
§2.4 | Asymptotic Notation Luke Collins

x

y

sin x

x

Figure 6: Plot of sin x and x on the same axes, notice that for small inputs x ,

they are very close

2.4 Asymptotic Notation

Let f , g : A→ R be functions, and let a be a cluster point of A. If

lim
x→a

f (x)

g(x)
= 1,

what could we deduce? If the ratio of two numbers is 1, then they are equal.

Since the limit of the ratio is 1, it must means that for points close to a, the

values of f (x) and g(x) are approximately the same. This is written as

f (x) ∼ g(x) as x → a,

and we say that f (x) is asymptotic to g(x) as x → a. For instance, (i) of
theorem 2.18 tells us that

sin x ∼ x

as x → 0. This must mean that for points close to 0, sin x and x are approxi-
mately equal. Indeed, if we look at a sketch of their graphs (figure 6), we see

that this is the case. In fact, sin(0.01) = 0.009999 (for example). Another

example, we have that

√
x ∼
√
2

32
(12 + 12x − x2) as x → 2.

Indeed, since both functions are continuous at 2, we can just plug in x = 2

directly to get that

lim
x→2

√
x

√
2
32 (12 + 12x − x2)

=

√
2

√
2
32 (12 + 12(2)− 22)

= 1,

16 PRELIMINARY VERSION 0.1



§2.4 | Asymptotic Notation Luke Collins

x

y √
x

√
2
32 (12 + 12x − x

2)

2

√
2

Figure 7: Plot of
√
x and

√
2
32 (12+12x − x

2) on the same axes, notice that for

x close to 2, they are good approximations of each other
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and we can see in figure 7 that they good approximations to each other for

inputs close to x = 2.

What if, on the other hand, we have that

lim
x→a

f (x)

g(x)
= 0?

In this case, for points close to a, the values of f (x) must be much smaller

(in size) than those of g(x); since the ratio of two numbers is approximately

zero if the numerator is much smaller than the denominator.

Definition 2.20 (Little-o notation). Let f , g : A → R be functions, and let a

be a cluster point of A. we say that f is little-oh of g as x → a, or that f is
dominated asymptotically by g as x → a, written

f (x) = o(g(x)) as x → a,

if limx→a f (x)/g(x) = 0.

For instance, theorem 2.18(ii) tells us that

1− cos x = o(x)

as x → 0. In other words, 1− cos x is smaller than x as we approach 0. Even
though they are both 0 when x = 0, for points close to 0, the value of 1−cos x
is smaller than that of x , which means that it goes to 0 more rapidly. Indeed,

if we tabulate different values as x approaches 0, we see this is the case.

x 1 0.1 0.001 0.0001 0.0001

1− cos x 0.4597 0.0049 0.000049 0.00000049 0.00000049

So what this means in terms of approximations, is that if we have some ex-

pression involving both x and 1− cos x , such as

7 + 3x − 2(1− cos x),

we can say that this is approximately 7 + 3x if x is small enough (i.e., close

enough to 0). Indeed, when x = 0.1,

7 + 3x = 7.3 and 7 + 3x − 2(1− cos x) = 7.290008.

Another example of the notation: let n > 1. Then

xn = o(x)
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as x → 0, since
lim
x→0

xn

x
= lim
x→0
xn−1 = 0n−1 = 0,

where we used the fact that xn−1 is continuous at 0. In other words, x

dominates xn when the input x is close to 0 (x → 0), so something like

1 + 3x − 2x2 + 5x3

is well approximated by 1 + 3x when x is small.

If f (x) − g(x) = o(h(x)), we also write that f (x) = g(x) + o(h(x)). For
instance, we said that 1+3x −2x2+5x3 is well approximated by 1+3x when
x is small; this is because their difference is o(x), i.e.,

(1 + 3x − 2x2 + 5x3)− (1 + 3x) = o(x) as x → 0.

Instead, we can write this as

1 + 3x − 2x2 + 5x3 = 1 + 3x + o(x) as x → 0,

which means that the expression on the left is equal to 1+ 3x plus something

which is not as significant as x when we are close to 0.

Remark 2.21. Even though we are using = here, this is a bit of an abuse of

notation. Indeed, if f (x) = o(g(x)) and h(x) = o(g(x)), it doesn’t mean that

f (x) = h(x), which is not usual behaviour of equality. ■

3 Differentiation

3.1 Calculus of Differences

Definition 3.1 (Difference). Let f : A → R be a function. The difference or

change of f at x by h, denoted by ∆f (x, h), is the quantity defined by

∆f (x, h) = f (x + h)− f (x).

This is so that when we change the input x to f by h, we get

f (x + h)︸ ︷︷ ︸
new value

= f (x)︸︷︷︸
old value

+ ∆f (x, h)︸ ︷︷ ︸
change

.

We will often abuse notation slightly, writing truncated versions of this function

such as ∆f (x) or just ∆f when things are clear from context. We will also treat
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x2 x2x 7→ x+h−−−−−−→x

x

x

x

h

h

xh

xh h2

Figure 8: Interpreting example 3.2 as a change in area: ∆(x2) = 2xh + h2

expressions in terms of x formally as functions. For instance, if f : R → R is

defined by f (x) = x2, we would write ∆(x2) for ∆f . In other words, where we

have otherwise been very careful about distinguishing between the notations

f and f (x), here we will not be so strict about it (otherwise some of the

theorems we will do end up looking needlessly more complicated).

Example 3.2. We compute the change of the function x2. We have

∆(x2) = (x + h)2 − x2

= x2 + 2xh + h2 − x2

= 2xh + h2.

Thus when x = 2 (for instance), we have 22 = 4, and if we change the input

by h = 0.1 to get 2.12, we just need to add

∆(x2)(2, 0.1) = 2(2)(0.1) + 0.12 = 0.41

to the value of 22, which gives us that 2.12 = 4.41.

We can interpret what we’ve computed here as the change of area when we

extend the sides of a square, as shown in figure 8. ■

Example 3.3. Another example, we find ∆(x3 − 2x + 5).

∆(x3 − 2x + 5) = (x + h)3 − 2(x + h) + 5− (x3 − 2x + 5)
= x3 + 3x2h + 3xh2 + h3 − 2x − 2h + 5− x3 + 2x − 5
= (3x2 − 2)h + 3xh2 + h3

Notice that when x = 5, the f (x) = 53−2·5+5 = 120 (where f = x3−2x+5).
If we want to find the value of f (105), we can finding the change with x = 5
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and h = 100, and then just add that to 120. Indeed, the change is

∆f (5, 100) = (3 · 52 − 2) · 100 + 3(5) · 1002 + 1003

= 7300 + 150 000 + 1000 000

= 1157 300,

so the function at x = 105 equals 1 157 420. (Obviously we could have just

plugged in 150 into f (x) directly, but then we wouldn’t be using ∆f , and this

wouldn’t be much of an example.)

Perhaps an example which illustrates a bit better why it is worthwhile to study

changes: notice that when h is small, we can approximate the change just by

taking the first term (3x2 − 2)h, since terms in higher powers of h are less
significant (they are o(h)). So for instance, to approximate the value of the

function at 105.1, we just work out the change with x = 105 and h = 0.1:

∆f (105, 0.1) ≈ 33 073 · 0.1 = 3 307.3.

We found that the function at 105 equals 1 157 420, so adding the approximate

change above, we get that the function at 105.1 ≈ 1 160 727.3. (The actual
value of f (105.1) is about 1 160 730.45, so this only introduces a relative error

of 0.0002%). ■

Even though most of the results here do not make any restrictions on the

size of h, it will be instructive to think of h as “small”, since when we get

to differentials (which are the main object of differential calculus), we will be

thinking about the case where h is small, just as we saw in the last example.

With this in mind, we have the following result.

Proposition 3.4 (Change of xn). Let n ∈ N, and let f : R→ R be defined by

f (x) = xn. Then we have

∆f (x, h) = n xn−1h + o(h)

as h → 0.

Proof. This follows immediately by the binomial theorem. Indeed, we have

∆f (x, h) = (x + h)n − xn

=

n∑
k=0

(
n

k

)
xn−khn − xn
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= xn + n xn−1h +
n(n − 1)
2

xn−2h2 + · · ·+ hn − xn

= n xn−1h +
(n(n − 1)

2
xn−2h + · · ·+ hn−1

)
h

= n xn−1h + o(h),

since n(n−1)2 xn−2h+ · · ·+ hn−1 is a polynomial in h (so it is continuous in h),
and it equals 0 when h = 0.

Example 3.5. We have 503 = 125 000. By the above, we have

∆(x3)(50, h) = 3 · 502h = 7500h + o(h),

as h → 0, and so

50.053 = 503 + ∆(x3)(50, 0.05) ≈ 125 000 + 7 500(0.05) = 125 375.

The precise value is 125 375.375 125, so the error is 0.00029%. ■

Remark 3.6 (Arithmetic of functions). Let f , g : A→ R be functions, and let

λ ∈ R be a constant. Then when we write f + g or λf , we refer the functions
defined in the obvious way, i.e.,

(f + g)(x) = f (x) + g(x) and (λf )(x) = λ f (x)

for all x ∈ A. For instance, 3 sin2+2 log is the function such that

(3 sin2+2 log)(x) = 3 sin2 x + 2 log x.

We similarly infer the meaning of expressions such as f g, f /g, and so on; e.g.(sin cos +√ ·
log3

)
(x) =

sin x cos x +
√
x

log3 x
.

Notice particularly that the juxtaposition sin cos became the product sin x cos x ,

and not the composition sin(cos x) (for which we would instead write sin◦cos).
This convention will allow us to state properties about ∆ in a concise way. ■

Proposition 3.7 (Linearity of ∆). Let f , g : A → R be two real-valued func-

tions, and let a, b be two constants. Then

∆(af + bg) = a∆f + b∆g
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Proof. We have

∆(af + bg) = (af + bg)(x + h)− (af + bg)(x)
= a f (x + h) + b g(x + h)− a f (x)− b g(x)
= a(f (x + h)− f (x)) + b(g(x + h)− g(x))
= a∆f + b∆g.

Proposition 3.8 (Product Rule for ∆). Let f , g : A → R be two real-valued

functions. Then

∆(f g) = ∆f g + f ∆g + ∆f ∆g

Proof. This is another straightforward proof:

∆(f g) = (f g)(x + h)− (f g)(x)
= f (x + h) g(x + h)− f (x) g(x)
= f (x + h) g(x + h)− f (x) g(x + h)

+ f (x) g(x + h)− f (x) g(x)
= [f (x + h)− f (x)]g(x + h) + f (x)[g(x + h)− g(x)]
= ∆f g(x + h) + f ∆g

= ∆f · (g(x) + ∆g(x, h)) + f ∆g
= ∆f g + f ∆g + ∆f ∆g.

Proposition 3.9 (Chain Rule for ∆).

∆(f ◦ g)(x, h) = ∆f (g(x),∆g(x, h)).

Proof. Just by expanding the definition, we have

∆(f ◦ g)(x, h) = (f ◦ g)(x + h)− (f ◦ g)(x)
= f (g(x + h))− f (g(x))
= f (g(x) + ∆g(x, h))− f (g(x))
= ∆f (g(x),∆g(x, h)).

Remark 3.10 (∆x). Notice that for any function f : A→ R, we have f = f ◦ id,
where id denotes the identity function defined by id(x) = x for all x ∈ R. If
we apply proposition 3.9 to this composition, we see that

∆f = ∆(f ◦ id) = ∆f (id(x),∆id(x, h)) = ∆f (x,∆id).
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Now just as we informally write ∆(x2) in place of ∆f (when f (x) = x2), here

we can write ∆(x), or just ∆x , for ∆id, since this is the expression defining
id(x). Indeed,

∆x = ∆(x)(x, h) = id(x + h)− id(x) = x + h − x = h,

so we have

∆f (x, h) = ∆f (x,∆x).

Going forward, we will be writing ∆x for the change of the input (instead of h

which we have been using so far). We can just think of ∆x as an independent

variable just as we thought of h, but if we instead interpret it as a difference

in the sense of definition 3.1, (i.e., we think of ∆x as ∆(x)), then by our

reasoning above, everything ends up being the same. ■

3.2 Calculus of Differentials

We’ve already seen that it can be useful to take the principal part of a difference

to approximate a change ∆f when ∆x is small, as we did in the second part

of example 3.3. When the difference is essentially proportional to ∆x , we say

that f is differentiable.

Definition 3.11 (Differentiable). Let f : A→ R be a function, and let a ∈ A.
Then f is said to be differentiable at x = a if there exists a constant A (which

may depend on a) such that

∆f (a,∆x) = A∆x + o(∆x)

as ∆x → 0. This constant is called the derivative of f at x = a, and we
denote it by f ′(a).

If f is differentiable at every a ∈ A, we just say that f is differentiable.

Example 3.12. We saw in example 3.2 that when f (x) = x2,

∆f (a,∆x) = 2a∆x + ∆x2 = 2a∆x + o(∆x),

so x2 is differentiable at each a in its domain, and its derivative at x = a is

f ′(a) = 2a. ■

A function being differentiable at a point captures the idea of being “smooth”

there. Essentially, a function is differentiable at a if it can be approximated by

a line there. Indeed, if f is differentiable at a, then

f (a + ∆x) = f (a) + A∆x + o(∆x)
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4x − 4

2

4

Figure 9: Plot of x2 and 4x − 4 on the same axes, notice that for points close
to x = 2, they are very close.

and if we let x = a + ∆x , this becomes

f (x) = f (a) + A · (x − a) + o(x − a).

In other words, when x is close to a (or equivalently, when the difference

x − a = ∆x is small), we have

f (x) ≈ f (a) + A · (x − a).

For instance, the derivative of x2 at x = 2 is A = 4. Thus, for points close to

2, we have

x2 ≈ f (2) + A · (x − 2) = 4 + 4(x − 2) = 4x − 4.

Indeed, if we plot these on the same axes, we can see that this gives us a good

approximation for points close to x = 2 (figure 9). In general the line

y = f (a) + f ′(a) (x − a)

is called the tangent line of f at x = a. Notice the derivative is precisely the

gradient of this line.

Thus you should have the following intuitive understanding of what it means

to be differentiable at the point x = a: if you keep zooming in to the function
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at x = a, looking really close, it should resemble a line. If it does, then the

function is differentiable at that point, and the derivative of the function there

is the gradient of this line.

An example of something which is not differentiable is |x | at x = 0 (we will
prove this formally later). But intuitively, if you keep zooming in towards the

point where x = 0, it never looks like a line, it retains its V-shape.

Remark 3.13 (Uniqueness of Derivatives). If a function is differentiable at

x = a, then its derivative f ′(a) is unique. In other words, we cannot find two

different constants, A and B, such that

∆f = A∆x + o(∆x) and ∆f = B∆x + o(∆x).

Indeed, if f is differentiable at x = a, then there exists A such that

∆f (a,∆x) = A∆x + o(∆x),

which by definition of little-o, means that

∆f (a,∆x)− A∆x = o(∆x),

i.e., that

lim
∆x→0

(∆f (a,∆x)− A∆x
∆x

)
= 0,

which is equivalent to saying that

lim
∆x→0

(∆f (a,∆x)
∆x

− A
)
= 0.

Now clearly lim∆x→0 A = A since A is constant with respect to ∆x , so applying

the rule lim(f (x) + g(x)) = lim f (x) + lim g(x) (theorem 2.12(i)), we have

that

lim
∆x→0

∆f (a,∆x)

∆x
= lim
∆x→0

((∆f (a,∆x)
∆x

− A
)
+ A

)
=

(∆f (a,∆x)
∆x

− A
)
+ lim
∆x→0

A

= 0 + A = A.

In other words, we have shown that if f is differentiable at x = a, then the

derivative A = f ′(a) is equal to

lim
∆x→0

∆f (a,∆x)

∆x
,

and since limits are unique theorem 2.10, then this number is unique. ■
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We can summarise the reasoning of remark 3.13 in following proposition:

Proposition 3.14. Let f : A→ R be a function, and let a ∈ A. Then

f is differentiable at x = a with derivative A

⇐⇒ lim
∆x→0

∆f (x,∆x)

∆x
exists and equals A.

Proof. The direction ⇒ follows from what we said in remark 3.13. To see
why the other direction is true, we can basically reverse the steps we applied.

Indeed, suppose that the limit

lim
∆x→0

∆f (a,∆x)

∆x

exists and equals A. Since lim∆x→0 A = A, applying theorem 2.12(ii), we get

that

lim
∆x→0

(∆f (a,∆x)
∆x

− A
)
= lim
∆x→0

∆f (a,∆x)

∆x
− lim
∆x→0

A = A− A = 0,

i.e.,

lim
∆x→0

(∆f (a,∆x)− A∆x
∆x

)
= 0,

i.e.,

∆f (a,∆x)− A∆x = o(∆x),

which rearranges to give ∆f (a,∆x) = A∆x + o(∆x), as required.

The principal part of the difference ∆f is called the differential of f .

Definition 3.15 (Differential). Let f : A → R be differentiable at x = a with

derivative f ′(a). The differential of f at a is the function defined by

df (a, h) = f ′(a) h.

Example 3.16. Let f (x) = x2. From example 3.12, we saw that f ′(a) = 2a,

so

df (a, h) = 2a h.

We have ∆f (a, h) = 2ah + h2 = df + o(h). ■
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In general, if f is differentiable at a, then we have that

∆f (a, h) = df (a, h) + o(h).

In particular, notice that the what makes ∆f different from df is the “error

term” which insignificant compared to h when h is small (i.e., it is o(h) as

h → 0).

Just as we abused functional notation with ∆, here we do the same, writing

things like ∆(x2) = 2x h. Moreover, just as in remark 3.10, we note that

∆(x)(a, h) = (a + h)− h = h = 1 · h + 0 = 1 · h + o(h),

so id is differentiable with derivative 1 for all a, and the differential

dx = d(x)(a, h) = h.

Consequently, we can either interpret dx as an independent variable (just as

we were doing with h), or as the differential of the identity, it doesn’t make

any difference, and we will subsequently be writing

df (a, dx) instead of df (a, h).

Thus in summary, for differentiable f , we have that

∆f = df + o(dx).

Let’s do an example.

Example 3.17. Let f (x) = 3x3−2x+1. Let us show that this is differentiable
at every point x in its domain. Indeed,

∆f (x, dx) = 3(x + dx)3 − 2(x + dx) + 1− (3x3 − 2x + 1)
= 3x3 + 9x2 dx + 9x dx2 + 3dx3 − 2x − 2dx + 1− 3x3 + 2x − 1
= (9x2 − 2) dx + 9x dx2 + 3 dx3,

thus we have that f is differentiable with derivative f ′(x) = 9x2 − 2, and

∆f = (9x2 − 2) dx︸ ︷︷ ︸
df

+9x dx2 + 3 dx3︸ ︷︷ ︸
o(dx)

,

so the differential df is (9x2 − 2) dx . ■

Now we will translate some of the properties of ∆ into properties of d .
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Proposition 3.18 (Linearity of d). Suppose f , g : A → R, let a, b ∈ R and
x ∈ A, and suppose that f and g are both differentiable at x . Then af + bg
is also differentiable at x , and

d(af + bg) = a df + b dg.

Proof. Since f and g are differentiable at x , we have that ∆f = df + o(dx)

and ∆g = dg + o(dx). By proposition 3.7,

∆(af + bg) = a∆f + b∆g

= a(df + o(dx)) + b(dg + o(dx))

= a df + b dg + o(dx)

= (a f ′(x) + b g′(x)) dx + o(dx)

so we agree with definition 3.11, and the differential is a df + b dg.

Let us give the differential of an important class of functions, the powers of x .

Proposition 3.19. Let n ∈ N. Then f : R → R defined by f (x) = xn is

differentiable, and moreover,

d(xn) = n xn−1 dx.

This is precisely the statement of proposition 3.4. Combining this fact with

proposition 3.18, we can find the differential of any polynomial.

Example 3.20. We have

d(4x3 − 2x2 + 5x − 9) = 4d(x3)− 2d(x2) + 5d(x)− 9d(1)
= 4(3x2 dx)− 2(2x dx) + 5 dx − 9(0)
= (12x2 − 4x + 5) dx,

where it is straightforward to check that d1 = 0. ■

Remark 3.21 (Leibniz Notation). Notice that in general,

df (a, dx)

dx
=
f ′(a) dx

dx
= f ′(a).

In particular, the value dfdx does not depend on the value of dx ; it’s just f
′(a).

Consequently, the notation
df

dx
(a)
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is sometimes used as an alternative to f ′(a). In a similar spirit, the notation
d
dx denotes the “derivative operator”, i.e.,

d

dx
(f )(a) =

df

dx
(a),

so that we would write things like the previous example as

d

dx
(4x3 − 2x2 + 5x − 9) = 12x2 − 4x + 5,

where the derivative is the subject of the equation. ■

We will continue phrasing things in the notes in terms of differentials rather

than using Leibniz notation, it will be advantageous to do so when it comes

to integrals. (If you encounter dy/dx in the wild, you can just interpret it

literally, where the dx ’s cancel out.)

It turns out that a more general version of proposition 3.19 is true.

Theorem 3.22 (Power Rule). Let r ∈ R. Then x r is differentiable, and

d(x r ) = r x r−1 dx.

We will not give the proof here, but it is essentially a consequence of the fact

that x r = exp(r log x).

Example 3.23. We determine the equation of the tangent line to the curve

y = f (x), where f (x) = 10
√
x−5
x , at the point x = 4. Hence, we approximate

the value of 13(10
√
3− 5).

We have

f =
10
√
x − 5
x

= 10x−1/2 − 5x−1 =⇒ df = (10(−12)x
−3/2 − 5(−1)x−2) dx

=
( 5
x2
−
5

x
√
x

)
dx,

in particular, at x = 4, df = − 516 dx , so the derivative is f
′(4) = − 516 , which

gives the tangent line

y = f (4) + f ′(4) (x − 4)
= 15
4 −

5
16(x − 4)

=⇒ 5x + 16y = 80.

Using the tangent line, 13(10
√
3− 5) ≈ y(3) = 1

16(80− 5 · 3) = 4.0625. ■
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Figure 10: Plot of y = 10
√
x−5
x and the tangent line 5x + 16y = 80 on the

same axes, notice that for points close to x = 4, they are very close.
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