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Instructions
The goal of this test is to prepare you for your MATSEC advanced level pure
mathematics exam. The topics assessed here are those pertaining to the paper
2 syllabus.

Read the following instructions carefully.

• This test consists of 10 questions and carries 150 marks.

• You have 3 hours to complete this test.

• Attempt 7 out of the 10 questions.

*https://maths.mt

1

https://maths.mt


1. (a) (i) Solve the differential equation

x
d y

d x
+ (1−x tan x)y = x2,

given that when x =π, y = 0.

(b) Solve the differential equation

9
d 2 y

d x2
−12

d y

d x
+4y = 8x −5e−x ,

given that when x = 0, y = 14
5 and d y

d x = 11
5 .

[Hint: When finding the particular integral, use P x +Q +Re−x as a
trial solution.]

[8, 7 marks]

2. (a) Show that the equation xex = cos x has a solution between 0 and 1.
Use the Newton–Raphson method to find an approximation for this
value, taking x = 1 as first approximation. Do two iterations, and
give your working to four decimal places.

(b) (i) Express the length of the curve y = sin x for x between 0 and π
as an integral.

(ii) Estimate the integral using Simpson’s rule with an interval width
of h = π

6 . Give your working to four decimal places.

[7, 8 marks]

3. (a) (i) Prove that

log

(
1− 4

x +2
+ 3

(x +2)2

)
= log(x +1)+ log(x −1)−2log(x +2).

(ii) Hence, show that

n∑
r=2

log

(
1− 4

r +2
+ 3

(r +2)2

)
= log

(
18

n(n +1)(n +2)2

)
.
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(b) By direct application of Maclaurin’s expansion formula, show that
the first two nonzero terms of the expansion of f (x) = log

( 1p
cos x

)
are

x2

4
+ x4

24
.

Hence, find

lim
x→0

(
x4

4log
( 1p

cos x

)−x2

)
.

[8, 7 marks]

4. (a) Consider the matrix M =
(−2 9
−1 4

)
. Prove by induction that for any

integer n Ê 0,

Mn =
(
1−3n 9n
−n 1+3n

)
.

(b) Using induction, show that 17n −2n is a multiple of 5 for all n Ê 0.

(c) Show, using induction, that for n Ê 5,

(5×4)+ (6×5)+ (7×6)+·· ·+ (n × (n −1)) = 1
3 (n3 −n −60).

[5, 5, 5 marks]

5. Let f (x) = 6x −x2

x2 −6x +5
.

(a) Determine the range of values of y in which no part of the curve
y = f (x) exists.

(b) Using the result you obtained in part (a) or otherwise, determine the
coordinates of any turning points on the curve y = f (x). State also
the equations of any asymptotes.

(c) Sketch the curve y = f (x), clearly indicating the turning points and
asymptotes found in part (b), together with the points where the
curve intersects coordinate axes.

(d) Sketch the curve y = 1/ f (x) on a separate diagram.
[4, 4, 4, 3 marks]
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6. Consider the matrix A =
−3 12 4
−2 7 2
5 a b

 .

(a) Given that (A− I)(A+2I) = 03×3, where I and 03×3 are the 3×3 iden-
tity and zero matrices respectively, determine the values of a and b.
Using the given equation, or otherwise, determine A−1.

For the following question, ignore the values of a and b found in part (a).

(b) Let B be the matrix A above, with b = 6.

(i) Explain why the homogeneous equation Bx = 03×1 always has
at least one solution, and that there is a unique value of a for
which it has more than one solution.

(ii) Find this value of a, and determine the solutions of the equa-
tion when a takes on this value, in the form of a vector equa-
tion. What does this vector equation represent, geometrically?

[6, 9 marks]

7. (a) Use de Moivre’s Theorem to prove that for all θ,

32sin6θ = 10−15cos2θ+6cos4θ−cos6θ,

and determine a corresponding identity for 32cos6θ. Deduce that

8(sin6θ+cos6θ) = 5+3cos4θ,

and hence or otherwise, evaluate∫ 64π

0
(sin6θ+cos6θ)2 dθ.

(b) Find the fifth roots of unity, and sketch them on an Argand diagram.
Show that:

(i) They can be written as 1,ω,ω2,ω3 and ω4.

(ii) Their sum is zero. [Hint: Consider (1−ω)(1+ω+ω2+ω3+ω4)].

(iii) The points they represent in the complex plane form the ver-
tices of a pentagon whose area is 5

2 sin 2π
5 .

[8, 7 marks]

4



8. The limaçon curve L is given by the polar equation r = 5−4cosθ.

(a) Use a suitable range of θ values to sketch the curve L .

(b) Determine the polar coordinates of the points P and Q, where the
curve L intersects the curve C , with equation r = 3. What is the
curve C ?

(c) A line passes through the point P , through the pole, and intersects
the curve L at the point R. Determine the length of PR.

(d) Determine the area of the region that lies within the curve C , but
outside the curve L .

[3, 3, 3, 6 marks]

9. The position vectors of the points A, B , C and D are i+ j−3k, 2i−2j+k,
i−k, and −i+ j respectively. Determine:

(a) a vector equation of the line ` through the points A and B ,

(b) the Cartesian equation of the plane Π1 containing the points A, B
and C ,

(c) the Cartesian equation of the plane Π2 containing the points C and
D , which does not intersect the line `,

(d) the distance of the points A and B fromΠ2,

(e) the angle betweenΠ1 andΠ2.
[2, 3, 4, 3, 3 marks]

10. (a) A triangle has vertices at A(2,2), B(4,4) and C (6,2). The triangle is
rotated through one complete revolution about the x-axis. Find:

(i) the volume generated,

(ii) the total surface area of the object formed.

(b) A container of depth 1 metre is shaped in such a way that when the
depth of water in it is x cm, then volume is (2x3 + x) cm3. Water is
poured into the container at a constant rate of 50 cm3/s. What is the
rate of change of depth at the point in time when x is 40 cm?

[10, 5 marks]
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Answers
1. (a) (i) By the product rule, d

d x (x y cos x) = x cos x d y
d x + y cos x −x y sin x .

(ii) The equation is d y
d x + ( 1

x − tan x)y = x. Multiplying through by
the integrating factor µ(x) = exp(

∫
( 1

x − tan x)d x) = x cos x, the

equation becomes x cos x d y
d x + y cos x −x y sin x = x2 cos x.

Recognising the LHS from (i), we have d
d x (x y cos x) = x2 cos x,

and thus integrating both sides, we get x y cos x = ∫
x2 cos x d x.

The RHS requires integration by parts twice, and at the end we
get the general solution y(x) = (

x − 2
x

)
tan x + c

x sec x +2.

Finally, since y(π) = 0, we get that 0 =− c
π +2, i.e., c = 2π. Thus

the particular solution is y(x) = (
x − 2

x

)
tan x + 2π

x sec x +2.

(b) The auxiliary equation 9k2−12k +4 = 0 has the repeated root k = 2
3 ,

thus the complementary function is e2/3x(c1 + c2x).

Then by substituting the trial solution into the LHS of the equation,
we obtain the particular integral 2x + 6− 1

5 e−x . Putting everything
together, the general solution is y(x) = 2x+6− 1

5 e−x +e2/3x(c1+c2x).

Then plugging in the given information into the general solution
and its derivative, we find the constants c1 =−3 and c2 = 2, and thus
the particular solution is y(x) = 2x +6− 1

5 e−x +e2/3x (2x −3).

2. (a) A solution corresponds to a zero of the function f (x) = xex −cos x,
which is continuous on [0,1]. Now f (0) = 0− cos(0) = −1 < 0, and
f (1) = e−cos(1) Ê e−1 > 0. Thus by the intermediate value theorem,
there is some c ∈ (0,1) such that f (c) = 0.

If we let x0 = 1 be an initial approximation for the root c of f , one
iteration of the Newton–Raphson formula yields x1 = 0.6531, and
another gives x2 = 0.5313.

(b) (i) Using the booklet formula, `= ∫ π
0

p
1+cos2 x d x .

(ii)
x 0 π

6
π
3

π
2

2π
3

5π
6 π

p
1+cos2 x 1.4142 1.3229 1.1180 1 1.1180 1.3229 1.4142

y0 y1 y2 y3 y4 y5 y6
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Thus

`≈ π
18

(
1.4142+1.4142+4(1.3229+1+1.3229)

+2(1.1180+1.1180)
)

= 3.8194.

3. (a) (i) Since

1− 4

x +2
+ 3

(x +2)2
= (x +2)2 −4(x +2)+3

(x +2)2
= (x +1)(x −1)

(x +2)2
,

by the laws of logarithms,

log

(
1− 4

x +2
+ 3

(x +2)2

)
= log

(
(x +1)(x −1)

(x +2)2

)
= log(x +1)+ log(x −1)−2log(x +2).

(ii) Thus

n∑
r=2

log

(
1− 4

x +2
+ 3

(x +2)2

)

=
n∑

r=2
log(r +1)+

n∑
r=2

log(r −1)−2
n∑

r=2
log(r +2)

=
n+1∑
r=3

logr +
n−1∑
r=1

logr −2
n+2∑
r=4

logr

= log3+
n−1∑
r=4

logr + logn + log(n +1)

+ log1+ log2+ log3+
n−1∑
r=4

logr

−2

(n−1∑
r=4

logr + logn + log(n +1)+ log(n +2)

)
= 2log3+ log2− logn − log(n +1)−2log(n +2)

= log

(
18

n(n +1)(n +2)2

)
.
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(b) We have

f (x) =−1
2 log(cos x) =⇒ f (0) = 0

f ′(x) = 1
2 tan x =⇒ f ′(0) = 0

f ′′(x) = 1
2 sec2 x =⇒ f ′′(0) = 1

2

f ′′′(x) = sec2 x tan x =⇒ f ′′′(0) = 0

f ′′′′(x) = sec4 x +2sec2 x tan2 x =⇒ f ′′′′(0) = 1,

and so by Maclaurin’s theorem,

f (x) = 1/2

2!
x2 + 1

4!
x4 +O(x5)

= x2

4
+ x4

24
+O(x5).

Now for the desired limit, we have log
( 1p

cos x

) = x2

4 + x4

24 +O(x5) as

x → 0, so we can substitute:

lim
x→0

(
x4

4log
( 1p

cos x

)−x2

)
= lim

x→0

(
x4

4
( x4

4 + x4

24 +O(x5)
)−x2

)

= lim
x→0

(
x4

x4

6 +O(x5)

)

= lim
x→0

(
6

1+O(x)

)
= 6.

4. (a) For the base case, with n = 0, it’s obvious that M0 = I and the formula
we have works. For the inductive step, we have

Mk+1 = Mk M
IH=

(
1−3k 9k
−k 1+3k

)(−2 9
−1 4

)

=
(−2−3k 9+9k
−1−k 4+3k

)

=
(
1−3(k +1) 9(k +1)
−(k +1) 1+3(k +1)

)
.
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(b) When n = 0, 170 − 20 = 0 which is divisible by 5. For the inductive
step, we have

17k+1 −2k+1 = 17(17k )−2(2k )

= 17(17k )−17(2k )+15(2k )

= 17(17k −2k )+15(2k )
IH= 17(5a)+15(2k )

= 5(17a +3 ·2k ), a multiple of 5.

(c) When n = 5, 5×4 = 20 and 1
3 (53−5−60) = 20, so the result holds and

the base case is done.

For the inductive step,

k+1∑
r=5

r (r −1) =
k∑

r=5
r (r −1)+ (k +1)k

IH= 1
3 (k3 −k −60)+ (k +1)k

= 1
3 (k3 −k −60+3k2 +3k)

= 1
3 (k3 +3k2 +3k +1−k −1−60)

= 1
3 ((k +1)3 − (k +1)−60),

as required.

5. (a) Notice the equation of the curve is equivalent to

y = 6x −x2

x2 −6x +5

⇐⇒ y(x2 −6x +5) = 6x −x2

⇐⇒ y x2 −6y x +5y = 6x −x2

⇐⇒ (y +1)x2 −6(y +1)x +5y = 0 1©

If we determine the range of values of y for which this quadratic
in x has no roots, we will be finding the y-coordinates which have
no associated x-coordinate; i.e., the y-coordinates where the curve
does not exist.

Therefore no part of the curve exists when the quadratic discrimi-
nant ∆< 0:
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36(y +1)2 −20y(y +1) < 0

=⇒ 36(y2 +2y +1)−20y2 −20y < 0

=⇒ 16y2 +52y +36 < 0

=⇒ 4y2 +13y +9 < 0

=⇒ (y +1)(4y +9) < 0

From the sketch,

∴ −9
4 < y <−1

O
y

(y +1)(4y +9)

−9
4

−1

(b) Since the curve exists everywhere else outside−9
4 < y <−1, then any

extrema must occur at one of the points where y =−9
4 and y =−1.

Thus, we substitute y = −1 and y = −4
9 in 1©. Substituting y = −1

gives nonsense, so there are no extrema with y-coordinate −1. On
the other hand, substituting y =−9

4 gives

− 5

4
x2 −6

(
−5

4

)
x +5

(
−9

4

)
= 0

=⇒ 5x2 −30x +45 = 0

=⇒ x2 −6x +9 = 0

=⇒ (x −3)2 = 0

=⇒ x = 3 (twice)

Therefore a turning point occurs at
(
3,−9

4

)
.

Now, to determine asymptotes. Vertical asymptotes occur when the
denominator is zero:

x2 −6x +5 = 0

=⇒ (x −1)(x −5) = 0

=⇒ x = 1 or x = 5

Therefore the equations of the vertical asymptotes are x = 1 and
x = 5.
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Horizontal or oblique asymptotes occur as x → ±∞. We therefore
determine an asymptotic formula for f as x gets large:

f (x) = 6x −x2

x2 −6x +5
=−1+ 5

x2 −6x +5
=−1+O

(
1

x2

)
as x →±∞. In other words, as x gets big, f (x) ∼ −1, and so y =−1
is a horizontal asymptote to the curve.

(c) For the y-intercept, set x = 0 =⇒ f (0) = 0.

For the x-intercepts, we solve f (x) = 0, which happens when the
numerator is zero: 6x −x2 = 0 =⇒ x(6−x) = 0 =⇒ x = 0 or x = 6.

Sketch:

O
x

y = f (x)

6

(3,−9
4 )

y =−1

x=
1

x=
5

(d) For the graph of y = 1/ f (x), we make the following considerations.

• Any x-intercepts of the curve y = f (x) are roots of y = 1/ f (x)
and vice-versa. (So now, we have asymptotes at x = 0 and x = 6,
and roots at x = 1 and x = 5).

• Each respective part of the curve y = f (x) remains in the same
quadrant when considering the curve y = 1/ f (x).
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• If f (x) → ∞, then 1/ f (x) → 0+ (from above) and vice-versa.
Similarly, if f (x) → −∞, then 1/ f (x) → 0− (from below) and
vice-versa.

• If y = f (x) has a maximum turning point at (x0, y0), then y =
1/ f (x) has a minimum turning point at

(
x0, 1

y0

)
and vice-versa.

(So now, a minimum turning point occurs at
(
3,−4

9

)
).

• Any horizontal asymptotes given by y = a are still present in
the curve y = 1/ f (x), however they are shifted to y = 1

a . (The
asymptote at y =−1 remains at y =−1).

With these in mind, we can proceed to sketch y = 1/ f (x).

O
x

y = 1
f (x)

1 5(
3,−4

9

) y =−1

x=
6

12



6. (a) Substituting A in the LHS,

(A− I)(A+2I)

=
−3 12 4

−2 7 2
5 a b

−
1 0 0

0 1 0
0 0 1

−3 12 4
−2 7 2
5 a b

+
2 0 0

0 2 0
0 0 2



=
−4 12 4
−2 6 2
5 a b −1

−1 12 4
−2 9 2
5 a b +2



=
 0 4a +60 4(b +2)+8

0 2a +30 2(b +2)+4
−2a +5(b −1)−5 (b −1)a +9a +60 2a + (b −1)(b +2)+20

 .

Comparing entries with the zero matrix, we can quickly see that we
have a =−15 and b =−4.

Now we can use the equation to determine A−1:

(A− I)(A+2I) = 0

=⇒ A2 +A−2I = 0

=⇒ A−1(A2 +A−2I) = A−10

=⇒ A+ I−2A−1 = 0

=⇒ A−1 = 1
2 (A+ I)

∴ A−1 = 1

2

−2 12 4
−2 8 2
5 −15 −3


(b) (i) The trivial solution x = (0,0,0) is always a valid solution to the

system.

Now we perform Gaussian elimination on the augmented ma-
trix (B|0).

(B|0) =
 −3 12 4 0

−2 7 2 0
5 a 6 0


13



2R1 + (−3)R2 → R2

5R1 +3R3 → R3

∼
 −3 12 4 0

0 3 2 0
0 60+3a 38 0


(−19)R2 +R3 → R3

∼
 −3 12 4 0

0 3 2 0
0 3+3a 0 0


Observe that the third row corresponds to 0x+(3+3a)y+0z = 0.
If we take a = −1, then the equation (trivially) has infinitely
many solutions. If a 6= −1, then we must have y = 0, and con-
sequently, the other rows will give us x = z = 0. Therefore only
the value a =−1 gives more than one solution. ä

(ii) From part (i), a =−1. Now from R2, we get 3y+2z = 0, which re-
arranges to z =−3

2 y . Similarly, from R1, we get −3x+12y +4z =
0. Making y subject from the previous equation and substitut-
ing gives −3x +12(−2

3 z)+4z = 0 =⇒ −3x −8z +4z = 0 =⇒ z =
−3

4 x.

Thus combining these equations:

− 3

4
x =−3

2
y = z

=⇒ x −0

−4
3

= y −0

−2
3

= z −0

1

This corresponds to the Cartesian equation x−x1
a = y−y1

b = z−z1
c

of a line in R3 with initial point (x1, y1, z1) and direction vector
(a,b,c).

The corresponding vector equation is r =λ(4i+2j−3k). This
line represents the intersection of the three planes −3x +12y +
4z = 0, −2x +7y +2z = 0, 5x − y +6z = 0.

7. (a) Recall the following consequence of de Moivre’s theorem: if we write
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w = e iθ, then w n +w−n = 2cosnθ and w n −w−n = 2i sinnθ. Thus,

(2i sinθ)6 = (
w −w−1)6

=⇒ −64sin6θ = w 6 −6w 4 +15w 2 −20+15w−2 −6w−4 +w−6

= (w 6 +w−6)−6(w 4 +w−4)+15(w 2 +w−2)−20

= 2cos6θ−12cos4θ+30cos2θ−20

∴ 32sin6θ = 10−15cos2θ+6cos4θ−cos6θ

We proceed similarly to obtain the identity for 32cos6θ:

(2cosθ)6 = (
w +w−1)6

=⇒ 64cos6θ = w 6 +6w 4 +15w 2 +20+15w−2 +6w−4 +w−6

= (w 6 +w−6)+6(w 4 +w−4)+15(w 2 +w−2)+20

= 2cos6θ+12cos4θ+30cos2θ+20

∴ 32cos6θ = 10+15cos2θ+6cos4θ+cos6θ.

Adding the two identities, we get 32sin6θ+32cos6θ = 20+12cos4θ,
which reduces to 8(sin6θ+cos6θ) = 5+3cos4θ, as required.

Therefore the desired integral becomes∫ 64π

0
(sin6θ+cos6θ)2 dθ

= 1

64

∫ 64π

0
(5+3cos4θ)2 dθ

= 1

64

∫ 64π

0
(25+30cos4θ+9cos2 4θ)dθ

= 1

64

([
25θ+ 15

2
sin4θ

]64π

0
+ 9

2

∫ 64π

0
(cos8θ+1)dθ

)
=

[
25θ

64
+ 15sin4θ

128
+ 9sin8θ

1024
+ 9θ

128

]64π

0

= 25π+ 9π

2
= 59π

2
.
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(b) The fifth roots of unity are the solutions to the equation z5 = 1.
Clearly, each solution has |z| = 5

p
1 = 1. Thus all we have to deter-

mine are the different possible values of arg z. We know that the
possible values of arg z, where zn = r e iα, are given by

θ = 2kπ±α
n

, k ∈Z,

so long as −π < θ É π. In our case, we have α = 0 and n = 1, so the
different possible values are θ = {−4π

5 ,−2π
5 ,0, 2π

5 , 4π
5

}
. Therefore the

fifth roots of unity are 1, e±2πi /5, e±4πi /5.

O
R

I

1

2π
5

(i) Let ω = e2πi /5. Then by de Moivre’s theorem, ω2 = (
e2πi /5

) =
e4πi /5, which is another root. Similarly, ω3 = e6πi /5, again by de
Moivre’s theorem. Now 6π

5 is out of the range −π< θ Éπ, but as
an angle, it is equivalent to 6π

5 −2π = −4π
5 , therefore ω3 equals

e−4πi /5. Finally, ω4 = e8πi /5, whose argument is equivalent to
8π
5 −2π= −2π

4 , the remaining value of θ.

Therefore the roots can be expressed as 1, ω, ω2, ω3 and ω4. ä
(ii) (1−ω)(1+ω+ω2 +ω3 +ω4) = 1−ω5 = 0 by definition of the the

fifth roots of unity. Thus either 1−ω= 0, i.e. ω= 1, or 1+ω+ω2+
ω3 +ω4 = 0. Taking ω= 1 will not give us a meaningful result in
this case; so we may discard the former. Taking ω as in part (i),
we get that the sum of all the fifth roots of unity is zero. ä
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(iii) If we refer to the diagram drawn in part (i), the pentagon is ob-
tained simply by joining the vertices together, giving rise to 5
isosceles triangles, each with apex angle 2π

5 and legs of length
1. Thus the area is 5× 1

2 ab sinC = 5
2 (1)(1)sin 2π

5 = 5
2 sin 2π

5 , as
required.

8. (a) Since r is a function of cosθ, it suffices to take θ in the range 0 É θ É
π, since cosθ is an even function and negative angles would give the
same result.

θ 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

r 1 1.54 2.17 3 5 7 7.83 8.46 9

Sketch:

θ = 0

(b) We solve 5 − 4cosθ = 3 to find the values of θ at which points of
intersection occur.

5−4cosθ = 3

=⇒ cosθ = 1
2

=⇒ θp.v. = cos−1 (1
2

)= π
3

=⇒ θ = 2nπ± π
3 , n ∈Z

Taking values of n other than n = 0 gives values outside the range
−π < θ É π, thus the only values of θ where intersection points oc-
cur are θ = ±π

3 , and so the points of intersection are P = (
3, π3

)
and

Q = (
3,−π

3

)
.

The curve C represents a circle, since it has a fixed radius of r = 3
independent of the angle θ.

(c) A line through P then the pole makes an angle of π3 −π=−2π
3 . Thus

we evaluate 5−4cos
(−2π

3

) = 7, which represents the distance from
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the pole to the point R. Therefore the distance PR is the distance
from the pole to P (r = 3) plus the distance from the pole to R (r = 7),
i.e. |PR| = 10.

(d) The desired area is the following:

θ = 0

(
3, π3

)

(
3,−π

3

)

We know that in general, the area enclosed by the curve r = r (θ) and
the part-lines θ = a and θ = b is given by 1

2

∫ b
a r 2 dθ. Now our desired

area is the area of the circle between r = π
3 (outlined in green) and

r = −π
3 , minus that of the curve L in that region (outlined in red,

dashed):

θ = 0

(
3, π3

)

(
3,−π

3

)

Furthermore, since the region is symmetric in the horizontal, we
can simply evaluate the following enclosed region instead, then mul-
tiply the result by two.
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θ = 0

(
3, π3

)

Therefore,

A = 1

2

∫ π
3

−π
3

(3)2 dθ− 1

2

∫ π
3

−π
3

(5−4cosθ)2 dθ

=
∫ π

3

0
9dθ−

∫ π
3

0
(25−40cosθ+16cos2θ)dθ

= 9θ−25θ+40sinθ
∣∣π3
0 −8

∫ π
3

0
(1+cos2θ)dθ

= 20
p

3− 16π

3
−8

(
θ+ sin2θ

2

)∣∣∣π3
0

= 18
p

3−8π units2.

9. (a) Take a = i+ j−3k as the initial point, and ~AB = b−a = i−3j+4k as
its direction. Thus `1 has equation r = i+ j−3k+λ(i−3j+4k) .

(b) Since the points A, B and C lie on Π1, then the vectors ~AB = b−a =
i−3j+4k and ~AC = c−a = −j+2k lie in Π1. Therefore we can take
n1 = ~AB × ~AC to be the normal ofΠ1, where

n1 =
∣∣∣∣∣∣

i j k
1 −3 4
0 −1 2

∣∣∣∣∣∣=
∣∣∣∣−3 4
−1 2

∣∣∣∣ i−
∣∣∣∣1 4
0 2

∣∣∣∣ j+
∣∣∣∣1 −3
0 −1

∣∣∣∣k

=−2i−2j−k

Therefore Π1 has vector equation r ·n1 = a ·n1, i.e. r · (2i+2j+k) =
(i+ j−3k) · (2i+2j+k), which simplifies to r · (2i+2j+k) = 1, having
the corresponding Cartesian equation 2x +2y + z = 1.
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(c) Since Π2 contains the points C and D , then the vector ~C D = d−c =
−2i+j+k lie onΠ2. Furthermore, sinceΠ2 does not intersect `, then
it must be parallel to `, i.e., its direction vector ~AB = i−3j+4k lies
in the plane Π2. Therefore we can define n2 = ~AB × ~C D to be the
normal ofΠ2, where

n2 =
∣∣∣∣∣∣

i j k
1 −3 4
−2 1 1

∣∣∣∣∣∣=
∣∣∣∣−3 4

1 1

∣∣∣∣ i−
∣∣∣∣ 1 4
−2 1

∣∣∣∣ j+
∣∣∣∣ 1 −3
−2 1

∣∣∣∣k

=−7i−9j−5k

Therefore Π2 has vector equation r ·n2 = c ·n2, i.e., r · (7i+9j+5k) =
(i−k) · (7i+9j+5k), which simplifies to r · (7i+9j+5k) = 2, having
the corresponding Cartesian equation 7x +9y +5z = 2.

(d) The distance of a point X , with position vector x, from a plane Π :

r ·n = d is given by the formula s =
∣∣∣x · n̂− d

‖n‖
∣∣∣. In the case of Π2,

we have ‖n2‖ =
p

72 +92 +52 =p
155, so n̂2 = 7p

155
i+ 9p

155
j+ 5p

155
k.

Thus for the point A, we have:∣∣∣∣a · n̂2 − 2

‖n2‖
∣∣∣∣= ∣∣∣∣ 7p

155
+ 9p

155
− 15p

155
− 2p

155

∣∣∣∣= 1p
155

units

Similarly, for point B , we have∣∣∣∣b · n̂2 − 2

‖n2‖
∣∣∣∣= ∣∣∣∣ 14p

155
− 18p

155
+ 5p

155
− 2p

155

∣∣∣∣= 1p
155

units

(e) The angle θ between two planes whose normals are n1 and n2 is
given by the formula cosθ = n̂1 · n̂2. In our case, we have n̂1 = n1

‖n1‖ =
2
3 i+ 2

3 j+ 1
3 k and n̂2 = 7p

155
i+ 9p

155
j+ 5p

155
k, thus

cosθ = n̂1 · n̂2

= 14

3
p

155
+ 18

3
p

155
+ 5

3
p

155

= 37

3
p

115

=⇒ θ = cos−1
(

37

3
p

115

)
≈ 7.84◦

10. (a)
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