SeP — PeS and SiP — PiS, i.e., show that

Ne(s(2) = =p(2)) < A, (p(2) = —s(2))
and
Vo (s(2) Ap(@)) <V, (p(x) As(z))
are valid.
(ii) Write out the two accidental conversion rules as implications. (Be careful,
remember there are conditions.) Hence, prove that they are both valid
using Beth tableaux.
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3.3. The Square of Opposition. We have the following terminology to describe
relationships among propositions.

(i) ais superaltern to b if a < b is valid.
(ii) ais subaltern to b if b < a is valid.
(iii) ais contrary to b means that a < —b is valid.
(iv) ais subcontrary to b means that —a < b is valid.
(v) ais contradictory to b means that a is both contrary and subcontrary to b.

These terms are enough to characterise the relationships between each of the four
Aristotelian propositions, giving us the so-called square of opposition, illustrated in
figure 1. The grey arrows require S to be occupied in order to travel along. The

(Al S are P)  SagP <———— contrary ———— SeP (No Sis P)

NS

subaltern contradictory subaltern

/N

(Some Sis P)  SjP <——— subcontrary SoP  (Some S is not P)

FI1GURE 1. The Square of Opposition

black arrows are unconditionally true.
In summary, the square tells us that:

(i) SaP and SoP are contradictories, and so are SiP and SeP, i.e., if one is true,
the other is false, and vice-versa,

and, on the condition that S is occupied,

(ii) SaP and SeP are contraries, i.e., if one is true, the other is false,
(iii) SiP and SoP are subcontraries, i.e., if one is false, the other is true,
(iv) SiP is subaltern to SaP, and SoP is subaltern to SeP.

Ezercises. Use Beth tableaux to prove the claims of the square of opposition.

4. SYLLOGISMS

A syllogism is a special type of implication, made up of two Aristotelian propo-
sitions as premisses, and one Aristotelian proposition as a conclusion. The two
premisses share one term, called the middle term, the other two terms in them are
respectively the subject and predicate of the conclusion. Here is an example:

All men are mortal.

All Greeks are men.

All Greeks are mortal.
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In the above instance, we have the subject s(x) = “x is Greek”, the middle term
m(z) = “z is a man” and the predicate p(x) = “x is mortal”. It is conventional to
order the premisses so that the premiss made up of the subject of the conclusion
and the middle term comes first, and the one made up of the middle term, and the
predicate of the conclusion is second; as we have done above.

With this convention in mind, there are two things which determine a syllogism:

(i) The figure. The middle term can be either the subject or the predicate of
either of the premisses, which gives us four possibilities. The corresponding
possibility is called the figure of the syllogism, and we associate each with
a number, as indicated in figure 2. Focusing on the position of the middle

M P M P P M P M

M S S M M S S M

S P S P S P S P
Figure 3 Figure 1 Figure 4 Figure 2

FIGURE 2. Different figures of a syllogism

terms, they form the shape of the letter M, which gives us the mnemonic
in figure 3 for the different possible figures.

FIGURE 3. Mnemonic for the different figures of a Syllogism

(ii) The mood, i.e., the type of formula (a, e, i, 0) of the first premiss, the second
premiss and of the conclusion. There are thus 4% = 64 possible moods for
each figure.

It turns out that for each figure, precisely six of all the possible moods are valid,
however some of them require that a term be occupied. Medieval logicians assigned
mnemonics to each valid syllogism: the mood is given by extracting the first three
vowels in the name in order, corresponding to the first premiss, second premiss and
the conclusion.

We list the syllogisms corresponding to each figure below, denoting any terms
which are required to be occupied in brackets after the name where necessary.

Figure 1. Barbara, Barbari (S), Celarent, Celaront (S), Darii, Ferio.

Figure 2. Cesare, Cesaro (S), Camestres, Camestros (S), Festino, Baroco.

Figure 3. Darapti (M), Felapton (M), Disamis, Datisi, Bocardo, Ferison.

Figure 4. Bamalipton (P), Camentes, Camentos (S), Dimatis, Fesapo (M), Fresison.
So for instance, we recognise that our example with men, Greeks and mortals is an
instance of the Barbara syllogism. Another example: Camestres is the following
syllogism.



10 LUKE COLLINS

PaM All P are M
SeM which is, in words, NoSis M
SeP o, NoSisP

e.g.,
All men are mortal

No god is mortal

No god is a man
Written out formally, Camestres is the implication
N p(@) = m(z) , A\, s(x) = ~m(z) < A, s(z) = —p(a),
which we can prove by Beth tableau.
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