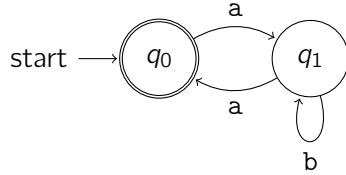


Today's Example

Let M be the automaton illustrated below.



- (a) Formalise M as a quintuple.
- (b) State the definition of the big-step transition function $\delta_*: Q \times \Sigma^* \rightarrow Q$, which accepts strings instead of symbols. What does $\mathcal{L}(M)$ mean?
- (c) Work out $\delta_*(q_0, abaa)$. What is $\delta_*(q_0, aab)$?
- (d) Prove that $\delta_*(q_0, ab^n a) = q_0$ for all $n \geq 0$.
- (e) Prove that for any $s, t \in \Sigma^*$, $\delta_*(q, s + t) = \delta_*(\delta_*(q, s), t)$.

Consider the language

$$L = \{(ab^n a)^m : n, m \geq 0\}.$$

- (f) Show that $L \subseteq \mathcal{L}(M)$. Do you think $\mathcal{L}(M) \subseteq L$?

Solution

- (a) $M = (Q, \Sigma, \delta, q_0, F)$ where
 - o $Q = \{q_0, q_1\}$
 - o $\Sigma = \{a, b\}$
 - o $\delta: Q \times \Sigma \rightarrow Q$ is given by the transition table

δ	a	b
q_0	q_1	X
q_1	q_0	q_1

or more formally, $\delta = \{(q_0, a) \mapsto q_1, (q_1, a) \mapsto q_0, (q_1, b) \mapsto q_1\}$.

- o $q_0 = q_0$
- o $F = \{q_0\}$.

(b) δ_* is defined by

$$\delta_*(q, s) = \begin{cases} q & \text{if } s = \epsilon \\ \delta_*(\delta(q, \alpha), t) & \text{if } s = \alpha \cdot t. \end{cases}$$

$\mathcal{L}(M)$ denotes the language accepted by the automaton M , i.e., the set of all strings in Σ^* which, when traversed through the automaton, lead us to a final state, i.e.,

$$\mathcal{L}(M) = \{\sigma \in \Sigma^* : \delta_*(q_0, \sigma) \in F\}.$$

(c) Applying the definition from (b), we have

$$\begin{aligned} \delta_*(q_0, abaa) &= \delta_*(\delta(q_0, a), baa) \\ &= \delta_*(q_1, baa) \\ &= \delta_*(\delta(q_1, b), aa) \\ &= \delta_*(q_1, aa) \\ &= \delta_*(\delta(q_1, a), a) \\ &= \delta_*(q_0, a) \\ &= \delta_*(\delta(q_0, a), \epsilon) \\ &= \delta_*(q_1, \epsilon) = q_1, \end{aligned}$$

and

$$\begin{aligned} \delta_*(q_0, aab) &= \delta_*(\delta(q_0, a), ab) \\ &= \delta_*(q_1, ab) \\ &= \delta_*(\delta(q_1, a), b) \\ &= \delta_*(q_0, b) \\ &= \delta_*(\delta(q_0, b), \epsilon), \end{aligned}$$

at which point, we encounter $\delta(q_0, b)$, which is not defined. Thus we conclude that $\delta_*(q_0, aab)$ is undefined.

(d) By induction on n . For the base case with $n = 0$, we need to prove that $\delta_*(q_0, ab^0a) = q_0$, i.e., that $\delta_*(q_0, aa) = q_0$. Indeed,

$$\begin{aligned} \delta_*(q_0, aa) &= \delta_*(\delta(q_0, a), a) \\ &= \delta_*(q_1, a) \\ &= \delta_*(\delta(q_1, a), \epsilon) \\ &= \delta_*(q_0, \epsilon) = q_0, \end{aligned}$$

which completes the base case.

Now the inductive hypothesis with $n = k$ is that $\delta_*(q_0, ab^k a) = q_0$.

For the inductive step, we show that $\delta_*(q_0, ab^{k+1} a) = q_0$. Indeed,

$$\begin{aligned}
\delta_*(q_0, ab^{k+1} a) &= \delta_*(\delta(q_0, a), b^{k+1} a) \\
&= \delta_*(q_1, b^{k+1} a) \\
&= \delta_*(q_1, bb^k a) \\
&= \delta_*(\delta(q_1, b), b^k a) \\
&= \delta_*(q_1, b^k a)
\end{aligned} \tag{*}$$

Now the inductive hypothesis tells us that

$$q_0 = \delta_*(q_0, ab^k a) = \delta_*(\delta(q_0, a), b^k a) = \delta_*(q_1, b^k a).$$

Combining this fact with (*), we obtain that $\delta_*(q_0, ab^{k+1} a) = q_0$, which completes the proof. \square

(e) By induction on the structure of s . For the base case with $s = \epsilon$, we have

$$\begin{aligned}
\delta_*(q, s ++ t) &= \delta_*(q, \epsilon ++ t) \\
&= \delta_*(q, t) \quad (\text{since } \epsilon ++ \sigma = \sigma \text{ for any } \sigma \in \Sigma^*) \\
&= \delta_*(\delta_*(q, \epsilon), t), \quad (\text{by definition of } \delta_*)
\end{aligned}$$

as required. Now we proceed with the inductive step. Suppose the result holds for $s' \in \Sigma^*$. We show it holds for $s = \alpha . s'$, where $\alpha \in \Sigma$.

We consider two different cases. First, suppose $\delta(q, \alpha)$ is defined. Then

$$\begin{aligned}
\delta_*(q, s ++ t) &= \delta_*(q, \alpha . s' ++ t) \\
&= \delta_*(\delta(q, \alpha), s' ++ t) \quad (\text{by definition of } \delta_*) \\
&= \delta_*(\delta_*(\delta(q, \alpha), s'), t) \quad (\text{by the hypothesis}) \\
&= \delta_*(\delta_*(q, \alpha . s'), t) \quad (\text{by definition of } \delta_*) \\
&= \delta_*(\delta_*(q, s), t),
\end{aligned}$$

as required. If, on the other hand, $\delta(q, \alpha)$ is undefined, then the left-hand side is

$$\begin{aligned}
\delta_*(q, s ++ t) &= \delta_*(q, \alpha . s' ++ t) \\
&= \delta_*(\delta(q, \alpha), s' ++ t), \quad (\text{by definition of } \delta_*)
\end{aligned}$$

which is undefined (since it features $\delta(q, \alpha)$), and the right-hand side is

$$\begin{aligned}\delta_*(\delta_*(q, s), t) &= \delta_*(\delta_*(q, \alpha \cdot s), t) \\ &= \delta_*(\delta_*(\delta(q, \alpha), s), t), \quad (\text{by definition of } \delta_*)\end{aligned}$$

which is also undefined. Thus if $\delta(q, \alpha)$ is undefined, then both sides of the result are undefined.

Therefore in both cases, the result holds. \square

(f) To prove that $\mathcal{L}(M) = L$, we need to show both that $\mathcal{L}(M) \subseteq L$ and that $L \subseteq \mathcal{L}(M)$. The second one is easier, let's start from that.

Notice that what we want to prove is

$$\begin{aligned}L \subseteq \mathcal{L}(M) \\ \iff \{(ab^n a)^m : n, m \geq 0\} \subseteq \{\sigma \in \Sigma^* : \delta_*(q_0, \sigma) \in F\} \\ \iff \text{for all } n, m \geq 0, (ab^n a)^m = \sigma \in \Sigma^* \text{ satisfies } \delta_*(q_0, \sigma) \in \{q_0\} \\ \iff \text{for all } n, m \geq 0, \delta_*(q_0, (ab^n a)^m) = q_0,\end{aligned}$$

so equivalently, we prove this last statement by induction on m .

For the base case with $m = 0$, we have

$$\delta_*(q_0, (ab^n a)^0) = \delta_*(q_0, \epsilon) = q_0,$$

for all $n \geq 0$, which completes the base case.

The inductive hypothesis with $m = k$ is for all $n \geq 0$,

$$\delta_*(q_0, (ab^n a)^k) = q_0.$$

For the inductive step, we prove the statement with $m = k + 1$. Indeed, for all $n \geq 0$, we have

$$\begin{aligned}\delta_*(q_0, (ab^n a)^{k+1}) &= \delta_*(q_0, ab^n a \cdot (ab^n a)^k) \\ &= \delta_*(\delta_*(q_0, ab^n a), (ab^n a)^k) \quad (\text{by part (e)}) \\ &= \delta_*(q_0, (ab^n a)^k) \quad (\text{by part (d)}) \\ &= q_0, \quad (\text{by the hypothesis})\end{aligned}$$

which completes the proof that $L \subseteq \mathcal{L}(M)$.

For the second part, we have $\mathcal{L}(M) \not\subseteq L$. Notice that something of the form $(ab^n a)^m$ will always have the same number of b's between the pairs of a's, e.g.,

$$(ab^3a)^4 = a \underbrace{bbb}_{3} aa \underbrace{bbb}_{3} aa \underbrace{bbb}_{3} aa \underbrace{bbb}_{3} a,$$

but the given DFSA M accepts strings with a varying number of b's, such as

$$a \underbrace{b}_{1} aa \underbrace{bbbb}_{5} aa \underbrace{bbb}_{3} aa \underbrace{a}_{0},$$

and strings like this are not in L .

Later on, we will see that it's impossible for any DFSA to have $\mathcal{L}(M) = L$ for a language like L (this is because L is not *regular*). Intuitively, such a DFSA would have to be able to "count" how many b's it is producing, ensuring that it always inserts the same number. DFSA's are not capable of doing this. We need something more powerful than a DFSA, namely a pushdown automaton.