
Mock Assessment Test

LUKE'S MATHS LESSONS*

Hal Tarxien, Malta

Advanced Level

March 2022

Instructions

The goal of this test is to prepare you for your MATSEC advanced level pure mathematics exam. The topics assessed here are those which usually fall under the label *precalculus*; namely, basic algebra, coordinate geometry, functions, inequalities and trigonometry; as well as those which form part of *calculus*, namely, differentiation and integration.

Read the following instructions carefully.

- This test consists of **6 questions** and carries **60 marks**.
- You have **2 hours** to complete this test.
- Attempt **all** questions.

*<https://maths.mt>

1. (a) Use partial fractions to find the integral

$$\int \frac{dx}{(x+1)(x+2)^2}.$$

(b) Determine

$$\int_0^{\pi/2} e^x \sin(2x) dx$$

using integration by parts.

[5, 5 marks]

2. (a) Let $y = \log\left(\frac{1}{\sqrt{\cos(x^2)}}\right)$. Show that

$$\frac{dy}{dx} = x \tan(x^2) \quad \text{and} \quad \frac{d^2y}{dx^2} = \frac{4x^2 + \sin(2x^2)}{2\cos^2(x^2)}.$$

(b) A curve is given parametrically by the equations

$$x = t^3 - 3t \quad \text{and} \quad y = t^2 + t,$$

where $t \in \mathbb{R}$.

(i) Determine the first derivative $\frac{dy}{dx}$ in terms of t .

(ii) Show that the tangent to the curve at the point where $t = \frac{1}{2}$ is

$$32x + 36y + 17 = 0.$$

(iii) Determine the coordinates of the other point on the curve where the tangent has the same gradient as the tangent above.

[4, 6 marks]

3. (a) Determine p and q , given that $x^4 - 4x^3 + 16x^2 + px + q$ is the square of a quadratic expression.

(b) Solve the inequality

$$\frac{\cos \vartheta + 3}{2 \sin \vartheta + 1} \leq \frac{1}{2}$$

for $0 \leq \vartheta \leq 2\pi$.

[Hint: Think of how you would solve $\frac{x+3}{2x+1} \leq \frac{1}{2}$.]

[4, 6 marks]

4. A function f is defined for all real values of x by

$$f(x) = 3 - |2x - 1|.$$

- (a) Sketch the graph of $y = f(x)$, indicating clearly the points where the graph intersects the coordinate axes. Hence show that the equation $f(x) = 4$ has no solutions.
- (b) Determine a simplified expression for $(g \circ f)(x)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x) = x(x - 6)$. If $(g \circ f)(x) = k$ has repeated roots, show that $k = -9$.
- (c) By finding the values of x for which $f(x) = x$, solve the inequality $f(x) > x$.

[4, 3, 3 marks]

5. (a) A point P is twice as far from the point $A = (3, 2)$ as it is from the point $B = (-1, 5)$.

- (i) Determine the equation describing the locus of P .
- (ii) Where do the line AB and the locus of P intersect?

(b) Express $f(\vartheta) = 2\cos 3\vartheta - 2\sin 3\vartheta$ in the form $R\cos(3\vartheta + \alpha)$, where $R > 0$ and $\alpha \in [0, \frac{\pi}{2}]$. Hence, find the general solution to the equation $f(\vartheta) = 1$, giving your solution in exact form.

[5, 5 marks]

6. (a) Determine the real numbers x and y if

$$\log_5(4xy + 1) = 2^{xy-1} - 10y = 2.$$

(b) The roots of $x^2 - 3x + 5 = 0$ are α and β . Find a quadratic equation whose roots are $1/(\alpha^2 + k)$ and $1/(\beta^2 + k)$.

[5, 5 marks]

Answers

1. (a) The partial fraction expansion should have the shape

$$\frac{1}{(x+1)(x+2)^2} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2},$$

and clearing denominators, we have

$$1 = A(x+2)^2 + B(x+1)(x+2) + C(x+1).$$

To find the constants, we substitute different values for x .

$$x = -1 \implies A = 1$$

$$x = -2 \implies 1 = C(-1) \implies C = -1$$

$$x = 0 \implies 1 = 4A + 2B + C \implies 1 = 4(1) + 2B + (-1) \implies B = -1,$$

and so the integral becomes

$$\begin{aligned} \int \frac{dx}{(x+1)(x+2)^2} &= \int \left(\frac{1}{x+1} - \frac{1}{x+2} - \frac{1}{(x+2)^2} \right) dx \\ &= \log(x+1) - \log(x+2) - \int (x+2)^{-2} dx \\ &= \log\left(\frac{x+1}{x+2}\right) + \frac{1}{x+2} + c. \end{aligned}$$

(b) Calling the integral I , we have

$$\begin{aligned} I &= \int_0^{\pi/2} e^x \sin(2x) dx \\ &= \int_0^{\pi/2} \sin(2x) d(e^x) \\ &= \left[e^x \sin(2x) \right]_0^{\pi/2} - \int_0^{\pi/2} e^x d(\sin(2x)) \\ &= -2 \int_0^{\pi/2} e^x \cos(2x) dx \\ &= -2 \int_0^{\pi/2} \cos(2x) d(e^x) \\ &= -2 \left(\left[e^x \cos(2x) \right]_0^{\pi/2} - \int_0^{\pi/2} e^x d(\cos(2x)) \right) \\ &= -2(-e^{\pi/2} - 1 + 2I), \end{aligned}$$

and so we see that the integral satisfies the equation

$$I = -2(-e^{\pi/2} - 1 + 2I),$$

which we can easily solve to obtain $I = \frac{2}{5}(1 + e^{\pi/2})$.

2. (a) Notice that by laws of logarithms, $y = -\frac{1}{2} \log(\cos(x^2))$. Thus, using the chain rule,

$$\frac{dy}{dx} = -\frac{1}{2} \cdot \frac{1}{\cos(x^2)} \cdot (-\sin(x^2)) \cdot 2x = x \tan(x^2).$$

Next, by the product rule, we have

$$\begin{aligned} \frac{d^2y}{dx^2} &= 1 \cdot \tan(x^2) + x \cdot \sec^2(x^2) \cdot 2x \\ &= \frac{\sin(x^2)}{\cos(x^2)} + \frac{2x^2}{\cos^2(x^2)} \\ &= \frac{\sin(x^2) \cos(x^2) + 2x^2}{\cos^2(x^2)} \\ &= \frac{2\sin(x^2) \cos(x^2) + 4x^2}{2\cos^2(x^2)} \\ &= \frac{\sin(2x^2) + 4x^2}{2\cos^2(x^2)}, \end{aligned}$$

where in the last step we invoke the identity $2\sin A \cos A = \sin(2A)$.

(b) (i) We have

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t+1}{3t^2-3}.$$

(ii) When $t = \frac{1}{2}$, we have $x(\frac{1}{2}) = -\frac{11}{8}$, $y(\frac{1}{2}) = \frac{3}{4}$, and $\frac{dy}{dx} \Big|_{t=1/2} = -\frac{8}{9}$, and so the equation of the tangent at $(-\frac{11}{8}, \frac{3}{4})$ is

$$y - \frac{3}{4} = -\frac{8}{9}(x + \frac{11}{8}),$$

which simplifies to $32x + 36y + 17 = 0$.

(iii) The gradient of the tangent line in (ii) is $-\frac{8}{9}$, so we want to find the other point on the curve whose corresponding tangent line

also has this gradient. This is equivalent to finding the other value of t which gives us $\frac{dy}{dt} = -\frac{8}{9}$, i.e., solving

$$\frac{2t+1}{3t^2-3} = -\frac{8}{9}.$$

This is a quadratic equation with roots $t = \frac{1}{2}$ and $t = -\frac{5}{4}$, i.e., the other point is the point with $t = -\frac{5}{4}$.

When $t = -\frac{5}{4}$, $x(-\frac{5}{4}) = \frac{115}{64}$ and $y(-\frac{5}{4}) = \frac{5}{16}$, so the desired pair of coordinates is $(\frac{115}{64}, \frac{5}{16})$.

3. (a) Since the coefficient of x^4 is 1 (i.e., the polynomial is *monic*), then the quadratic factor must also be monic, i.e., we can assume it equals $x^2 + bx + c$ for appropriate b and c . Thus we want to find b and c such that

$$\begin{aligned} x^4 - 4x^3 + 16x^2 + px + q &= (x^2 + bx + c)^2 \\ &= x^4 + 2bx^3 + (b^2 + 2c)x^2 + 2bcx + c^2. \end{aligned}$$

Comparing coefficients of x^3 we see that we must have $2b = -4$, i.e., $b = -2$, and comparing those of x^2 , we must have $b^2 + 2c = 16$, so $(-2)^2 + 2c = 16$, which gives $c = 6$.

Thus the polynomial we have is $(x^2 - 2x + 6)^2$.

Now p is the coefficient of x , which we can see from the expanded form should be $2bc = 2(-2)(6) = -24$, and similarly we must have $q = c^2 = 36$.

Thus $\mathbf{p = -24, q = 36}$.

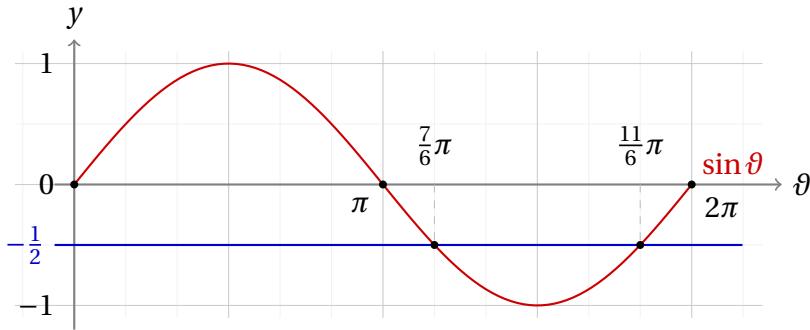
(b) As usual with rational inequalities, since we don't know the sign of the denominator $2\sin\vartheta + 1$, we cannot just multiply both sides by it, but we *can* multiply throughout by its square, which is definitely non-negative. This transforms the inequality into

$$\begin{aligned} 2(\cos\vartheta + 3)(2\sin\vartheta + 1) &\leq (2\sin\vartheta + 1)^2 \\ \iff 2(\cos\vartheta + 3)(2\sin\vartheta + 1) - (2\sin\vartheta + 1)^2 &\leq 0 \\ \iff (2\sin\vartheta + 1)[2\cos\vartheta + 6 - (2\sin\vartheta + 1)] &\leq 0 \\ \iff (2\sin\vartheta + 1)(2\cos\vartheta - 2\sin\vartheta + 5) &\leq 0. \end{aligned}$$

Now $2\cos\vartheta - 2\sin\vartheta + 5$ is at least 1 for any value of ϑ ,[†] so it won't have any bearing on whether or not the expression on the LHS is ≤ 0 . Thus, we can just divide throughout by it, and we see that the inequality is equivalent to

$$2\sin\vartheta + 1 \leq 0,$$

i.e., $\sin\vartheta \leq -\frac{1}{2}$. Solving the equation $\sin\vartheta = -\frac{1}{2}$ for $0 \leq \vartheta \leq 2\pi$, we get the solutions $\frac{7}{6}\pi, \frac{11}{6}\pi$. Thus, with reference to a quick sketch of $y = \sin\vartheta$ in this range,



we see that $\sin\vartheta \leq -\frac{1}{2}$ for θ in the range $\frac{7}{6}\pi \leq \vartheta \leq \frac{11}{6}\pi$.

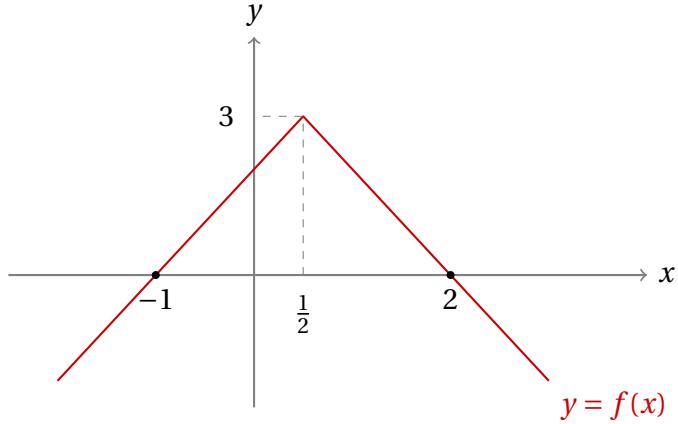
Observe the endpoints of this range make the denominator of our original inequality zero however, so we must exclude them: thus the final answer is $\frac{7}{6}\pi < \vartheta < \frac{11}{6}\pi$.

4. (a) By reasoning graphically about the sequence

$$|x| \rightarrow |x-1| \rightarrow |2x-1| \rightarrow -|2x-1| \rightarrow -|2x-1| + 3$$

of affine transformations of $|x|$, we can carry out the corresponding transformations on the graph of $y = |x|$ to end up with the graph of $y = f(x)$. (Note that the order of steps in the sequence is not unique: other sequences are possible.)

[†]This bound is not sharp, but it's easy to obtain since the minimum values of sin and cos are both -1 . A sharp lower-bound would be $-R + 5$, where $R > 0$ is the value needed to express $2\cos\vartheta - 2\sin\vartheta + 5$ in the form $R\cos(\vartheta + \alpha) + 5$.



Since the graph exists for $y \leq 3$, then clearly it doesn't intersect the line $y = 4$, consequently the equation $f(x) = 4$ has no solutions.

(b) Noticing that $x(x - 6) = (x - 3)^2 - 9$ (by completing the square), the working is quite simple:

$$\begin{aligned}
 (g \circ f)(x) &= (f(x) - 3)^2 - 9 \\
 &= (-|2x - 1|)^2 - 9 \\
 &= 4x^2 - 4x + 1 - 9 \\
 \therefore \quad (g \circ f)(x) &= 4(x^2 - x - 2).
 \end{aligned}$$

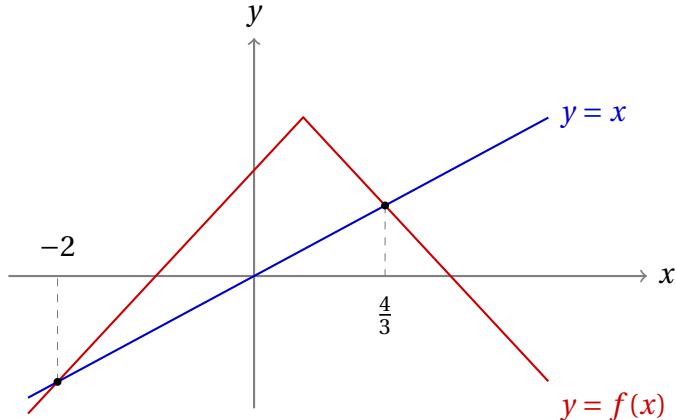
Thus, $(g \circ f)(x) = k$ having repeated roots is equivalent to saying that $4x^2 - 4x + (-8 - k) = 0$ has repeated roots. This happens precisely when the quadratic discriminant $\Delta = (-4)^2 - 4(4)(-8 - k)$ is zero, i.e., when $16 - 128 - 16k = 0$, i.e., when $k = -9$.

(c) To solve an equation involving moduli, simply remember that $|LHS| =$

RHS is true if and only if $|\text{LHS}| = \text{RHS}$ is true.[†] Thus,

$$\begin{aligned}
 f(x) &= x \\
 \implies 3 - |2x - 1| &= x \\
 \implies 3 - x &= |2x - 1| \\
 \implies 3 - x &= \pm(2x - 1) \\
 \implies 3 - x &= \pm 2x \mp 1 \\
 \implies x \pm 2x &= 3 \pm 1 \\
 \implies 3x &= 4 \quad \text{OR} \quad -x = 2 \\
 \implies x = \frac{4}{3} & \quad \text{OR} \quad x = -2.
 \end{aligned}$$

Now to solve $f(x) > x$, we can make reference to a quick sketch of $y = x$ superimposed on $y = f(x)$:



We see that $f(x) > x$ for $-2 < x < \frac{4}{3}$.

5. (a) (i) P satisfies $d(P, A) = 2d(P, B)$, i.e.,

$$\sqrt{(x-3)^2 + (y-2)^2} = 2\sqrt{(x+1)^2 + (y-5)^2}.$$

Squaring both sides, the equation simplifies to

$$3x^2 + 3y^2 + 14x - 36y + 91 = 0,$$

[†]Alternatively, squaring both sides of something like $|\text{LHS}| = \text{RHS}$, we can do away with the moduli.

and completing the square in x and y , we obtain

$$(x + \frac{7}{3})^2 + (y - 6)^2 = \frac{100}{9},$$

so the locus of P is a circle centred at $(-\frac{7}{3}, 6)$, with radius $\frac{10}{3}$.

(ii) The line through AB has gradient $\frac{5-2}{1-3} = -\frac{3}{4}$, so its equation is

$$y - 2 = -\frac{3}{4}(x - 3),$$

which simplifies to $3x + 4y = 17$.

To find the points of intersection, we can solve the equations of the line and circle simultaneously. The points are $(\frac{1}{3}, 4)$ and $(-5, 8)$.

(b) We expand $R \cos(3\vartheta + \alpha)$ using the compound angle identity for cosine, so that we may compare coefficients.

$$\begin{aligned} f(\vartheta) &= 2 \cos 3\vartheta - 2 \sin \vartheta = R \cos(3\vartheta + \alpha) \\ &= (R \cos \alpha) \cos 3\vartheta - (R \sin \alpha) \sin 3\vartheta, \end{aligned}$$

so we want that

$$\begin{cases} R \cos \alpha = 2 & \textcircled{1} \\ R \sin \alpha = 2. & \textcircled{2} \end{cases}$$

If we do $\textcircled{2} \div \textcircled{1}$, we get $\tan \alpha = 1$, so we may take α to be the principal value $\tan^{-1}(1) = \frac{\pi}{4}$.

To find R , we take advantage of the Pythagorean identity, noting that $\textcircled{1}^2 + \textcircled{2}^2$ gives $R^2 = 8$, i.e., $R = 2\sqrt{2}$.

Thus $f(\vartheta) = 2\sqrt{2} \cos(3\vartheta + \frac{\pi}{4})$, and so the equation we need to solve is

$$\begin{aligned} 2\sqrt{2} \cos(3\vartheta + \frac{\pi}{4}) &= 1 \\ \implies \cos(3\vartheta + \frac{\pi}{4}) &= \frac{\sqrt{2}}{4} \\ \implies (3\vartheta + \frac{\pi}{4})_{\text{p.v.}} &= \cos^{-1}(\frac{\sqrt{2}}{4}) \\ \implies 3\vartheta + \frac{\pi}{4} &= \pm \cos^{-1}(\frac{\sqrt{2}}{4}) + 2\pi\mathbb{Z} \\ \therefore \vartheta &= -\frac{\pi}{12} \pm \frac{1}{3} \cos^{-1}(\frac{\sqrt{2}}{4}) + \frac{2}{3}\pi\mathbb{Z} \end{aligned}$$

6. (a) We solve the simultaneous equations

$$\begin{cases} \log_5(4xy + 1) = 2 & \textcircled{1} \\ 2^{xy-1} - 10y = 2. & \textcircled{2} \end{cases}$$

One way to solve these is to start from $\textcircled{1}$, doing $5^{(\cdot)}$ both sides to get

$$4xy + 1 = 25 \implies xy = 6 \implies x = \frac{6}{y}. \quad \textcircled{3}$$

Substituting this in $\textcircled{2}$, we get

$$2^{\frac{6}{y} \cdot y - 1} - 10y = 2 \implies 2^5 - 10y = 2 \implies 10y = 2^5 - 2 \implies y = 3.$$

Then we can find x using $\textcircled{3}$. Thus $x = 2, y = 3$.

(b) By Viète's formulae, we immediately have that $\alpha + \beta = 3$ and $\alpha\beta = 5$.
Now the sum of the new roots is

$$\begin{aligned} \frac{1}{\alpha^2 + k} + \frac{1}{\beta^2 + k} &= \frac{\alpha^2 + \beta^2 + 2k}{\alpha^2\beta^2 + (\alpha^2 + \beta^2)k + k^2} \\ &= \frac{(\alpha + \beta)^2 - 2\alpha\beta + 2k}{(\alpha\beta)^2 + ((\alpha + \beta)^2 - 2\alpha\beta)k + k^2} \\ &= \frac{3^2 - 2(5) + 2k}{5^2 + (3^2 - 2(5))k + k^2} \\ &= \frac{2k - 1}{k^2 - k + 25}, \end{aligned}$$

and similarly, it is easy to see that the product of the roots is

$$\left(\frac{1}{\alpha^2 + k}\right)\left(\frac{1}{\beta^2 + k}\right) = \frac{1}{k^2 - k + 25}.$$

Thus the “new” equation is $x^2 - (\text{new sum})x + \text{new product} = 0$, which in our case simplifies to $(k^2 - k + 25)x^2 - (2k - 1)x + 1 = 0$.