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RECURSION AND INDUCTION ON POSETS

In this section, we will see that we can generalise the recursion
and induction theorems to posets. The notation m < b is an ab-
breviation for m < b and m # b, which we call the strict order of
<.

In a poset A, unlike in a chain, if we have a minimum, it is not
always unique. We denote by M(A) the set of minima of the poset:

Definition 1.43 (Minimal set). Let (A, X) be a poset. The minimal
set of a subset B € A, denoted Mg(B) or just M(B), is the set
defined by

M(B):= {m € B :thereis no b € B such that b < m}.

If A is a chain, then M(A) = {minA} (if minA exists). Indeed, just
as with chains, the set M(B) can sometimes be empty, e.qg., if we
take the set

A= {% :n €N},

we notice that with the usual order <, we get M(A) = @.

Definition 1.44 (Well-founded order). A partial order < on A is
well-founded if M<(B) # @ for any non-empty B C A.

This idea is the poset analogue of a well-order. Indeed, if A is
totally ordered by <, and < is well-founded, then < is well-ordered.
Notice that being well-founded essentially means we do not have
any infinitely descending chains like

-+ <03 <0z <Ai.

Indeed, any infinite descending chain in a poset would give M({a1,a3,...}) =
@. (Proof: if ax € M({azy,az,...}), then there is no axy1 < ag, so

the chain would not be infinite.) Conversely, if a poset A is not
well-founded, then there is a non-empty subset B € A such that

M(B) = @. Given any b € B there must be m; € Bsuchthatm; <b

(since b ¢ M(B)). But also there is my < m;y (since my ¢ M(B)).

Similarly there is m3 < m; (since m, ¢ M(B)), and so on, giving

rise to an infinite descending chain ---<my <my1 < b.

In any well-founded poset, we can do recursion. We first need to
define the notion of an initial segment.

28 PRELIMINARY VERSION 0.1



1.6 | Recursion and Induction on Posets Luke Collins

Definition 1.45 (Initial segment). Let (A, <) be a well-founded
poset, and pick a € A. The initial segment of a, denoted I[a], is
the set of all points strictly smaller than a under the partial order,
i.e.,

I[a]:={teA:t<a}.

Notation. A notation which we could have introduced earlier is
AB, which denotes the set of all total functions from B to A. We
also have a more general notation for unions. We write | J,cxAx
for the set

{a:(Ax e X)(a€Ax)},

i.e., the set of all a’s such that a is in some A, for some x € X.

The reason we need these two pieces of notation is because we
will be making use of the set | J,c, X1 in the statement of the
next theorem. This is the set of all total functions from some initial
segment I[a] to a set X.

Theorem 1.46 (Recursion theorem). Suppose A is a set partially
ordered by the well-founded partial order <, let X be any set, and
let g: A x S — X be any total function, where S :=|Jaea X'1%. Then
there exists a unique total function f: A — X such that

fla)=g(a,f11[a])
for all a € A.

In other words, f is allowed to appear in the definition of f(a), as
long as we restrict its inputs to points in I[a], i.e., to those points
t € A which are strictly less than a under the partial order.

Just as with theorem 1.41, we will not prove this here, because the
proof is technical. The interested reader can find a proof in any
standard textbook on set theory.

Before we illustrate this theorem with some examples, we will re-
state this theorem (less generally) in terms of something called
the ranked partition of a poset.

Definition 1.47 (Ranked poset). A poset (A, <) is said to be ranked
if there are no chains of infinite length between two elements, i.e.,
if a < b, we can only ever have finitely many q;'s between them:

a=a;<a;<Qa<---<ap=<b.
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Example 1.48. Recall example 1.28, where we had the set

A={l1-%1:nenN}u{1}={0,3 %3 3 ...,1}
This is not a ranked poset, since 0 < 1, and there is a chain of
infinite length between them, i.e.,

0<%<%<---<1.

This turns out to be the poset analogue of being finitely inducible.
Indeed, if < is a total order which is ranked, then it is finitely in-
ducible. If a poset is ranked and well-founded, we can partition its
elements as follows.

Definition 1.49 (Ranked partition). Let A be a set ordered by a
ranked well-founded partial order <. Define A,: IN — RA by recur-
sion as

Ani=M(AN [ A).

k<n
Then the ranked partition of A is the family of sets A = {Ag, A1,... }.

Example 1.50. Consider the poset illustrated in the Hasse diagram
in figure 9. As we can see, the ranked partition simply distin-
guishes between the different “storeys” of the Hasse diagram. In-
deed, we have

Ao =M(AN | Ac) = M(AN @) = M(A)
k<0

(since there is no k < 0 in IN), so the fist set in the partition is
simply the minimal set of A. Next,

Aj = M(A ~ U Ac) =MaNAg),
k<1

which is the minimal set of A once we remove the bottom layer,
i.e., the second “storey”. Similarly, A, = M(A~ (Ap UA1)), and so
on.

This actually is a ‘partition’ of the set A, i.e., a collection of non-
overlapping sets which together make up the set A. In other
words, we have:
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Figure 9: The Hasse diagram of a poset A and its ranked partition

Theorem 1.51. Let A be a set, let < be a ranked well-founded
orderon A, and let A= {Ao, A1, ...} be its ranked partition. Then

(i) AinA; =@ for all i #j, and
Proof. For (i), suppose i < j. Notice that for any B C A, by defi-

nition, if x € M(B), we must have x € B. Now if x € Aj;, we must
have

xeM(AN|JA)

k<j
= x €A\ JAk
k<j
= x€A and x¢|]JAw

k<j
= X €A and X g€ A forany k <,
and in particular we get that x € A;. Thus A;nA;=@.

Now for (ii), we're saying that eventually each a € A appears in
some A;. Suppose (for contradiction) thatS={a € A:a ¢ A, for any i}
is non-empty, and let m € M(S) (by well-foundedness). Then there
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exists some t € A such thatt < m, and t € A; for some { (otherwise
m & M(S)). Let
t=ti<tijp1<---<tj=m

be a maximal chain joining t to m, i.e., there is no s € A which
can be inserted between tx and tgy1 (i.e., tk < s < tys+1) for any
[ < k <j. Such a chain exists, since we can start from t < m, and
insert elements tx between them until we reach a point where we
can no longer do so (we are guaranteed to stop since A is ranked).
Now let T = {t =t;, tiy1,...,t; =m}, this is a well-ordered, finitely
inducible chain under <. Using induction, we can show that tx €
Ak for each ty € T, and in particular, we get that m € A;, which
contradicts that m € S. dJ

We can use the idea of the ranked partition to restate the recur-
sion theorem.

Theorem 1.52 (Recursion theorem for ranked posets). Let (A, X)

be a ranked well-founded poset with ranked partition A = {Ao, A1, ...

let X be any set, let x: Ao — X be a total function, and let g: A x
S — X be any total function, where S := | Jicy X?<. Then there
exists a unique total function f: A — X such that

B x(a) ifaeAg
fla)= {g(a,f ' Ug<pAk) ifa€An, n>0

for all a € A.

This looks more like theorem 1.41. Indeed, notice that if we let
A = IN with the usual order, then Ag = {0}, and | Ji.,Ax = {0} U
{1}u---u{n~} =n. Also, if g is defined by a fixed expression in a
for all a, then the only term that can appearin g is f(a™), since this
equality must hold for all a, and in particular, when a€ A; = {1},
we can only have f(0) = f(a— 1) appearing. Thus in the case
where g is defined by the same expression for all a, we must have

g(a,f I {a™}).

We can also obtain a version of theorem 1.41 with two base cases.
If we order IN such that 0 and 1 are not comparable, i.e., as in
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1
N

2—>3—>4-—>5—>-
0/

Figure 10: Partial order on IN for two base cases coming from
{0,1} €Ag

figure 10, the theorem becomes

x(n) ifneAyg={0,1}
a(n, f 1 Uk<,Ak) ifa€A, r>0,

and if we let x(0) = xo, x(1) = x1, and assume that g is defined by
some fixed expression in terms of n, then in the case that n = 2,
only f(n—1) and f(n— 2) can make an appearance, which means
that we must have

f(n)={

X0 ifn=0
f(n)= X1 ifn=1
gln,f1{n—1,n—2}) otherwise.

Example 1.53 (Fibonacci numbers). The Fibonacci sequence is de-
fined by f(0)=0, f(1)=1,and f(n)=f(n—1)+f(n—2) forn> 2,
i.e., each term is the sum of the previous two. This defines a valid
function since it agrees with the form above. The first few values
of f are given below.

n |e|1|2|3]4|5]|6|7 8|9 10
fim|el1]1]2]3|5|8]13]21|34]55

Example 1.54 (Binomial coefficients). Another famous example is
the number (}) of k-subsets of n={0,...,n—1}, i.e,,

(Z) =#{AePn: #A=k}.

For example, (3) = 10 since there are 10 subsets of 5 = {0, 1, 2, 3, 4}
with size 3, i.e,,

{0,1,2},{0,1,3},{0,1,4},{0,2,3},{0,2,4}, —10
{{0,3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4}}_ '
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It can be shown that (}) = (7_7) + ("¢*) when n > 1. Indeed, let
C(n, k) denote the set {A € #n : #A = k} which defines (}), so that
(1) = #C(n, k). Notice that
Cn,k)={SeC(n,k):k~ eS}u{SeC(n k):k ¢S5}
={Su{k}:SeC(n—1,k—1)}uC(n—1,k),

and since for disjoint finite sets (i.e., sets with AnB = @), we have
that #(AuB) = #A + #B, we get that

#C(n,K)=#{Su{k }:5€eC(h—1,k—1)}+#C(n—1,k)
(n— 1) (n— 1)
= + .
k—1 k
When arranged in a triangular array, we get the famous “Pascal’s
triangle”, illustrated in figures 11 and 12. What the formula
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Figure 11: Pascal’s triangle, in terms of the numbers (})

(1) = (=1)+ ("1 tells us is that each entry in this triangular array
is the sum of the two above it.

We can choose to define these numbers in a recursive way in-
stead, taking this formula as inspiration. The domain of such a
function, let’s call it ¢, should be pairs (n, k) such that kK <n, i.e.,
we let

A={(n k)eN?:k<n},
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Figure 12: Pascal’s triangle, with the numbers evaluated

(0,0)
(1,0) (1,1)
(2,0) A (2,2)
(3,00 (31 G324 (33)
(4,0) 4,1) (4,2) (4,3) 4,4) Ao
5,00 (1) (5,20 (5.3) (544, (55)

Figure 13: Ranked partition for c(n, k)

and we will have c: A — IN. A possible base case for c is to take the
stream of 1's (i.e. the “sides” of the triangle), so that the inside
can be filled in with the “sum of the two above” formula. This
corresponds to the definition

1 ifk=0orn=k
c(hn—1,k—1)+c(n—1,k) otherwise.

c(n, k)= {

We must therefore define the partial order on A by the following
properties:

e (n0O)kxaand (n,n)xaforallnelNandaecA
e (n—1,k)=<(n,I)forany n,k,L €N (where k <nand<n).

This way, our ranked partition is that illustrated in figure 13. Of
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course, one should verify that this is a well-founded, ranked partial
order. To make our definition look more like theorem 1.46, we have

1 if (n,k) €A
c(n, k)= ,
g(n, c Ui, At) if(n,k)€Ar, r>0,
where it is clear that because of the order, (n—1,k—1),(n—1,k) €
U¢<,At for all (n, k), so our function definition is valid.

Next we discuss induction on posets. We saw in the section on
induction that there are some strong requirements in order for
us to prove something by induction; we saw that being a chain
was not even enough, we needed a well-order which was finitely
inducible. How can we hope to do induction on a poset? Well as
we have seen, we have introduced analogues of these ideas for
posets:

Chain Poset
well-ordered — well-founded
minA — M(A)
finitely inducible — ranked

Using the ranked partition of a poset, we can create a chain on
which we can do induction.

Theorem 1.55. Let A be a set, let < be a ranked, well-founded
orderon A, and let A= {Aog, A1, ...} be its ranked partition. Then
(A, <) is a well-ordered finitely inducible chain, where < is de-
fined by Ai<Aj < i<

Proof. This follows immediately by applying the fact that (N, <)
is well-ordered finitely inducible chain to the subscripts of the A;.
Indeed, this is a chain because we simply need to compare the
subscripts of any two A;, A, thus any two are comparable. Simi-
larly, it is well-ordered because any subset {A;,A;,, ...} of A has
minimal element Amin{i,i»,... }» @nd finally it is finitely inducible be-
cause each A; is the successor of A~ apart from min(A4) =Ag,. O

This allows us to state a version of the induction theorem for
posets.
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Theorem 1.56 (Induction on posets). Let A be a set, let < be
a a ranked, well-founded order on A, let A = {Ag,A1,...} be its
ranked partition, and let ®(a) be a statement about some a € A. If

(i) ®(a) is true for all a € Ag, and

(ii) for all Ax € A, if ®(a) is true for all a € Ak, then ®(a) is true
for all a € Ags1,

then ®(a) is true for all a € A.

Proof. This is very straightforward, simply define
WU(k) ="“®(a) is true for all a € A",
for all k € N, and apply theorem 1.35. O

Similarly, the “strong” analogue (theorem 1.40) is

Theorem 1.57 (Strong induction on posets). Let A be a set, let <
be a ranked, well-founded order on A, let A = {Ag,A1,...} be its
ranked partition, and let ®(a) be a statement about some a € A. If

(i) ®(a) is true for all a € Ay, and

(i) for all Ax € A, if ®(a) is true for all a € | J;.,At, then ®(a) is
true for all a € Ag+1,

then ®(a) is true for all a € A.

The proof is identical to that of theorem 1.56, but it simply invokes
theorem 1.40 rather than theorem 1.34 with the same W(k).

Remark 1.58. The essential idea behind what was discussed in
this section is the following. Any ranked well-founded poset is
equivalent to a well-ordered finitely inducible chain if we consider
elements on the “same storey” of the Hasse diagram equivalent
by grouping them together as one element (i.e., elements in the
same minimal set).

Indeed, as we have seen, any well-founded poset gives us a well-
ordered finitely inducible chain, but conversely, given any par-
tition {A1,A2,...} of a set A which is a well-ordered finitely in-
ducible chain (by <, say), we can simply convert it to a ranked
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well-founded poset by defining the partial order
axb — a€A;, beA; and i<j.

Thus there is a very clear back-and-forth between the two.

LANGUAGES AND STRINGS

Now we define the objects which are the main focus of this set of
notes: languages and strings.

Definition 1.59 (Alphabet). An alphabet is a non-empty finite
set, whose elements we call symbols.

By ‘symbols’ here we mean that the members of an alphabet are
typically thought of as representing letters, characters or digits;
essentially things which we are used to juxtaposing. For example,
a common alphabet is the binary alphabet {0, 1}, or the English
alphabet {a,b,c,..., z}. We usually use the letter Z to denote an
alphabet.

Definition 1.60 (String). A string drawn from an alphabet X is a
tuple whose entries are members of Z.

For example, (1,0,1,1,0,1) and (1,1, 1) are strings drawn from
{0,1},and (s, t,e, f,a,n, i, a)is a string drawn from the alphabet
{a,b,c,...,z}. For convenience, we will stop using tuple notation

and simply juxtapose the symbols. So instead of (1,0, 1,1, 0, 1) we

write 101101, and similarly we write stefaniainstead of (s, t, e, f,a,n, i, a).
We will denote strings using bold letters such as s or o to distin-

guish them from members of the alphabet.

Definition 1.61 (The Empty String). The empty string is the tuple
of length zero, and is denoted by €.

This definition might cause some discomfort from a set theoretic
point of view, but remember how we encoded tuples as functions;
€ here is a bijection equal to the empty set.

Definition 1.62 (Kleene-closure). Let £ be an alphabet. The
Kleene-closure of Z, denoted X *, is the set of strings given by

T* .= Uzn

neiN

where 2% = {e}.
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