
Today’s Example

Let M be the automaton illustrated below.

q0start q1

a

b

a

(a) Formalise M as a quintuple.

(b) State the definition of the big-step transition function δ∗ : Q×Σ∗ ⇀ Q,
which accepts strings instead of symbols. What does L(M) mean?

(c) Work out δ∗(q0, abaa). What is δ∗(q0, aab)?

(d) Prove that δ∗(q0, abna) = q0 for all n > 0.

(e) Prove that for any s, t ∈ Σ∗, δ∗(q, s ++ t) = δ∗(δ∗(q, s), t).

Consider the language

L = {(abna)m : n,m > 0}.

(f) Show that L ⊆ L(M). Do you think L(M) ⊆ L?

Solution

(a) M = (Q,Σ, δ, q0, F ) where

◦ Q = {q0, q1}

◦ Σ = {a, b}

◦ δ : Q×Σ→ Q is given by the transition table

δ a b

q0 q1 7

q1 q0 q1

or more formally, δ = {(q0, a) 7→ q1, (q1, a) 7→ q0, (q1, b) 7→ q1}.

◦ q0 = q0

◦ F = {q0}.

1



(b) δ∗ is defined by

δ∗(q, s) =

{
q if s = ε

δ∗(δ(q, α), t) if s = α . t.

L(M) denotes the language accepted by the automaton M, i.e., the set
of all strings in Σ∗ which, when traversed through the automaton, lead
us to a final state, i.e.,

L(M) = {σ ∈ Σ∗ : δ∗(q0,σ) ∈ F}.

(c) Applying the definition from (b), we have

δ∗(q0, abaa) = δ∗(δ(q0, a), baa)

= δ∗(q1, baa)

= δ∗(δ(q1, b), aa)

= δ∗(q1, aa)

= δ∗(δ(q1, a), a)

= δ∗(q0, a)

= δ∗(δ(q0, a), ε)

= δ∗(q1, ε) = q1,

and

δ∗(q0, aab) = δ∗(δ(q0, a), ab)

= δ∗(q1, ab)

= δ∗(δ(q1, a), b)

= δ∗(q0, b)

= δ∗(δ(q0, b), ε),

at which point, we encounter δ(q0, b), which is not defined. Thus we
conclude that δ∗(q0, aab) is undefined.

(d) By induction on n. For the base case with n = 0, we need to prove that
δ∗(q0, ab0a) = q0, i.e., that δ∗(q0, aa) = q0. Indeed,

δ∗(q0, aa) = δ∗(δ(q0, a), a)

= δ∗(q1, a)

= δ∗(δ(q1, a), ε)

= δ∗(q0, ε) = q0,

which completes the base case.
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Now the inductive hypothesis with n = k is that δ∗(q0, abka) = q0.

For the inductive step, we show that δ∗(q0, abk+1a) = q0. Indeed,

δ∗(q0, abk+1a) = δ∗(δ(q0, a), bk+1a)

= δ∗(q1, bk+1a)

= δ∗(q1, bbka)

= δ∗(δ(q1, b), bka)

= δ∗(q1, bka) (∗)

Now the inductive hypothesis tells us that

q0 = δ∗(q0, abka) = δ∗(δ(q0, a), bka) = δ∗(q1, bka).

Combining this fact with (∗), we obtain that δ∗(q0, abk+1a) = q0, which
completes the proof.

(e) By induction on the structure of s. For the base case with s = ε, we
have

δ∗(q, s ++ t) = δ∗(q, ε++ t)

= δ∗(q, t) (since ε++ σ = σ for any σ ∈ Σ∗)

= δ∗(δ∗(q, ε), t), (by definition of δ∗)

as required. Now we proceed with the inductive step. Suppose the result
holds for s ′ ∈ Σ∗. We show it holds for s = α . s ′, where α ∈ Σ.

We consider two different cases. First, suppose δ(q, α) is defined. Then

δ∗(q, s ++ t) = δ∗(q, α . s
′ ++ t)

= δ∗(δ(q, α), s ′ ++ t) (by definition of δ∗)

= δ∗(δ∗(δ(q, α), s ′), t) (by the hypothesis)

= δ∗(δ∗(q, α . s
′), t) (by definition of δ∗)

= δ∗(δ∗(q, s), t),

as required. If, on the other hand, δ(q, α) is undefined, then the left-
hand side is

δ∗(q, s ++ t) = δ∗(q, α . s
′ ++ t)

= δ∗(δ(q, α), s ′ ++ t), (by definition of δ∗)
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which is undefined (since it features δ(q, α)), and the right-hand side is

δ∗(δ∗(q, s), t) = δ∗(δ∗(q, α . s), t)

= δ∗(δ∗(δ(q, α), s), t), (by definition of δ∗)

which is also undefined. Thus if δ(q, α) is undefined, then both sides of
the result are undefined.

Therefore in both cases, the result holds.

(f) To prove that L(M) = L, we need to show both that L(M) ⊆ L and
that L ⊆ L(M). The second one is easier, let’s start form that.

Notice that what we want to prove is

L ⊆ L(M)

⇐⇒ {(abna)m : n,m > 0} ⊆ {σ ∈ Σ∗ : δ∗(q0,σ) ∈ F}
⇐⇒ for all n,m > 0, (abna)m = σ ∈ Σ∗ satisfies δ∗(q0,σ) ∈ {q0}

⇐⇒ for all n,m > 0, δ∗(q0, (abna)m) = q0,

so equivalently, we prove this last statement by induction on m.

For the base case with m = 0, we have

δ∗(q0, (abna)0) = δ∗(q0, ε) = q0,

for all n > 0, which completes the base case.

The inductive hypothesis with m = k is for all n > 0,

δ∗(q0, (abna)k) = q0.

For the inductive step, we prove the statement with m = k + 1. Indeed,
for all n > 0, we have

δ∗(q0, (abna)k+1) = δ∗(q0, abna ++ (abna)k)

= δ∗(δ∗(q0, abna), (abna)k) (by part (e))

= δ∗(q0, (abna)k) (by part (d))

= q0, (by the hypothesis)

which completes the proof that L ⊆ L(M).
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For the second part, we have L(M) * L. Notice that something of the
form (abna)m will always have the same number of b’s between the pairs
of a’s, e.g.,

(ab3a)4 = a bbb︸︷︷︸
3

aa bbb︸︷︷︸
3

aa bbb︸︷︷︸
3

aa bbb︸︷︷︸
3

a,

but the given DFSA M accepts strings with a varying number of b’s,
such as

a b︸︷︷︸
1

aa bbbbb︸ ︷︷ ︸
5

aa bbb︸︷︷︸
3

aa ︸︷︷︸
0

a,

and strings like this are not in L.

Later on, we will see that it’s impossible for any DFSA to have L(M) = L

for a language like L (this is because L is not regular). Intuitively, such
a DFSA would have to be able to “count” how many b’s it is producing,
ensuring that it always inserts the same number. DFSAs are not capable
of doing this. We need something more powerful than a DFSA, namely
a pushdown automaton.

5


