

MATSEC SEPTEMBER 2017, PAPER 1, QUESTION 5

L. COLLINS

5(a). Express $\cos \theta - \sqrt{3} \sin \theta$ in the form $R \cos(\theta + \alpha)$ where R is a positive number and α is an angle measured in radians between 0 and $\pi/2$.

Hence, sketch the graph of $y = \cos \theta - \sqrt{3} \sin \theta$, given that $0 \leq \theta \leq 2\pi$, showing clearly the intercepts of the graph with the lines $y = 0$, $y = \pm 1$, $y = \pm 2$.

[7 marks]

Solution. We expand $R \cos(\theta + \alpha)$ using the compound angle identity for cosine, so that we may compare coefficients.

$$\begin{aligned} \cos \theta - \sqrt{3} \sin \theta &= R \cos(\theta + \alpha) \\ &= R \cos \alpha \cos \theta - R \sin \alpha \sin \theta, \end{aligned}$$

so we want that

$$\begin{cases} R \cos \alpha = 1 & \textcircled{1} \\ R \sin \alpha = \sqrt{3} & \textcircled{2} \end{cases}$$

If we do $\textcircled{2} \div \textcircled{1}$, we get $\tan \alpha = \sqrt{3}$, and we may take α to be the principal value $\tan^{-1} \sqrt{3} = \frac{\pi}{3}$. To find R , we take advantage of the Pythagorean identity, noting that $\textcircled{1}^2 + \textcircled{2}^2$ gives $R^2 = 4$, i.e., $R = 2$.

Thus we have

$$\cos \theta - \sqrt{3} \sin \theta = 2 \cos(\theta + \frac{\pi}{3}).$$

Now to sketch the graph of $y = 2 \cos(\theta + \frac{\pi}{3})$, we start by drawing the regular cosine curve in the range $0 \leq \theta \leq 2\pi$ (figure 1). Next, we apply the graphical transformation $f(\theta) \mapsto f(\theta + \frac{\pi}{3})$, which has the effect of translating the graph to the *left* by $\frac{\pi}{3}$ units. If we keep track of the θ -intercepts, $\frac{\pi}{2}$ becomes $\frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$,

Date: 13th May, 2021.

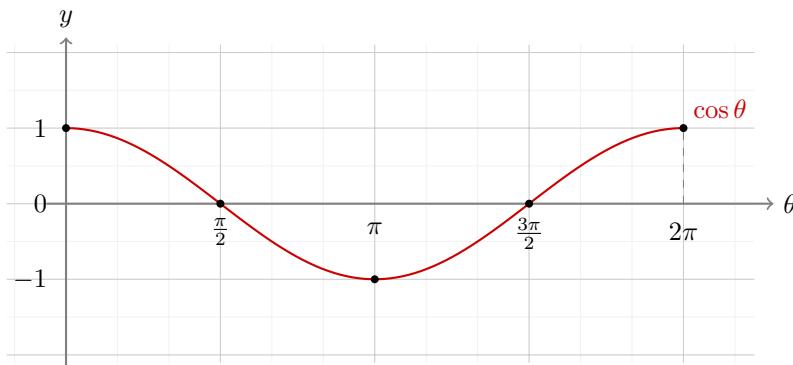
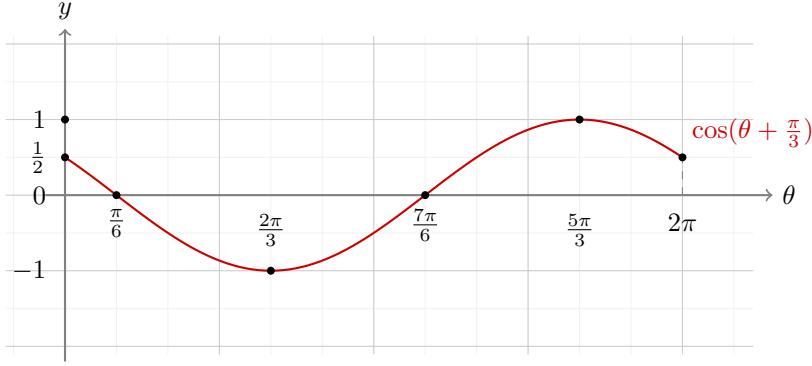


FIGURE 1. Sketch of $y = \cos \theta$

FIGURE 2. Sketch of $y = \cos(\theta + \frac{\pi}{3})$

and $\frac{3\pi}{2}$ becomes $\frac{7\pi}{6}$. Similarly, the trough at π moves to $\frac{2\pi}{3}$, and the peak at 2π moves to $\frac{5\pi}{3}$. The y -intercept is now $\cos(0 + \frac{\pi}{3}) = \frac{1}{2}$ (figure 2). Finally, doing the transformation $f(\theta) \mapsto 2f(\theta)$ to this graph, we obtain the desired graph. This has the effect of a vertical stretch by a factor of two.

Now we've kept track of a lot of information from the original cosine curve, so the intercepts of the curve with the line $y = 0$ (i.e., the θ -axis) and $y = \pm 2$ (i.e., the lines where the peak and trough are located) are all properly labelled. What we still need to locate are the intercepts with $y = \pm 1$. These can easily be found by solving the equations $2\cos(\theta + \frac{\pi}{3}) = \pm 1$. Indeed, for $y = 1$, we have

$$\begin{aligned}
 2\cos(\theta + \frac{\pi}{3}) &= 1 \\
 \Rightarrow \cos(\theta + \frac{\pi}{3}) &= \frac{1}{2} \\
 \Rightarrow (\theta + \frac{\pi}{3})_{\text{pv}} &= \cos^{-1}(\frac{1}{2}) \\
 &= \frac{\pi}{3} \\
 \Rightarrow \theta + \frac{\pi}{3} &= \pm \frac{\pi}{3} + 2\pi n \quad (n \in \mathbb{Z}) \\
 \therefore \theta &= -\frac{\pi}{3} \pm \frac{\pi}{3} + 2\pi n \\
 &= \frac{\pi}{3}(-1 \pm 1 + 6n) \quad (n \in \mathbb{Z})
 \end{aligned}$$

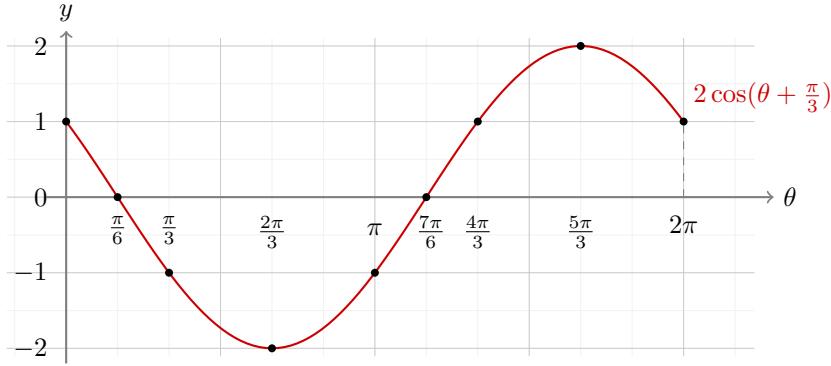
and the values of θ this gives in the range $0 \leq \theta \leq 2\pi$ are $\theta = 0, \frac{4\pi}{3}, 2\pi$. Similarly, if we solve $2\cos(\theta + \frac{\pi}{3}) = -1$, we obtain the solutions $\theta = \frac{\pi}{3}, \pi$. The graph with all required labels, and therefore the “final answer”, can be seen in figure 3. \square

5(b). Find the sum of the infinite geometric series

$$1 + \frac{\sec \theta}{1 - \sqrt{3} \tan \theta} + \frac{\sec^2 \theta}{(1 - \sqrt{3} \tan \theta)^2} + \frac{\sec^3 \theta}{(1 - \sqrt{3} \tan \theta)^3} + \dots$$

giving your answer in terms of θ . For what values of θ in the interval $[0, 2\pi]$ is your answer valid?

[3 marks]

FIGURE 3. Sketch of $y = 2 \cos(\theta + \frac{\pi}{3})$

Solution. This is a geometric series with first term 1, so in other words, it's just $1 + r + r^2 + \dots$, where r is the common ratio. Such series have infinite sum

$$\begin{aligned} \frac{1}{1-r} &= \frac{1}{1 - \frac{\sec \theta}{1 - \sqrt{3} \tan \theta}} \\ &= \frac{1}{\frac{1 - \sqrt{3} \tan \theta - \sec \theta}{1 - \sqrt{3} \tan \theta}} \\ \therefore S_\infty &= \frac{1 - \sqrt{3} \tan \theta}{1 - \sqrt{3} \tan \theta - \sec \theta}. \end{aligned}$$

Now this converges when the common ratio r satisfies $|r| < 1$, i.e., when

$$\left| \frac{\sec \theta}{1 - \sqrt{3} \tan \theta} \right| < 1.$$

The denominator here has suspicious coefficients (1 and $\sqrt{3}$), very similar to the function we had to deal with in part (a). In fact, if we multiply the numerator and denominator of the fraction by $\cos \theta$, we get

$$\left| \frac{1}{\cos \theta - \sqrt{3} \sin \theta} \right| < 1,$$

which is precisely the reciprocal of our function. So now the question is, how can we use what we did in part (a) to help us solve this inequality for θ ? Well, it's not that hard actually, we simply need to note that $\frac{1}{\text{something}}$ is smaller than 1 (in size) when the denominator is larger than 1 (in size). With a quick glance at figure 3, which is a plot of the denominator, we see that it is larger than 1 (in size) for θ in $\frac{\pi}{3} < \theta < \pi$, and again in $\frac{4\pi}{3} < \theta < 2\pi$. Thus the formula

$$1 + \frac{\sec \theta}{1 - \sqrt{3} \tan \theta} + \frac{\sec^2 \theta}{(1 - \sqrt{3} \tan \theta)^2} + \frac{\sec^3 \theta}{(1 - \sqrt{3} \tan \theta)^3} + \dots = \frac{1 - \sqrt{3} \tan \theta}{1 - \sqrt{3} \tan \theta - \sec \theta}$$

we obtained is valid for $\theta \in (\frac{\pi}{3}, \pi) \cup (\frac{4\pi}{3}, 2\pi)$. \square