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Instructions

The goal of this test is to prepare you for your MATSEC advanced level pure
mathematics exam. The topics assessed here are those pertaining to the paper
2 syllabus.

Read the following instructions carefully.
e This test consists of 10 questions and carries 150 marks.
* You have 3 hours to complete this test.

* Attempt 7 out of the 10 questions.
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1.

(@) (i) Solve the differential equation

d
x—y +(l—xtanx)y = x?%

dx
given that when x =m, y = 0.

(b) Solve the differential equation

d’y . dy
9—= —12——+4y=8x-5¢ %,
d x? dx Y TEETVe

given that when x =0, y = % and % = %
[Hint: When finding the particular integral, use Px+ Q + Re™* as a
trial solution.]

[8, 7 marks]

(a) Show that the equation xe* = cos x has a solution between 0 and 1.
Use the Newton-Raphson method to find an approximation for this
value, taking x = 1 as first approximation. Do two iterations, and
give your working to four decimal places.

(b) (i) Express the length of the curve y = sin x for x between 0 and 7
as an integral.

(ii) Estimate the integral using Simpson’s rule with an interval width
of h = . Give your working to four decimal places.

[7, 8 marks]
(@) (@) Prove that

4 3
+
x+2 (x+2)2

log(l— ):log(x+ 1) +log(x—1) — 2log(x + 2).

(ii) Hence, show that

Zlog(l— 2 +L):log( 18 :
= r+2 (r+2)2 nn+1)(n+2)2




(b) By direct application of Maclaurin’s expansion formula, show that
the first two nonzero terms of the expansion of f(x) = log( 1 )

v COSX
are
x% x*
4 24
Hence, find
I x!
xl—% 41 1 _ 2]
Og(\/COSJC) X

[8, 7 marks]

4. (a) Consider the matrix M = ( 9). Prove by induction that for any

-1 4
integer n =0,

1-3n  9n
n _
M _( -n 1+3n)'

(b) Usinginduction, show that 17" —2" is a multiple of 5 for all n = 0.

(c) Show, using induction, that for n =5,

(5%x4)+(6x5)+(7x6)+---+(nx (n—1)) = 1(n’ - n-60).

[5, 5, 5 marks]

6x — x2

5. Let f(x) = 5V———.
J) x> —6x+5
(a) Determine the range of values of y in which no part of the curve

y = f(x) exists.

(b) Usingtheresult you obtained in part (a) or otherwise, determine the
coordinates of any turning points on the curve y = f(x). State also
the equations of any asymptotes.

(c) Sketch the curve y = f(x), clearly indicating the turning points and
asymptotes found in part (b), together with the points where the
curve intersects coordinate axes.

(d) Sketch the curve y =1/ f(x) on a separate diagram.
(4, 4, 4, 3 marks]



-3 12 4
6. Consider the matrixA=|-2 7 2].
5 a b

(a) Given that (A—1I)(A+2I) = 03,3, where I and 03,3 are the 3 x 3 iden-
tity and zero matrices respectively, determine the values of a and b.
Using the given equation, or otherwise, determine Al

For the following question, ignore the values of a and b found in part (a).
(b) Let B be the matrix A above, with b =6.

(i) Explain why the homogeneous equation Bx = 03; always has
at least one solution, and that there is a unique value of a for
which it has more than one solution.

(ii) Find this value of a, and determine the solutions of the equa-
tion when a takes on this value, in the form of a vector equa-
tion. What does this vector equation represent, geometrically?

[6, 9 marks]
7. (a) Use de Moivre’s Theorem to prove that for all 9,
32sin®0 = 10 — 15c0s26 + 6cos46 — cos 60,
and determine a corresponding identity for 32 cos® 0. Deduce that
8(sin®@ + cos®H) = 5+ 3cos 40,

and hence or otherwise, evaluate

641
f (sin® 0 + cos®0)? de.
0

(b) Find the fifth roots of unity, and sketch them on an Argand diagram.
Show that:

(i) They can be written as 1,w,w?, w* and w*.
(i) Their sum is zero. [Hint: Consider (1 — w)(1 + @ + w? + 0® + wY)].

(iii) The points they represent in the complex plane form the ver-
5 2n

tices of a pentagon whose area is 3 sin 5.

[8, 7 marks]



8. The limacgon curve .Z is given by the polar equation r =5 —4cos6.
(a) Use a suitable range of 6 values to sketch the curve Z.

(b) Determine the polar coordinates of the points P and Q, where the
curve % intersects the curve ¢, with equation r = 3. What is the
curve €

(c) Aline passes through the point P, through the pole, and intersects
the curve Z at the point R. Determine the length of PR.

(d) Determine the area of the region that lies within the curve €, but
outside the curve Z.

[3, 3, 3, 6 marks]

9. The position vectors of the points A, B, C and D are i+j— 3k, 2i—2j +k,
i—k, and —i+j respectively. Determine:

(a) avector equation of the line ¢ through the points A and B,

(b) the Cartesian equation of the plane II; containing the points A, B
and C,

(c) the Cartesian equation of the plane I, containing the points C and
D, which does not intersect the line ¢,

(d) the distance of the points A and B from I,
(e) the angle between I1; and II,.
[2, 3, 4, 3, 3 marks]
10. (a) A triangle has vertices at A(2,2), B(4,4) and C(6,2). The triangle is
rotated through one complete revolution about the x-axis. Find:
(i) the volume generated,
(ii) the total surface area of the object formed.

(b) A container of depth 1 metre is shaped in such a way that when the
depth of water in it is x cm, then volume is 2x3 + x) cm3. Water is
poured into the container at a constant rate of 50 cm3/s. What is the
rate of change of depth at the point in time when x is 40 cm?

[10, 5 marks]



Answers

1.

(a)

(b)

(a)

(b)

(i) Bytheproductrule, % (xycosx) = xcos x% + ycosx —xysinx.

(ii)) The equation is Z ( —tanx)y = x. Multiplying through by
the integrating factor u(x) =exp(f (l —tanx) dx) = xcosx, the

dy _ 2
equation becomes x cos x 7 T YCcosx—xysinx = x“cosx.

Recognising the LHS from (i), we have -4 Ix(xycosx) = x%cosx,
and thus integrating both sides, we get xy cosx = [ x* cos x dx.

The RHS requires integration by parts twice, and at the end we
get the general solution y(x) = (x— 2) tanx + $secx +2.

Finally, since y(r) = 0, we get that 0 = -~ +2, i. e ¢ =2n. Thus
the particular solution is y(x) = (x — —) tanx +2Z gecx + 2.

The auxiliary equation 9k? — 12k +4 = 0 has the repeated root k = %,
thus the complementary function is e%/3*(c; + c»x).

Then by substituting the trial solution into the LHS of the equation,
we obtain the particular integral 2x + 6 — —e‘x . Putting everything
together, the general solution is y(x) =2x+ 6 %e_x +e23%(c) + cox).

Then plugging in the given information into the general solution
and its derivative, we find the constants ¢c; = —3 and ¢, = 2, and thus
the particular solution is y(x) =2x + 6 — 1 e_x +e23x(2x - 3).

A solution corresponds to a zero of the function f(x) = xe* — cosx,
which is continuous on [0,1]. Now f(0) = 0—-cos(0) = -1 <0, and
f(1) =e—cos(1) = e—1 > 0. Thus by the intermediate value theorem,
there is some c € (0,1) such that f(c) =

If we let xp = 1 be an initial approximation for the root c of f, one
iteration of the Newton-Raphson formula yields x; = 0.6531, and
another gives xp = 0.5313.

(i) Using the booklet formula, € = f(;’ V1+cos?xdx.

2. 5
o x Jo oz 2z m w4
(11) \/1+coszx‘1.4142 1.3229 1.1180 1 1.1180 1.3229 1.4142

Yo J1 )2 V3 Ja V5 Ve



(a)

Thus

0~ 7(1.4142 +1.4142 + 4(1.3229 + 1 + 1.3229)
+2(1.1180+1.1180) )

=3.8194.
(i) Since
4 3 (x+2)2%-4(x+2)+3 (x+D(x-1)
1- + = =
x+2 (x+2)2 (x+2)2 (x+2)2

by the laws of logarithms,

3 x+D(x-1)
log(l— . ):10 (—)
x+2 (x+2)2 (x+2)2
=log(x+1) +log(x—1) —2log(x + 2).
O
(ii) Thus

Zn:lo (1— ! + & )
28 T T k22

=) log(r+1)+ ) log(r—1)—2) log(r+2)
r=2

r=2 r=2

n+l n+2

n-1
=) logr+ ) logr—2)> logr
r=3 r=1 r=4

n-1
=log3+ Z logr +logn+log(n+1)

r=4
n-1

+logl+log2+log3+ ) logr
r=4

n-1
—2( Y logr+logn+log(n+1)+log(n+2)
r=4

=2log3+log2 —logn—log(n+1)—2log(n+2)

1 ( 18 )
—108 nn+1)n+2)2)

7



(b) We have

fx) = —%log(cos X) = f0)=0
f'(x) = tanx = flo=0
f"(x) = 3sec”x = o)y =3
" (x) = sec® xtan x — "0 =0
" (x) = sec? x + 2sec? xtan® x — 0 =1,
and so by Maclaurin’s theorem,
12, 01, 5
f(x)—yx taF +0(x°)
2 .4
=X X soud. 0
4 24
. .. 1 _ ¥ 4 5
Now for the desired limit, we have log( m) =X+ 5 +0(°) as
x — 0, so we can substitute:
: x* . x*
lim T S| = lim pra—
*=0 410g(\/cosx) -X *=0 4(? + 24 + O(XS)) - x*
. x*
=lim 4—)
=00 %+ 0(x)
. 6 )
=lim| ———| =6.
=0\ 1+ O(x)

(a) Forthe base case, with n = 0, it's obvious that M? = I and the formula
we have works. For the inductive step, we have

el rem(1-3k 9k (=2 9
M =MIM=1 0 i3kl 4
(~2-3k 9+9k
"\ -1-k 4+3k

1-3(k+1) 9(k+1)

—(k+1) 1+3(k+1))° =




(b) When n =0, 17° —2° = 0 which is divisible by 5. For the inductive
step, we have

178 2kl = 17017%) - 2(2%)
=1717% - 1725 + 1525
=17(17F - 25 + 1525
Z17(6a) + 1525
:5(17a+3-2k), a multiple of 5. O

(c) Whenn=5,5%x4=20and %(53 —5-60) =20, so the result holds and
the base case is done.

For the inductive step,

k+1 k
Yrr=D=) rr-D+(k+Dk
r=5 r=>5

IH

1(k*—k—60)+ (k+ Dk
=1(k® - k-60+3k*+3k)
=1(k* +3k° +3k+1—k—1-60)
=1((k+1)° - (k+1) - 60),
as required. O

(@) Notice the equation of the curve is equivalent to

. bx—x*
V=2 6x+5
— y(x2—6x+5):6x—x2
S yx2—6yx+5y:6x—x2
— (y+Dx*—6(y+Dx+5y=0 ©)

If we determine the range of values of y for which this quadratic
in x has no roots, we will be finding the y-coordinates which have
no associated x-coordinate; i.e., the y-coordinates where the curve
does not exist.

Therefore no part of the curve exists when the quadratic discrimi-
nant A <O0:



(y+1)dy+9)
36(y+1)%2—20y(y+1) <0 |
= 36(y°>+2y+1)—20y>-20y <0
= 16)? +52y+36 <0
—4)*+13y+9<0
= (y+1)H@dy+9) <0

From the sketch, \_/ 0 Y

L -dcy<-1

(b) Since the curve exists everywhere else outside —% < y<-1,thenany
extrema must occur at one of the points where y = —% and y=-1.

Thus, we substitute y = -1 and y = —% in (). Substituting y = -1
gives nonsense, so there are no extrema with y-coordinate —1. On
the other hand, substituting y = —% gives

5, 5 9
—Zx*-6|-=|x+5|-=|=0
4 4 4
—5x2-30x+45=0

— x> -6x+9=0
— (x-3)*=0

— x=3 (twice)

Therefore a turning point occurs at (3, -3).

Now, to determine asymptotes. Vertical asymptotes occur when the
denominator is zero:

x> —6x+5=0
= (x—-1Dx-5=0

—x=1 or x=5

Therefore the equations of the vertical asymptotes are x =1 and
x=5.

10



(9]

Horizontal or oblique asymptotes occur as x — +oo. We therefore
determine an asymptotic formula for f as x gets large:

6x—x

2

5
X)=—————=-14+——-—"—=-14+0|—
S x2—6x+5 X2 —6x+5 (xz)

as x — *oo. In other words, as x gets big, f(x) ~—1,andso y=-1
is a horizontal asymptote to the curve.
For the y-intercept, set x =0 = f(0) = 0.

For the x-intercepts, we solve f(x) = 0, which happens when the
numerator is zero: 6x — x2 =0 = xX6—x)=0 = x=0o0r x=06.

Sketch:
y=fx)

(d) For the graph of y =1/ f(x), we make the following considerations.

* Any x-intercepts of the curve y = f(x) are roots of y = 1/ f(x)
and vice-versa. (So now, we have asymptotes at x = 0 and x = 6,
and roots at x =1 and x = 5).

* Each respective part of the curve y = f(x) remains in the same
quadrant when considering the curve y =1/ f (x).

11



e If f(x) — oo, then 1/f(x) — 0" (from above) and vice-versa.
Similarly, if f(x) — —oo, then 1/f(x) — 0~ (from below) and
vice-versa.

e If y = f(x) has a maximum turning point at (xp, yp), then y =
1/ f(x) has a minimum turning point at (xo, %) and vice-versa.

(So now, a minimum turning point occurs at (3, - 5)).

* Any horizontal asymptotes given by y = a are still present in
the curve y = 1/ f(x), however they are shifted to y = L1 (The

a
asymptote at y = —1 remains at y = —1).

With these in mind, we can proceed to sketch y =1/ f(x).

‘H

V=T

i

12



(a) Substituting A in the LHS,

A-DA+2I)

-3 12 4 1 00 -3 12 4 2 00
=|l-2 7 2]-10 1 0 —2 7 2 +]/0 2 O

5 a b 0 01 0 0 2

-4 12 4 -1 12
=|1-2 6 2 -2 9 2

5 a b-1 5 a b+2

0 4a+ 60 4b+2)+8

= 0 2a+30 2(b+2)+4

-2a+5Mb-1)-5 (b-1)a+9a+60 2a+b-1)(b+2)+20

Comparing entries with the zero matrix, we can quickly see that we
havea=-15and b = —

Now we can use the equation to determine A™!:

I

(b)
system.

(i) The trivial solution x =

A-DA+2D)=0

A>+A-21=0
A'A%2+A-2)=A""!
A+I-2A"1=0
-1 _1
=1A+D

-2 12 4
4 1

A =3 -2 8 2

5 -15 -3

(0,0,0) is always a valid solution to the

Now we perform Gaussian elimination on the augmented ma-

trix (B|0).

(B|0) ( -



2R1 + (—3)R2 d Rg
5R; +3R3 — R3

-3 12 4|0
~1 O 3 210
0 60+3a 380

(-19)R, + R3 — R3

-3 12 410
~1 0 3 210
0 3+3a 0|0

Observe that the third row corresponds to 0x+(3+3a) y+0z = 0.
If we take a = —1, then the equation (trivially) has infinitely
many solutions. If a # —1, then we must have y =0, and con-
sequently, the other rows will give us x = z = 0. Therefore only
the value a = —1 gives more than one solution. O

(ii) From part (i), @ = —1. Now from R, we get 3y+2z = 0, which re-
arranges to z = —% y. Similarly, from R;, we get -3x+12y+4z =
0. Making y subject from the previous equation and substitut-
ing gives —3x + 12(—%z) +4z2=0 = -3x-8z2+4z=0 = z=
3

—Zx.

Thus combining these equations:

3 3
——X=——V=2
4 2
x-0 y-0 2z-0
4 2
-3 3 1

This corresponds to the Cartesian equation = = 1211 = 41

of a line in R3 with initial point (x1, y1, z1) and direction vector
(a,b,c).

The corresponding vector equation is r = A(4i+2j—3k). This
line represents the intersection of the three planes —3x+ 12y +
4z=0,-2x+7y+2z=0,5x-y+6z2=0.

7. (a) Recall the following consequence of de Moivre’s theorem: if we write

14



w = e then w"+ w™" =2cosnd and w" — w=" = 2isin nb. Thus,

2isind)° = (w—-w™)°
— —64sin°0 = w® - 6w +15w? -20+ 15w 2 —6w ™+ w
= (W’ + w™ % —6(w* + w™ +15(w* + w%) - 20
=2c0s660 —12cos46 +30cos26 — 20
325in®0 = 10 — 15c0s26 + 6 cos 40 — cos 60

We proceed similarly to obtain the identity for 32 cos® 0:

(2cos0)® = (w+ w_1)6

= 64c0s°0 = wb + 6wt +15w? +20+ 15w 2 +6wt+ w
=Wl +w O +6(wt+ w )+ 15w+ w ) +20
=2cos660 + 12cos46 + 30cos20 + 20
32¢0s%60 = 10+ 150526 + 6c0s46 + cos66.

Adding the two identities, we get 32sin®0+32co0s®6 = 20+ 12 cos 40,
which reduces to 8(sin® 0 + cos®0) = 5 + 3 cos 40, as required.

Therefore the desired integral becomes

64
f (sin® 0 + cos®0)? do
0

6471
=— (5 + 3 cos460)? do
64 Jo

1 641
== f (25 + 30 cos 460 +9cos? 460) do
0

=— ([259 + —sin460
64 2 o

[259 15sin4f 9sin86 96 }64”
= —+ + + —
64 128 1024 128

64
+ —f (cos80+1) d@)
2Jo

0

971 597
=250+ —=——
2 2

15



(b) The fifth roots of unity are the solutions to the equation z° = 1.
Clearly, each solution has |z| = v/1 = 1. Thus all we have to deter-
mine are the different possible values of argz. We know that the
possible values of arg z, where z" = re'®, are given by

2k +
0=""=% ez,
n

so long as —m < 0 < 7. In our case, we have @ = 0 and n =1, so the

different possible values are 6 = {—4?”, —%”, 0, 2?”, 4?”} Therefore the
fifth roots of unity are 1, e*27#/5 g*47i/5,
0
2
5
> R
O 1

(i) Let w = e*"/5. Then by de Moivre’s theorem, w? = (e2"/5)

e*™/5 which is another root. Similarly, w® = e®"//%, again by de
Moivre’s theorem. Now %” is out of the range —n < 0 < 7, but as
an angle, it is equivalent to %” 27 = —%”, therefore w3 equals
e~47/5  Finally, 0* = 8™/, whose argument is equivalent to

8 _ 27 = =2Z, the remaining value of 6.

Therefore the roots can be expressed as 1, w, w?, w® and w*. O

(i) (1-w)(1+0+w?+0’+0* =1-w®=0by definition of the the
fifth roots of unity. Thus either 1-w = 0,i.e. w = 1, or 1 +w+w?+
w3 + w* = 0. Taking w = 1 will not give us a meaningful result in
this case; so we may discard the former. Taking w as in part (i),
we get that the sum of all the fifth roots of unity is zero. O

16



(iii) If we refer to the diagram drawn in part (i), the pentagon is ob-
tained simply by joining the vertices together, giving rise to 5
isosceles triangles, each with apex angle %” and legs of length

5 2

1. Thus the area is 5 x %absinC = g(l)(l)sin%” = zsin?, as

required. O

(a) Since r is a function of cos®, it suffices to take 6 in the range 0 < 0 <
7, since cos 0 is an even function and negative angles would give the
same result.

el el B

1 6‘”

EREIPP

(b) We solve 5—4cos6f = 3 to find the values of 6 at which points of
intersection occur.

5—4cosf =3
= cosH:%
— Op.v. :cos_l(%) =2
S 0=2nm+Z nez

£3
Taking values of n other than n = 0 gives values outside the range

—71 < 0 < 7, thus the only values of 8 where intersection points oc-
cur are 0 = J_r%, and so the points of intersection are P = (3 L) ) and

T ’ §
Q = (3) - §) .
The curve € represents a circle, since it has a fixed radius of r = 3
independent of the angle 0.

(c) Aline through P then the pole makes an angle of % -7 = —%”. Thus

we evaluate 5 —4cos (—‘%”) =7, which represents the distance from

17



the pole to the point R. Therefore the distance PR is the distance
from the pole to P (r = 3) plus the distance from the poleto R (r = 7),
i.e. [PR| =10.

(d) The desired area is the following:

We know that in general, the area enclosed by the curve r = r(0) and
the part-lines 8 = a and 6 = b is given by % / f r2df. Now our desired
area is the area of the circle between r = % (outlined in green) and
r = —%, minus that of the curve £ in that region (outlined in red,
dashed):

Furthermore, since the region is symmetric in the horizontal, we
can simply evaluate the following enclosed region instead, then mul-
tiply the result by two.

18



9.

Therefore,
13 13
A:zf (3)2019—5[3 (5—4c0s0)2 db
-3
:fs9d9—f3(25—40cos€+1600520)d6
0 0

=90 — 250 + 40sin0| —8[3 (1+cos20) df
0

z
3

167
:20\/§—T—8(9+

=18V/3 — 87 units>.

sin29)

0

(a) Take a =i+ j— 3k as the initial point, and AB=b—a=1i-3j+4kas

its direction. Thus ¢, has equationr =i+j—3k+ A(i—3j+4k) .

(b) Since the points A, B and C lie on I1;, then the vectors AB=b-a=

i—3j+4k and AC = c—a = —j+ 2k lie in I1,. Therefore we can take
n; = AB x AC to be the normal of [Ty, where

i j k
-3 4|, |1 4], |1 -3
m=|1 =3 4|7 jli-] glit]o i
0 _1 o 1712 o 2o -1
=—2i-2j-k

Therefore I1; has vector equationr-n; =a-nj, i.e. r-2i+2j+k) =
(i+j—-3k) - (2i+2j+k), which simplifies to r- (2i + 2j + k) = 1, having
the corresponding Cartesian equation 2x +2y+z = 1.

19



(©

(d)

(e)

10. (a)

Since I1, contains the points C and D, then the vector CD=d-c =
—2i+j+klie onII,. Furthermore, since I, does not intersect ¢, then
it must be parallel to 4, i.e., its direction vector AB=i- 3j + 4k lies
in the plane I1,. Therefore we can define ny = AB x CD to be the
normal of IT,, where

i ok
-3 4 1 4 1 -3
n=(1 -3 4 :’ i— _ j+ _ ‘k
PR I U | E AR | LA
— _7i—9j— 5k

Therefore I1, has vector equationr-ny =c-ny, i.e., r- (7i+9j+5k) =
(i-Kk) - (7i+9j + 5k), which simplifies to r- (7i + 9j + 5k) = 2, having
the corresponding Cartesian equation 7x +9y + 5z = 2.

The distance of a point X, with position vector x, from a plane IT:

r-n = d is given by the formula s = ‘x n- ”z” In the case of I,

we have |ny|| = V72 +92+52 = /155, so fi, = \/ﬁ \/F \/S_k
Thus for the point A, we have:

. 2 7 9 15 2 1 .
i, — = + - - = units

[y || V155 V155 V155 /1551 /155

Similarly, for point B, we have
. 2 14 18 5 2 1 .

b-n, — = - + - = units

[l v155 V155 V155 +/155| /155

The angle 6 between two planes whose normals are n; and ny is
given by the formula cos = ﬁ1 ﬁg In our case, we have i} = =L =

g —
2 2: 1 a7 5
5i+5j+skand iy \/ﬁ \/F \/_k thus

cosf =1, -,

_u 185
3V155 3v155 3155
37
3V115
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